1
|
Bao Z, Kim J, Kwok C, Le Devedec F, Allen C. A dataset on formulation parameters and characteristics of drug-loaded PLGA microparticles. Sci Data 2025; 12:364. [PMID: 40025040 PMCID: PMC11873201 DOI: 10.1038/s41597-025-04621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 02/12/2025] [Indexed: 03/04/2025] Open
Abstract
Polymer microparticles (MPs) are widely used to create long-acting injectable formulations due to their ability to enable sustained drug release. This feature can significantly benefit chronic disease management by reducing dosing frequency and improving patient adherence. To support the design and development of polymer MPs, we have compiled a dataset on MPs formed from poly(lactide-co-glycolide) (PLGA), the most commonly used polymer in commercial MP drug products. This dataset, derived from the literature, covers 321 in vitro release studies involving 89 different drugs. It aims to streamline future MP development by providing a reference for the current PLGA MP design space and supporting data-driven approaches such as machine learning. Published with open access, this dataset encourages broad utilization and aims to expand the range of available MP formulations.
Collapse
Affiliation(s)
- Zeqing Bao
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada
| | - Jongwhi Kim
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Candice Kwok
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | | | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada.
- Acceleration Consortium, Toronto, ON, M5S 3H6, Canada.
- Department of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
2
|
Zhang YQ, Liang R, Liu C, Yang C. Improved stability and skin penetration through glycethosomes loaded with glycyrrhetinic acid. Int J Cosmet Sci 2022; 44:249-261. [PMID: 35303372 DOI: 10.1111/ics.12771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE In recent years, glycyrrhetinic acid (GA) has been popularly used in cosmetics because of its anti-inflammatory and anti-oxidant effects. However, due to the poor water solubility of GA and the barrier effect of human skin, the penetration of GA through the skin may be hindered. Liposomes are a common delivery system for functional compounds in cosmetics. Nonetheless, the stability and transdermal effect of traditional liposomes are limited. The aim of this work was to prepare a new liposome system that contained glycerol and ethanol to enhance the stability of the vesicles and promote the penetration of GA into the skin. METHODS The glycethosomes were prepared by ethanol injection and sonication method. The effects of different concentrations of glycerol and ethanol on the particle size, polydispersity (PDI), entrapment efficiency (EE), stability and rheological properties of vesicles were evaluated. Lipophilic and hydrophilic fluorescent probes were used to investigate the microviscosity of vesicles. In vitro permeation tests were performed with pig skin in Franz cells and the concentration of GA in different skin layers was determined by high performance liquid chromatography (HPLC). The ability of different vesicles to induce lipid extraction and fluidization was analyzed by using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). RESULTS When glycerol was 50% and ethanol was 25%, the obtained glycethosomes had the smallest particle size and the best stability with a mean particle size of 94.5 nm, PDI 0.216 and 99.8% EE. Fluorescence probe studies indicated that the microviscosity of glycethosomes was the largest when the concentration of glycerol and ethanol was 50% and 25%, which was consistent with the storage stability of glycethosomes. It was found that the glycethosomes had the best transdermal effect and the total skin permeation percentage of GA was 20.67%, while that of ethosomes, glycerosomes, liposomes and dispersion were 10.56%, 9.38%, 7.78% and 5.02%, respectively. And glycethosomes had effectively lipid extraction and fluidization effect on the skin stratum corneum. CONCLUSION Compared to other traditional liposomes, glycethosomes can significantly improve the stability of vesicles and the transdermal effect of GA. Glycethosomes are promising vesicles for the delivery of GA.
Collapse
Affiliation(s)
- Ya-Qi Zhang
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Rong Liang
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Chunhuan Liu
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Cheng Yang
- Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| |
Collapse
|
3
|
How agarose gels surrounding PLGA implants limit swelling and slow down drug release. J Control Release 2022; 343:255-266. [PMID: 35085697 DOI: 10.1016/j.jconrel.2022.01.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 11/20/2022]
Abstract
The aim of this study was to better understand to which extent and in which way the presence of an agarose gel (mimicking living tissue) around a PLGA [poly(lactic-co-glycolic acid)] implant affects the resulting drug release kinetics. Ibuprofen-loaded implants were prepared by hot melt extrusion. Drug release was measured upon exposure to phosphate buffer pH 7.4 in Eppendorf tubes, as well as upon inclusion into an agarose gel which was exposed to phosphate buffer pH 7.4 in an Eppendorf tube or in a transwell plate. Dynamic changes in the implants' dry & wet mass and dimensions were monitored gravimetrically and by optical macroscopy. Implant erosion and polymer degradation were observed by SEM and GPC. Different pH indicators were used to measure pH changes in the bulk fluids, gels and within the implants during drug release. Ibuprofen release was bi-phasic in all cases: A zero order release phase (~20% of the dose) was followed by a more rapid, final drug release phase. Interestingly, the presence of the hydrogel delayed the onset of the 2nd release phase. This could be attributed to the sterical hindrance of implant swelling: After a certain lag time, the degrading PLGA matrix becomes sufficiently hydrophilic and mechanically instable to allow for the penetration of substantial amounts of water into the system. This fundamentally changes the conditions for drug release: The latter becomes much more mobile and is more rapidly released. A gel surrounding the implant mechanically hinders system swelling and, thus, slows down drug release. These observations also strengthen the hypothesis of the "orchestrating" role of PLGA swelling for the control of drug release and can help developing more realistic in vitro release set-ups.
Collapse
|
4
|
Du L, Liu S, Hao G, Zhang L, Zhou M, Bao Y, Ding B, Sun Q, Zhang G. Preparation and Release Profiles in Vitro/Vivo of Galantamine Pamoate Loaded Poly (Lactideco-Glycolide) (PLGA) Microspheres. Front Pharmacol 2021; 11:619327. [PMID: 33762929 PMCID: PMC7982595 DOI: 10.3389/fphar.2020.619327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
Patient’s poor compliance and the high risk of toxic effects limit the clinical use of galantamine hydrobromide. To overcome these drawbacks, the sustained-release galantamine pamoate microspheres (GLT-PM-MS) were successfully developed using an oil/water emulsion solvent evaporation method in this study. Physicochemical properties of GLT-PM-MS were carefully characterized, and the in vitro and in vivo drug release behaviors were well studied. Results showed that the morphology of optimized microspheres were spherical with smooth surfaces and core-shell interior structure. Mean particle size, drug loading and entrapment efficiency were 75.23 ± 1.79 μm, 28.01 ± 0.81% and 87.12 ± 2.71%, respectively. The developed GLT-PM-MS were found to have a sustained release for about 24 days in vitro and the plasma drug concentration remained stable for 17 days in rats. These results indicated that GLT-PM-MS could achieve the sustained drug release purpose and be used in clinical trial.
Collapse
Affiliation(s)
- Liping Du
- Shandong Engineering Research Center of Complex Injectables, Shangdong New Time Pharmaceutical Co., Ltd., Linyi, China
| | - Shankui Liu
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Guizhou Hao
- Shandong Engineering Research Center of Complex Injectables, Shangdong New Time Pharmaceutical Co., Ltd., Linyi, China
| | - Li Zhang
- Shandong Engineering Research Center of Complex Injectables, Shangdong New Time Pharmaceutical Co., Ltd., Linyi, China
| | - Miaomiao Zhou
- Shandong Engineering Research Center of Complex Injectables, Shangdong New Time Pharmaceutical Co., Ltd., Linyi, China
| | - Yueqing Bao
- Shandong Engineering Research Center of Complex Injectables, Shangdong New Time Pharmaceutical Co., Ltd., Linyi, China
| | - Bing Ding
- Shandong Engineering Research Center of Complex Injectables, Shangdong New Time Pharmaceutical Co., Ltd., Linyi, China
| | - Qinyong Sun
- International Pharmaceutical R&D Center, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| | - Guimin Zhang
- National Engineering Laboratory of High Level Expression in Mammalian Cells State Key Laboratory, Lunan Pharmaceutical Group Co., Ltd., Linyi, China
| |
Collapse
|
5
|
Park K, Otte A, Sharifi F, Garner J, Skidmore S, Park H, Jhon YK, Qin B, Wang Y. Formulation composition, manufacturing process, and characterization of poly(lactide-co-glycolide) microparticles. J Control Release 2021; 329:1150-1161. [PMID: 33148404 PMCID: PMC7904638 DOI: 10.1016/j.jconrel.2020.10.044] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
Abstract
Injectable long-acting formulations, specifically poly(lactide-co-glycolide) (PLGA) based systems, have been used to deliver drugs systemically for up to 6 months. Despite the benefits of using this type of long-acting formulations, the development of clinical products and the generic versions of existing formulations has been slow. Only about two dozen formulations have been approved by the U.S. Food and Drug Administration during the last 30 years. Furthermore, less than a dozen small molecules have been incorporated and approved for clinical use in PLGA-based formulations. The limited number of clinically used products is mainly due to the incomplete understanding of PLGA polymers and the various variables involved in the composition and manufacturing process. Numerous process parameters affect the formulation properties, and their intricate interactions have been difficult to decipher. Thus, it is necessary to identify all the factors affecting the final formulation properties and determine the main contributors to enable control of each factor independently. The composition of the formulation and the manufacturing processes determine the essential property of each formulation, i.e., in vivo drug release kinetics leading to their respective pharmacokinetic profiles. Since the pharmacokinetic profiles can be correlated with in vitro release kinetics, proper in vitro characterization is critical for both batch-to-batch quality control and scale-up production. In addition to in vitro release kinetics, other in vitro characterization is essential for ensuring that the desired formulation is produced, resulting in an expected pharmacokinetic profile. This article reviews the effects of a selected number of parameters in the formulation composition, manufacturing process, and characterization of microparticle systems. In particular, the emphasis is focused on the characterization of surface morphology of PLGA microparticles, as it is a manifestation of the formulation composition and the manufacturing process. Also, the implication of the surface morphology on the drug release kinetics is examined. The information described here can also be applied to in situ forming implants and solid implants.
Collapse
Affiliation(s)
- Kinam Park
- Purdue University, Biomedical Engineering and Pharmaceutics, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA; Akina, Inc., 3495 Kent Avenue, Suite A200, West Lafayette, IN 47906, USA.
| | - Andrew Otte
- Purdue University, Biomedical Engineering and Pharmaceutics, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - Farrokh Sharifi
- Purdue University, Biomedical Engineering and Pharmaceutics, 206 S. Martin Jischke Drive, West Lafayette, IN 47907, USA
| | - John Garner
- Akina, Inc., 3495 Kent Avenue, Suite A200, West Lafayette, IN 47906, USA
| | - Sarah Skidmore
- Akina, Inc., 3495 Kent Avenue, Suite A200, West Lafayette, IN 47906, USA
| | - Haesun Park
- Akina, Inc., 3495 Kent Avenue, Suite A200, West Lafayette, IN 47906, USA
| | - Young Kuk Jhon
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Bin Qin
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| | - Yan Wang
- Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA
| |
Collapse
|
6
|
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9:153-174. [PMID: 33058072 PMCID: PMC7718366 DOI: 10.1007/s40204-020-00139-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.
Collapse
Affiliation(s)
- Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| |
Collapse
|
7
|
Fraguas-Sánchez AI, Fernández-Carballido A, Delie F, Cohen M, Martin-Sabroso C, Mezzanzanica D, Figini M, Satta A, Torres-Suárez AI. Enhancing ovarian cancer conventional chemotherapy through the combination with cannabidiol loaded microparticles. Eur J Pharm Biopharm 2020; 154:246-258. [PMID: 32682943 DOI: 10.1016/j.ejpb.2020.07.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022]
Abstract
In this work, we evaluated, for the first time, the antitumor effect of cannabidiol (CBD) as monotherapy and in combination with conventional chemotherapeutics in ovarian cancer and developed PLGA-microparticles as CBD carriers to optimize its anticancer activity. Spherical microparticles, with a mean particle size around 25 µm and high entrapment efficiency were obtained. Microparticles elaborated with a CBD:polymer ratio of 10:100 were selected due to the most suitable release profile with a zero-order CBD release (14.13 ± 0.17 μg/day/10 mg Mps) for 40 days. The single administration of this formulation showed an in vitro extended antitumor activity for at least 10 days and an in ovo antitumor efficacy comparable to that of CBD in solution after daily topical administration (≈1.5-fold reduction in tumor growth vs control). The use of CBD in combination with paclitaxel (PTX) was really effective. The best treatment schedule was the pre + co-administration of CBD (10 µM) with PTX. Using this protocol, the single administration of microparticles was even more effective than the daily administration of CBD in solution, achieving a ≈10- and 8- fold reduction in PTX IC50 respectively. This protocol was also effective in ovo. While PTX conducted to a 1.5-fold tumor growth inhibition, its combination with both CBD in solution (daily administered) and 10-Mps (single administration) showed a 2-fold decrease. These results show the promising potential of CBD-Mps administered in combination with PTX for ovarian cancer treatment, since it would allow to reduce the administered dose of this antineoplastic drug maintaining the same efficacy and, as a consequence, reducing PTX adverse effects.
Collapse
Affiliation(s)
- A I Fraguas-Sánchez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain
| | - A Fernández-Carballido
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - F Delie
- School of Pharmaceutical Sciences, Pharmaceutical Technology, University of Geneva, University of Lausanne, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - M Cohen
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Geneva, Geneva, Rue Michel-Servet 1, Geneva 1211, Switzerland
| | - C Martin-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - D Mezzanzanica
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Figini
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - A Satta
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - A I Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., 28040 Madrid, Spain; Institute of Industrial Pharmacy, Faculty of Pharmacy, Complutense University of Madrid, Pl Ramón y Cajal s/n., Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
8
|
Di Francesco M, Primavera R, Summa M, Pannuzzo M, Di Francesco V, Di Mascolo D, Bertorelli R, Decuzzi P. Engineering shape-defined PLGA microPlates for the sustained release of anti-inflammatory molecules. J Control Release 2020; 319:201-212. [DOI: 10.1016/j.jconrel.2019.12.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
|
9
|
de Mélo Silva IS, do Amorim Costa Gaspar LM, Rocha AMO, da Costa LP, Tada DB, Franceschi E, Padilha FF. Encapsulation of Red Propolis in Polymer Nanoparticles for the Destruction of Pathogenic Biofilms. AAPS PharmSciTech 2020; 21:49. [PMID: 31900606 DOI: 10.1208/s12249-019-1576-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022] Open
Abstract
Microbial biofilms, structured communities of microorganisms, have been often associated to the infection and bacterial multiresistance problem. Conventional treatment of infection involves the use of antibiotics, being an alternative approach is the use of red propolis, a natural product, to prepare polymer nanoparticles. The aim of the present study was to encapsulate red propolis extract in poly(lactic-co-glycolic acid) (PLGA) nanoparticles for destruction in vitro of pathogenic biofilms. Poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) containing red propolis hydroethanolic extract (2 mg/mL) were produced by emulsification solvent diffusion method. The extract and developed nanoparticles were analyzed for antimicrobial activity and inhibition of bacterial biofilm formation in vitro against Staphylococcus aureus and Pseudomonas aeruginosa. Transmission electron microscopy images confirmed spherical nanoparticles in the range size from 42.4 nm (PLGA NPs) to 69.2 nm (HERP PLGA NPs), with encapsulation efficiencies of 96.99%. The free extract and encapsulated in polymer nanoparticle presented antimicrobial potential, with a minimum inhibitory concentration from 15.6 to 125 μg mL-1 and from 100 to 1560 μg mL-1 to inhibit biofilm formation for the Staphylococcus aureus and Pseudomonas aeruginosa, respectively.
Collapse
|
10
|
Zhu C, Peng T, Huang D, Feng D, Wang X, Pan X, Tan W, Wu C. Formation Mechanism, In vitro and In vivo Evaluation of Dimpled Exenatide Loaded PLGA Microparticles Prepared by Ultra-Fine Particle Processing System. AAPS PharmSciTech 2019; 20:64. [PMID: 30627822 DOI: 10.1208/s12249-018-1208-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/01/2018] [Indexed: 02/08/2023] Open
Abstract
Spherical poly (D, L-lactic-co-glycolic acid) microparticles (PLGA-MPs) have long been investigated in order to achieve sustained delivery of proteins/peptides. However, the formation mechanism and release characteristics of the specific shape MPs were still unknown. This study aimed to develop a novel-dimpled exenatide-loaded PLGA-MPs (Exe-PLGA-MPs) using an ultra-fine particle processing system (UPPS) and investigate the formation mechanism and release characteristics. Exe-PLGA-MPs were prepared by UPPS and optimized based on their initial burst within the first 24 h and drug release profiles. Physicochemical properties of Exe-PLGA-MPs, including morphology, particle size, and structural integrity of Exe extracted from Exe-PLGA-MPs, were evaluated. Furthermore, pharmacokinetic studies of the optimal formulation were conducted in Sprague-Dawley (SD) rats to establish in vitro-in vivo correlations (IVIVC) of drug release. Exe-PLGA-MPs with dimpled shapes and uniform particle sizes achieved a high encapsulation efficiency (EE%, 91.50 ± 2.65%) and sustained drug release for 2 months in vitro with reduced initial burst (20.42 ± 1.64%). Moreover, the pharmacokinetic studies revealed that effective drug concentration could be maintained for 3 weeks following a single injection of dimpled Exe-PLGA-MPs with high IVIVC. Dimpled PLGA-MPs prepared using the UPPS technique could thus have great potential for sustained delivery of macromolecular proteins/peptides.
Collapse
|
11
|
Chen L, Mei L, Feng D, Huang D, Tong X, Pan X, Zhu C, Wu C. Anhydrous reverse micelle lecithin nanoparticles/PLGA composite microspheres for long-term protein delivery with reduced initial burst. Colloids Surf B Biointerfaces 2017; 163:146-154. [PMID: 29291500 DOI: 10.1016/j.colsurfb.2017.12.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/29/2017] [Accepted: 12/20/2017] [Indexed: 11/25/2022]
Abstract
To address the issue of initial burst release from poly (lactic-co-glycolic) acid (PLGA) microspheres prepared by water-in-oil-in-water (W/O/W) double emulsion technique, PLGA composite microspheres containing anhydrous reverse micelle (ARM) lecithin nanoparticles were developed by a modified solid-in-oil-in-water (S/O/W) technique. Bovine serum albumin (BSA) loaded ARM lecithin nanoparticles, which were obtained by initial self-assembly and subsequent lipid inversion of the lecithin vesicles, were then encapsulated into PLGA matrix by the S/O/W technique to form composite microspheres. In vitro release study indicated that BSA was slowly released from the PLGA composite microspheres over 60 days with a reduced initial burst (11.42 ± 2.17% within 24 h). The potential mechanism of reduced initial burst and protein protection using this drug delivery system was analyzed through observing the degradation process of carriers and fitting drug release data with various kinetic models. The secondary structure of encapsulated BSA was well maintained through the steric barrier effect of ARM lecithin nanoparticles, which avoided exposure of proteins to the organic solvent during the preparation procedure. In addition, the PLGA composite microspheres exhibited superior biocompatibility without notable cytotoxicity. These results suggested that ARM lecithin nanoparticles/PLGA composite microspheres could be a promising platform for long-term protein delivery with a reduced initial burst.
Collapse
Affiliation(s)
- Longkai Chen
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Liling Mei
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Disang Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Di Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Tong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chune Zhu
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Chuanbin Wu
- Institute for Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Zhuang J, Fang RH, Zhang L. Preparation of particulate polymeric therapeutics for medical applications. SMALL METHODS 2017; 1:1700147. [PMID: 30310860 PMCID: PMC6176868 DOI: 10.1002/smtd.201700147] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Particulate therapeutics fabricated from polymeric materials have become increasingly popular over the past several decades. Generally, polymeric systems are easy to synthesize and have tunable parameters, giving them significant potential for wide use in the clinic. They come in many different forms, including as nanoparticles, microparticles, and colloidal gels. In this review, we discuss the current preparation methods for each type of platform, as well as some representative applications. To achieve enhanced performance, lipid coatings and other surface modification techniques for introducing additional functionality are also mentioned. We hope that, by outlining the various methods and techniques for their preparation, it will be possible to provide insights into the utility of these polymeric platforms and further encourage their development for biomedical applications.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
13
|
Palmer D, Bamsey K, Groves R, Patil P, Jones H, McAleer L, Seaman P. Printing particles: A high-throughput technique for the production of uniform, bioresorbable polymer microparticles and encapsulation of therapeutic peptides. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.03.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Wang H, Zhang G, Ma X, Liu Y, Feng J, Park K, Wang W. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques. Eur J Pharm Biopharm 2017; 115:177-185. [DOI: 10.1016/j.ejpb.2017.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/30/2017] [Accepted: 02/28/2017] [Indexed: 02/01/2023]
|
15
|
Gasmi H, Siepmann F, Hamoudi M, Danede F, Verin J, Willart JF, Siepmann J. Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. Int J Pharm 2016; 514:189-199. [DOI: 10.1016/j.ijpharm.2016.08.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 08/03/2016] [Accepted: 08/15/2016] [Indexed: 02/03/2023]
|