1
|
Hu K, Xiao M, Chen S, Huang Y, Hou Z, Li X, Yang L. Innovative applications of natural polysaccharide polymers in intravesical therapy of bladder diseases. Carbohydr Polym 2025; 354:123307. [PMID: 39978897 DOI: 10.1016/j.carbpol.2025.123307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/22/2025]
Abstract
Natural polysaccharide polymers, characterized by their remarkable biocompatibility, biodegradability, and structural versatility, hold great promise for intravesical therapy in treating of bladder diseases. Conditions such as bladder cancer and interstitial cystitis compromise drug efficacy by affecting the permeability of the bladder wall. Traditional therapeutic approaches are often hindered by physiological challenges, including rapid drug clearance and the intrinsic permeability barrier of the bladder. Polysaccharides like hyaluronic acid (HA) and chitosan (CS) have emerged as promising materials for intravesical drug delivery systems (IDDS), owing to their ability to repair tight junctions in the bladder wall, mitigate inflammation, and enhance permeability. This review provides a comprehensive overview of the mechanisms through which polysaccharide-based natural polymers regulate bladder wall permeability and highlights their advancements in delivery platforms, including nanoparticles, hydrogels, floating systems, and composite materials. By improving drug retention, enhancing bioavailability, and promoting patient adherence, these materials offer a solid foundation for the development of innovative therapeutic strategies for bladder diseases.
Collapse
Affiliation(s)
- Ke Hu
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China; Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Miaomiao Xiao
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Siwen Chen
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China
| | - Yuanbing Huang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhipeng Hou
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| | - Xiancheng Li
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Liqun Yang
- Research Center for Biomedical Materials, Shenyang Key Laboratory of Biomedical Polymers, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 11004, China.
| |
Collapse
|
2
|
Banerjee A, Lee D, Jiang C, Wang R, Kutulakos ZB, Lee S, Gao J, Joshi N. Progress and challenges in intravesical drug delivery. Expert Opin Drug Deliv 2024; 21:111-129. [PMID: 38235592 DOI: 10.1080/17425247.2024.2307481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/16/2024] [Indexed: 01/19/2024]
Abstract
INTRODUCTION Intravesical drug delivery (IDD) has gained recognition as a viable approach for treating bladder-related diseases over the years. However, it comes with its set of challenges, including voiding difficulties and limitations in mucosal and epithelial penetration. These challenges lead to drug dilution and clearance, resulting in poor efficacy. Various strategies for drug delivery have been devised to overcome these issues, all aimed at optimizing drug delivery. Nevertheless, there has been minimal translation to clinical settings. AREAS COVERED This review provides a detailed description of IDD, including its history, advantages, and challenges. It also explores the physical barriers encountered in IDD, such as voiding, mucosal penetration, and epithelial penetration, and discusses current strategies for overcoming these challenges. Additionally, it offers a comprehensive roadmap for advancing IDD into clinical trials. EXPERT OPINION Physical bladder barriers and limitations of conventional treatments result in unsatisfactory efficacy against bladder diseases. Nevertheless, substantial recent efforts in this field have led to significant progress in overcoming these challenges and have raised important attributes for an optimal IDD system. However, there is still a lack of well-defined steps in the workflow to optimize the IDD system for clinical settings, and further research is required to establish more comprehensive in vitro and in vivo models to expedite clinical translation.
Collapse
Affiliation(s)
- Arpita Banerjee
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Mumbai, India
| | - Dongtak Lee
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher Jiang
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Rong Wang
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Zoe Bogusia Kutulakos
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Sohyung Lee
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jingjing Gao
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Center for Bioactive Delivery, Institute for Applied Life Sciences, Material Science Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Nitin Joshi
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Marchenko IV, Trushina DB. Local Drug Delivery in Bladder Cancer: Advances of Nano/Micro/Macro-Scale Drug Delivery Systems. Pharmaceutics 2023; 15:2724. [PMID: 38140065 PMCID: PMC10747982 DOI: 10.3390/pharmaceutics15122724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Treatment of bladder cancer remains a critical unmet need and requires advanced approaches, particularly the development of local drug delivery systems. The physiology of the urinary bladder causes the main difficulties in the local treatment of bladder cancer: regular voiding prevents the maintenance of optimal concentration of the instilled drugs, while poor permeability of the urothelium limits the penetration of the drugs into the bladder wall. Therefore, great research efforts have been spent to overcome these hurdles, thereby improving the efficacy of available therapies. The explosive development of nanotechnology, polymer science, and related fields has contributed to the emergence of a number of nanostructured vehicles (nano- and micro-scale) applicable for intravesical drug delivery. Moreover, the engineering approach has facilitated the design of several macro-sized depot systems (centimeter scale) capable of remaining in the bladder for weeks and months. In this article, the main rationales and strategies for improved intravesical delivery are reviewed. Here, we focused on analysis of colloidal nano- and micro-sized drug carriers and indwelling macro-scale devices, which were evaluated for applicability in local therapy for bladder cancer in vivo.
Collapse
Affiliation(s)
- Irina V. Marchenko
- Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia;
| | - Daria B. Trushina
- Federal Scientific Research Center “Crystallography and Photonics”, Russian Academy of Sciences, 119333 Moscow, Russia;
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Wang L, Qi F, Bi L, Yan J, Han X, Wang Y, Song P, Wang Y, Zhang H. Targeted hollow pollen silica nanoparticles for enhanced intravesical therapy of bladder cancer. Biomater Sci 2023. [PMID: 37314787 DOI: 10.1039/d3bm00631j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bladder cancer (BC), such as non-muscle invasive bladder cancer (NMIBC), has a significantly high recurrence rate even after intravesical therapy because traditional intravesical chemotherapeutic drugs have short retention time in the bladder and lack efficient uptake in BC cells. Pollen structure usually shows potent adhesion ability to tissue surfaces, different from traditional electronic interaction or covalent binding. 4-Carboxyphenylboric acid (CPBA) has high affinity to sialic acid residues that are overexpressed on BC cells. In the present study, hollow pollen silica (HPS) nanoparticles (NPs) were prepared and modified with CPBA to form CHPS NPs, which could be further loaded with pirarubicin (THP) to form THP@CHPS NPs. THP@CHPS NPs showed high adhesion to skin tissues and could be more efficiently internalized by a mouse bladder cancer cell line (MB49) than THP, inducing more significant apoptotic cells. After intravesical instillation into a BC mouse model through an indwelling catheter, THP@CHPS NPs could more significantly accumulate at the bladder than THP at 24 h post-instillation, and after 8 days of intravesical treatments, magnetic resonance imaging (MRI) revealed that the bladders treated with THP@CHPS NPs showed more smooth bladder lining and more reduction in size and weights than those with THP. Moreover, THP@CHPS NPs exhibited excellent biocompatibility. THP@CHPS NPs hold great potential for intravesical treatment of bladder cancer.
Collapse
Affiliation(s)
- Lulu Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Fan Qi
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130022, Jilin, China.
| | - Luopeng Bi
- Department of Urology, The First Hospital of Jilin University, Changchun, 130022, Jilin, China.
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
| | - Yanjing Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Panpan Song
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yanbo Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, 130022, Jilin, China.
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
5
|
Mahmoud DB, Schulz‐Siegmund M. Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems. Adv Healthc Mater 2023; 12:e2202631. [PMID: 36571721 PMCID: PMC11468531 DOI: 10.1002/adhm.202202631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The breakthrough of 3D printing in biomedical research has paved the way for the next evolutionary step referred to as four dimensional (4D) printing. This new concept utilizes the time as the fourth dimension in addition to the x, y, and z axes with the idea to change the configuration of a printed construct with time usually in response to an external stimulus. This can be attained through the incorporation of smart materials or through a preset smart design. The 4D printed constructs may be designed to exhibit expandability, flexibility, self-folding, self-repair or deformability. This review focuses on 4D printed devices for gastroretentive, esophageal, and intravesical delivery. The currently unmet needs and challenges for these application sites are tried to be defined and reported on published solution concepts involving 4D printing. In addition, other promising application sites that may similarly benefit from 4D printing approaches such as tracheal and intrauterine drug delivery are proposed.
Collapse
Affiliation(s)
- Dina B. Mahmoud
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
- Department of PharmaceuticsEgyptian Drug Authority12311GizaEgypt
| | - Michaela Schulz‐Siegmund
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
| |
Collapse
|
6
|
Yu C, Wang S, Lai WF, Zhang D. The Progress of Chitosan-Based Nanoparticles for Intravesical Bladder Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15010211. [PMID: 36678840 PMCID: PMC9861699 DOI: 10.3390/pharmaceutics15010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer (BC) is the most frequently occurring cancer of the urinary system, with non-muscle-invasive bladder cancer (NMIBC) accounting for 75-85% of all the bladder cancers. Patients with NMIBC have a good survival rate but are at high risk for tumor recurrence and disease progression. Intravesical instillation of antitumor agents is the standard treatment for NMIBC following transurethral resection of bladder tumors. Chemotherapeutic drugs are broadly employed for bladder cancer treatment, but have limited efficacy due to chemo-resistance and systemic toxicity. Additionally, the periodic voiding of bladder and low permeability of the bladder urothelium impair the retention of drugs, resulting in a weak antitumoral response. Chitosan is a non-toxic and biocompatible polymer which enables better penetration of specific drugs to the deeper cell layers of the bladder as a consequence of temporarily abolishing the barrier function of urothelium, thus offering multifaceted biomedical applications in urinary bladder epithelial. Nowadays, the rapid development of nanoparticles significantly improves the tumor therapy with enhanced drug transport. This review presents an overview on the state of chitosan-based nanoparticles in the field of intravesical bladder cancer treatment.
Collapse
Affiliation(s)
- Chong Yu
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Shuai Wang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
| | - Wing-Fu Lai
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
- Correspondence: (W.-F.L.); (D.Z.)
| | - Dahong Zhang
- Urology & Nephrology Center, Department of Urology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou 310014, China
- Correspondence: (W.-F.L.); (D.Z.)
| |
Collapse
|
7
|
The Evolution and Future of Targeted Cancer Therapy: From Nanoparticles, Oncolytic Viruses, and Oncolytic Bacteria to the Treatment of Solid Tumors. NANOMATERIALS 2021; 11:nano11113018. [PMID: 34835785 PMCID: PMC8623458 DOI: 10.3390/nano11113018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/28/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023]
Abstract
While many classes of chemotherapeutic agents exist to treat solid tumors, few can generate a lasting response without substantial off-target toxicity despite significant scientific advancements and investments. In this review, the paths of development for nanoparticles, oncolytic viruses, and oncolytic bacteria over the last 20 years of research towards clinical translation and acceptance as novel cancer therapeutics are compared. Novel nanoparticle, oncolytic virus, and oncolytic bacteria therapies all start with a common goal of accomplishing therapeutic drug activity or delivery to a specific site while avoiding off-target effects, with overlapping methodology between all three modalities. Indeed, the degree of overlap is substantial enough that breakthroughs in one therapeutic could have considerable implications on the progression of the other two. Each oncotherapeutic modality has accomplished clinical translation, successfully overcoming the potential pitfalls promising therapeutics face. However, once studies enter clinical trials, the data all but disappears, leaving pre-clinical researchers largely in the dark. Overall, the creativity, flexibility, and innovation of these modalities for solid tumor treatments are greatly encouraging, and usher in a new age of pharmaceutical development.
Collapse
|
8
|
Yoon HY, Yang HM, Kim CH, Goo YT, Kang MJ, Lee S, Choi YW. Current status of the development of intravesical drug delivery systems for the treatment of bladder cancer. Expert Opin Drug Deliv 2020; 17:1555-1572. [DOI: 10.1080/17425247.2020.1810016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ho Yub Yoon
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hee Mang Yang
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | | - Yoon Tae Goo
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | | | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, Korea
| | | |
Collapse
|
9
|
Shan H, Cao Z, Chi C, Wang J, Wang X, Tian J, Yu B. Advances in Drug Delivery via Biodegradable Ureteral Stent for the Treatment of Upper Tract Urothelial Carcinoma. Front Pharmacol 2020; 11:224. [PMID: 32256347 PMCID: PMC7090156 DOI: 10.3389/fphar.2020.00224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Drug eluting ureteral stent is an effective means for local drug delivery to the urinary tract. It can potentially solve a variety of upper urinary tract problems, such as stent-related urinary tract infections and discomfort, ureteral stricture, and neoplastic diseases. However, the release of drug elutes on the surface of biostable stents is unsustainable and uncontrollable. With the development of biomaterial science, the emergence of biodegradable ureteral stents (BUSs) provides a new approach for local drug delivery in the urinary tract. The drugs can be continuously released in a controlled manner from a drug-eluting BUS, when the stent degrades. Especially for the delivery of anti-tumor drugs, the stents can obviously improve the therapeutic effectiveness of the drugs by prolonging the contact duration of the drug and tumor cells. In addition, a secondary stent removal procedure can be avoided. The purpose of this review article is to provide an overview of anti-tumor drug-eluting BUSs and discuss the biomaterials and drug delivery systems of BUS that are currently being developed to deliver anti-tumor drugs for upper tract urothelial carcinoma.
Collapse
Affiliation(s)
- Hongli Shan
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Zhongshuai Cao
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Changliang Chi
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Jixue Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoqing Wang
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Jingyan Tian
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Bing Yu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Nemutlu E, Eroğlu İ, Eroğlu H, Kır S. In Vitro Release Test of Nano-drug Delivery Systems Based on Analytical and Technological Perspectives. CURR ANAL CHEM 2019. [DOI: 10.2174/1573411014666180912125931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background:Nanotech products are gaining more attention depending on their advantages for improving drug solubility, maintenance of drug targeting, and attenuation of drug toxicity. In vitro release test is the critical physical parameter to determine the pharmaceutical quality of the product, to monitor formulation design and batch-to-batch variation.Methods:Spectrophotometric and chromatographic methods are mostly used in quantification studies from in vitro release test of nano-drug delivery systems. These techniques have advantages and disadvantages with respect to each other considering dynamic range, selectivity, automation, compatibility with in vitro release media and cost per sample.Results:It is very important to determine the correct kinetic profile of active pharmaceutical substances. At this point, the analytical method used for in vitro release tests has become a very critical parameter to correctly assess the profiles. In this review, we provided an overview of analytical methods applied to the in vitro release assay of various nanopharmaceuticals.Conclusion:This review presents practical direction on analytical method selection for in vitro release test on nanopharmaceuticals. Moreover, precautions on analytical method selection, optimization and validation were discussed.
Collapse
Affiliation(s)
- Emirhan Nemutlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - İpek Eroğlu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - Hakan Eroğlu
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| | - Sedef Kır
- Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Sıhhiye, Ankara, Turkey
| |
Collapse
|
11
|
Wang Y, Shang W, Niu M, Tian J, Xu K. Hypoxia-active nanoparticles used in tumor theranostic. Int J Nanomedicine 2019; 14:3705-3722. [PMID: 31190820 PMCID: PMC6535445 DOI: 10.2147/ijn.s196959] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Hypoxia is a hallmark of malignant tumors and often correlates with increasing tumor aggressiveness and poor treatment outcomes. Therefore, early diagnosis and effective killing of hypoxic tumor cells are crucial for successful tumor control. There has been a surge of interdisciplinary research aimed at developing functional molecules and nanomaterials that can be used to noninvasively image and efficiently treat hypoxic tumors. These mainly include hypoxia-active nanoparticles, anti-hypoxia agents, and agents that target biomarkers of tumor hypoxia. Hypoxia-active nanoparticles have been intensively investigated and have demonstrated advanced effects on targeting tumor hypoxia. In this review, we present an overview of the reports published to date on hypoxia-activated prodrugs and their nanoparticle forms used in tumor-targeted therapy. Hypoxia-responsive nanoparticles are inactive during blood circulation and normal physiological conditions but are activated by hypoxia once they extravasate into the hypoxic tumor microenvironment. Their use can enhance the efficiency of tumor chemotherapy, radiotherapy, fluorescence and photoacoustic intensity, and other imaging and therapeutic strategies. By targeting the broad habitats of tumors, rather than tumor-specific receptors, this strategy has the potential to overcome the problem of tumor heterogeneity and could be used to design diagnostic and therapeutic nanoparticles for a broad range of solid tumors.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China.,Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Wenting Shang
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Meng Niu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jie Tian
- Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,Institute of Medical Interdisciplinary Innovation, Beihang University, Beijing, 100080, People's Republic of China
| | - Ke Xu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
12
|
Kolawole OM, Lau WM, Khutoryanskiy VV. Chitosan/β-glycerophosphate in situ gelling mucoadhesive systems for intravesical delivery of mitomycin-C. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100007. [PMID: 31517272 PMCID: PMC6733296 DOI: 10.1016/j.ijpx.2019.100007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022]
Abstract
The development of mucoadhesive in situ gelling formulations for intravesical application may improve the therapeutic outcomes of bladder cancer patients. In this work, chitosan/β-glycerophosphate (CHIGP) thermosensitive formulations have been prepared using three different chitosan grades (62, 124 and 370 kDa). Their ability to form in situ gelling systems triggered by changes in temperature upon administration to urinary bladder were evaluated using vial inversion and rheological methods. Texture analysis was used to study their mucoadhesive properties as well as syringeability through the urethral catheter. The retention of CHIGP formulations, with fluorescein sodium as the model drug, was studied on porcine urinary bladder mucosa ex vivo using the flow-through technique and fluorescent microscopy. CHIGP formulations containing mitomycin-C were prepared and drug release was studied using in vitro dialysis method. It was established that the molecular weight of chitosan influenced the thermogelling, mucoadhesive and drug release behaviour of the in situ gelling delivery systems. Formulations prepared from chitosan with greatest molecular weight (370 kDa) were found to be the most promising for intravesical application due to their superior gelling properties and in vitro retention in the bladder.
Collapse
Affiliation(s)
- Oluwadamilola M Kolawole
- Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading, RG6 6AD Berkshire, United Kingdom
| | - Wing Man Lau
- School of Pharmacy, The Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE1 7RU, United Kingdom
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, PO Box 224, Reading, RG6 6AD Berkshire, United Kingdom
| |
Collapse
|
13
|
Espinoza SM, Patil HI, San Martin Martinez E, Casañas Pimentel R, Ige PP. Poly-ε-caprolactone (PCL), a promising polymer for pharmaceutical and biomedical applications: Focus on nanomedicine in cancer. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1539990] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sergio Miguel Espinoza
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Harshal Indrabhan Patil
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Eduardo San Martin Martinez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Rocio Casañas Pimentel
- CONACYT-Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaria 694, Col. Irrigación, 11500 Ciudad de México
| | - Pradum Pundlikrao Ige
- Department of Pharmaceutics, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
14
|
Seok HY, Sanoj Rejinold N, Lekshmi KM, Cherukula K, Park IK, Kim YC. CD44 targeting biocompatible and biodegradable hyaluronic acid cross-linked zein nanogels for curcumin delivery to cancer cells: In vitro and in vivo evaluation. J Control Release 2018; 280:20-30. [PMID: 29723613 DOI: 10.1016/j.jconrel.2018.04.050] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 12/26/2022]
Abstract
In this study, we developed novel hyaluronic acid cross-linked zein nanogels (HA-Zein NGs) to deliver the potential anticancer agent curcumin (CRC), a naturally occurring phytochemical drug in cancer cells. In vitro studies showed that they are highly compatible with the tested cell lines. They showed CD44 specific uptake in CT26 cell line more than by the CD44 receptor pre-inhibited CT26 cells. The CRC encapsulated HA-Zein NGs (HA-Zein-CRC NGs) found to exert a specific toxicity against CT26 sparing healthy normal fibroblast cells in vitro. The apoptotic effects were further confirmed with flow cytometry showing that the HA-Zein-CRC NGs exhibited high anticancer activity against the CT26 cells. The in vivo bio-distribution with a CT26 tumor model showed their high tumor accumulation thereby improved antitumor efficacy with a low dosage of CRC, compared to the previous reports. Thus, the preclinical studies clearly showed that these novel HA-Zein NGs would be highly beneficial in encapsulating hydrophobic drugs with improved pharmacokinetics thereby enhancing the therapeutic outcomes.
Collapse
Affiliation(s)
- Hae-Yong Seok
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - N Sanoj Rejinold
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kamali Manickavasagam Lekshmi
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Kondareddy Cherukula
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Centre for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
15
|
Buss JH, Begnini KR, Bender CB, Pohlmann AR, Guterres SS, Collares T, Seixas FK. Nano-BCG: A Promising Delivery System for Treatment of Human Bladder Cancer. Front Pharmacol 2018; 8:977. [PMID: 29379438 PMCID: PMC5770893 DOI: 10.3389/fphar.2017.00977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/21/2017] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium bovis bacillus Calmette–Guerin (BCG) remains at the forefront of immunotherapy for treating bladder cancer patients. However, the incidence of recurrence and progression to invasive cancer is commonly observed. There are no established effective intravesical therapies available for patients, whose tumors recur following BCG treatment, representing an important unmet clinical need. In addition, there are very limited options for patients who do not respond to or tolerate chemotherapy due to toxicities, resulting in poor overall treatment outcomes. Within this context, nanotechnology is an emergent and promising tool for: (1) controlling drug release for extended time frames, (2) combination therapies due to the ability to encapsulate multiple drugs simultaneously, (3) reducing systemic side effects, (4) increasing bioavailability, (5) and increasing the viability of various routes of administration. Moreover, bladder cancer is often characterized by high mutation rates and over expression of tumor antigens on the tumor cell surface. Therapeutic targeting of these biomolecules may be improved by nanotechnology strategies. In this mini-review, we discuss how nanotechnology can help overcome current obstacles in bladder cancer treatment, and how nanotechnology can facilitate combination chemotherapeutic and BCG immunotherapies for the treatment of non-muscle invasive urothelial bladder cancer.
Collapse
Affiliation(s)
- Julieti Huch Buss
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Karine Rech Begnini
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila Bonemann Bender
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Adriana R Pohlmann
- Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Silvia S Guterres
- Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Collares
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Laboratory of Cancer Biotechnology, Biotechnology Graduate Program, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
16
|
Qiu X, Cao K, Lin T, Chen W, Yuan A, Wu J, Hu Y, Guo H. Drug delivery system based on dendritic nanoparticles for enhancement of intravesical instillation. Int J Nanomedicine 2017; 12:7365-7374. [PMID: 29066888 PMCID: PMC5644558 DOI: 10.2147/ijn.s140111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Intravesical instillation of antitumor agents following transurethral resection of bladder tumors is the standard strategy for the treatment of superficial bladder cancers. However, the efficacy of current intravesical instillation is limited partly due to the poor permeability of the urothelium. We therefore aimed to develop a high-penetrating, target-releasing drug delivery system to improve the efficacy of intravesical instillation. PAMAM, a dendrimer, were conjugated with polyethylene glycol (PEG) to form PEG-PAMAM complex as a nanocarrier. Doxorubicin (DOX) was then encapsulated into PEG-PAMAM to generate DOX-loaded PEG-PAMAM nanoparticles (PEG-PAMAM-DOX). Our results indicated that the PEG-PAMAM was a stable nanocarrier with small size and great biosafety. The release of DOX from PEG-PAMAM-DOX was sluggish but could be effectively triggered in an acid microenvironment (pH =5.0). As a drug carrier, PEG-PAMAM could penetrate mice bladder urothelium effectively and increase the amount of DOX within the bladder wall after intravesical instillation. The antitumor effect of PEG-PAMAM-DOX was evaluated using an orthotopic bladder cancer model in mice. Compared to free DOX, PEG-PAMAM-DOX showed significantly improved efficacy of DOX for intravesical instillation with limited side effects. In conclusion, we successfully developed a PEG-PAMAM-based drug delivery system to enhance the antitumor effect of intravesical instillation.
Collapse
Affiliation(s)
- Xuefeng Qiu
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Kai Cao
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Tingsheng Lin
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Wei Chen
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| |
Collapse
|
17
|
Wang YP, Liao YT, Liu CH, Yu J, Alamri HR, Alothman ZA, Hossain MSA, Yamauchi Y, Wu KCW. Trifunctional Fe 3O 4/CaP/Alginate Core-Shell-Corona Nanoparticles for Magnetically Guided, pH-Responsive, and Chemically Targeted Chemotherapy. ACS Biomater Sci Eng 2017; 3:2366-2374. [PMID: 33445294 DOI: 10.1021/acsbiomaterials.7b00230] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemotherapy of bladder cancer has limited efficacy because of the short retention time of drugs in the bladder during therapy. In this research, nanoparticles (NPs) with a new core/shell/corona nanostructure have been synthesized, consisting of iron oxide (Fe3O4) as the core to providing magnetic properties, drug (doxorubicin) loaded calcium phosphate (CaP) as the shell for pH-responsive release, and arginylglycylaspartic acid (RGD)-containing peptide functionalized alginate as the corona for cell targeting (with the composite denoted as RGD-Fe3O4/CaP/Alg NPs). We have optimized the reaction conditions to obtain RGD-Fe3O4/CaP/Alg NPs with high biocompatibility and suitable particle size, surface functionality, and drug loading/release behavior. The results indicate that the RGD-Fe3O4/CaP/Alg NPs exhibit enhanced chemotherapy efficacy toward T24 bladder cancer cells, owing to successful magnetic guidance, pH-responsive release, and improved cellular uptake, which give these NPs great potential as therapeutic agents for future in vivo drug delivery systems.
Collapse
Affiliation(s)
- Yu-Pu Wang
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yu-Te Liao
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chia-Hung Liu
- Department of Urology, Taipei Medical University-Shuang Ho Hospital, No. 291, Jhongjheng Road, Jhonghe Dist., New Taipei City 23561, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hatem R Alamri
- Physics Department, Jamoum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Zeid A Alothman
- Advanced Materials Research Chair, Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md Shahriar A Hossain
- Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, North Wollongong, New South Wales 2500, Australia.,International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Yamauchi
- Australian Institute for Innovative Materials (AIIM), University of Wollongong, Squires Way, North Wollongong, New South Wales 2500, Australia.,International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.,Division of Medical Engineering Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan
| |
Collapse
|
18
|
Varan C, Wickström H, Sandler N, Aktaş Y, Bilensoy E. Inkjet printing of antiviral PCL nanoparticles and anticancer cyclodextrin inclusion complexes on bioadhesive film for cervical administration. Int J Pharm 2017; 531:701-713. [PMID: 28432016 DOI: 10.1016/j.ijpharm.2017.04.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 11/28/2022]
Abstract
Personalized medicine is an important treatment approach for diseases like cancer with high intrasubject variability. In this framework, printing is one of the most promising methods since it permits dose and geometry adjustment of the final product. With this study, a combination product consisting of anticancer (paclitaxel) and antiviral (cidofovir) drugs was manufactured by inkjet printing onto adhesive film for local treatment of cervical cancers as a result of HPV infection. Furthermore, solubility problem of paclitaxel was overcome by maintaining this poorly soluble drug in a cyclodextrin inclusion complex and release of cidofovir was controlled by encapsulation in polycaprolactone nanoparticles. In vitro characterization studies of printed film formulations were performed and cell culture studies showed that drug loaded film formulation was effective on human cervical adenocarcinoma cells. Our study suggests that inkjet printing technology can be utilized in the development of antiviral/anticancer combination dosage forms for mucosal application. The drug amount in the delivery system can be accurately controlled and modified. Moreover, prolonged drug release time can be obtained. Printing of anticancer and antiviral drugs on film seem to be a potential approach for HPV-related cervical cancer treatment and a good candidate for further studies.
Collapse
Affiliation(s)
- Cem Varan
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
| | - Henrika Wickström
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Niklas Sandler
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Erem Bilensoy
- Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey; Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
19
|
Oliveira MB, Villa Nova M, Bruschi ML. A review of recent developments on micro/nanostructured pharmaceutical systems for intravesical therapy of the bladder cancer. Pharm Dev Technol 2017; 23:1-12. [DOI: 10.1080/10837450.2017.1312441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Marcela Brito Oliveira
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Mônica Villa Nova
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| | - Marcos Luciano Bruschi
- Postgraduate Program in Pharmaceutical Sciences, Laboratory of Research and Development of Drug Delivery Systems, Department of Pharmacy, State University of Maringa, Maringa, Brazil
| |
Collapse
|
20
|
GuhaSarkar S, More P, Banerjee R. Urothelium-adherent, ion-triggered liposome-in-gel system as a platform for intravesical drug delivery. J Control Release 2017; 245:147-156. [DOI: 10.1016/j.jconrel.2016.11.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/05/2016] [Accepted: 11/26/2016] [Indexed: 10/20/2022]
|
21
|
Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 62:927-42. [DOI: 10.1016/j.msec.2016.01.063] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/19/2016] [Accepted: 01/24/2016] [Indexed: 02/06/2023]
|
22
|
Tyagi P, Kashyap M, Hensley H, Yoshimura N. Advances in intravesical therapy for urinary tract disorders. Expert Opin Drug Deliv 2015; 13:71-84. [PMID: 26479968 DOI: 10.1517/17425247.2016.1100166] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Intravesical therapy is a valuable option in the clinical management of urinary tract disorders such as interstitial cystitis/ painful bladder syndrome (IC/PBS) and refractory overactive bladder. This review will cover the latest advances in this field using polymer and liposomes as delivery platform for drugs, protein and nucleic acids. AREAS COVERED This review summarizes the significance of intravesical therapy for lower urinary tract disorders. The recent advancement of liposomes as a drug delivery platform for botulinum toxin, tacrolimus and small interfering RNA is discussed. The importance of polymers forming indwelling devices and hydrogels are also discussed, where all preparations improved efficacy parameters in rodent models. Clinical experience of treating IC/PBS with indwelling devices and liposomes are summarized and preclinical evidence about the downregulation of target gene expression in rodent bladder with liposomes complexed with siRNA is also reviewed. EXPERT OPINION There have been several advances in the field of intravesical therapy for improving clinical outcomes. One of the most promising research avenues is the repurposing of drugs, given previously by other routes of administration, such as tacrolimus. Intravesical therapy also opens up novel therapeutic targets with improved efficacy and safety for underactive bladder.
Collapse
Affiliation(s)
- Pradeep Tyagi
- a Department of Urology , University of Pittsburgh , Pittsburgh , PA 15213 , USA
| | - Mahendra Kashyap
- a Department of Urology , University of Pittsburgh , Pittsburgh , PA 15213 , USA
| | - Harvey Hensley
- b Small animal Imaging Facility , Fox chase cancer center , Philadelphia , PA 19111 , USA
| | - Naoki Yoshimura
- a Department of Urology , University of Pittsburgh , Pittsburgh , PA 15213 , USA
| |
Collapse
|