1
|
Chaudhari P, Ghate VM, Nampoothiri M, Lewis SA. Cyclosporine a Eluting Nano Drug Reservoir Film for the Management of Dry Eye Disease. AAPS PharmSciTech 2025; 26:109. [PMID: 40246763 DOI: 10.1208/s12249-025-03104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Cyclosporine A (CsA) is widely used to treat dry eye disease (DED), and ocular morbidity is on the rise and is a growing concern globally. However, several drug and formulation challenges, such as poor drug solubility, short pre-corneal residence time, and poor patient compliance, have limited the ocular bioavailability of CsA to < 5%. A CsA cyclodextrin-based ternary complex loaded dissolvable nano drug reservoir films were developed to overcome these limitations and efficiently manage DED. Drug-loaded nano-reservoir films were fabricated via lithography using silicone and poly (dimethyl siloxane) (PDMS) molds. Different physicochemical characterizations were performed to confirm the formation of stable CsA-cyclodextrin-based ternary complexes. Formation of nanoreservoirs on the films was confirmed using SEM and AFM. Optimized CsA-complex-loaded nano-reservoir films were evaluated for in vitro drug release, ex vivo corneal permeation, and in vivo precorneal retention. Preclinical efficacy studies were performed to assess the efficacy of CsA-complex-loaded nano-reservoirs in an experimental dry-eye mouse model. Physicochemical characterization confirmed the formation of a stable complex and the improved solubility of CsA. In vitro release and ex vivo permeation studies indicated a controlled drug release and improved permeation, respectively. Furthermore, tear volume measurement and corneal damage assessment using slit-lamp imaging suggested decreased dry eye symptoms, significantly increasing tear volume in the drug-loaded nano-reservoir-treated group. Moreover, histopathological studies corroborated the tear volume and slit-lamp imaging results, with reduced inflammation and neovascularization. The poorly water-soluble drug with cyclodextrin complex incorporated nanoreservoir films presents a potential alternative for managing various ocular diseases.
Collapse
Affiliation(s)
- Pinal Chaudhari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhavnagar, Manipal, Karnataka, 576104, India
| | - Vivek M Ghate
- Yenepoya Technology Incubator, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhavnagar, Manipal, Karnataka, India
| | - Shaila A Lewis
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhavnagar, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Santos G, Delgado E, Silva B, Braz BS, Gonçalves L. Topical Ocular Drug Delivery: The Impact of Permeation Enhancers. Pharmaceutics 2025; 17:447. [PMID: 40284442 PMCID: PMC12030643 DOI: 10.3390/pharmaceutics17040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Topical ophthalmic drug delivery targeting the posterior segment of the eye has become a key area of interest due to its non-invasive nature, safety, ease of application, patient compliance, and cost-effectiveness. However, achievement of effective drug bioavailability in the posterior ocular segment is a significant challenge due to unique ocular barriers, including precorneal factors and anatomical barriers, like the cornea, the conjunctiva, and the sclera. Successful ocular drug delivery systems require increased precorneal residence time and improved corneal penetration to enhance intraocular bioavailability. A promising strategy to overcome these barriers is incorporating drug penetration enhancers (DPEs) into formulations. These compounds facilitate drug delivery by improving permeability across otherwise impermeable or poorly permeable membranes. At the ocular level, they act through three primary mechanisms: breaking tear film stability by interfering with the mucous layer; disrupting membrane components such as phospholipids and proteins; and loosening epithelial cellular junctions. DPEs offer significant potential to improve bioavailability and therapeutic outcomes, particularly for drugs targeting the posterior segment of the eye. This review is focused on analyzing the current literature regarding the use of penetration enhancers in topical ocular drug delivery, highlighting their mechanisms of action and potential to revolutionize ophthalmic treatments.
Collapse
Affiliation(s)
- Gonçalo Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Esmeralda Delgado
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Beatriz Silva
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Berta São Braz
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
3
|
Southward J, Liu F, Aspinall SR, Okwuosa TC. Exploring the potential of mucoadhesive buccal films in geriatric medicine. Drug Dev Ind Pharm 2025:1-21. [PMID: 39963906 DOI: 10.1080/03639045.2025.2467329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/14/2024] [Accepted: 02/10/2025] [Indexed: 03/08/2025]
Abstract
As the global demographic shifts toward an aging society, the geriatric patient population is steadily increasing. These patients often suffer from comorbidities and require numerous oral medications, which can be especially challenging for dysphagic geriatric patients. Mucoadhesive buccal films (MBFs) seem promising and could reduce pill burden, simplify administration, and enable individualized drug therapy. This review aims to explore the age-related changes in the oral cavity and their impact on MBF delivery, including potential strategies to overcome these age-related barriers to drug delivery. It was observed that aging impacts the oral mucosa as well the properties of the saliva. There are several studies in the application of buccal films including the use of a wide range of permeation enhancers. The 3D printing of buccal films seems to introduce dosing flexibility to buccal film manufacturing.
Collapse
Affiliation(s)
- Jasmine Southward
- Department of Clinical, pharmaceutical and biological sciences, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, UK
| | - Fang Liu
- Department of Clinical, pharmaceutical and biological sciences, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, UK
| | - Sam R Aspinall
- Department of Clinical, pharmaceutical and biological sciences, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, UK
| | - Tochukwu C Okwuosa
- Department of Clinical, pharmaceutical and biological sciences, School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, UK
| |
Collapse
|
4
|
Kim M, Jung MY, Lee DY, Ahn SM, Lee GM, Park CY. How to Fabricate Hyaluronic Acid for Ocular Drug Delivery. Pharmaceutics 2024; 16:1604. [PMID: 39771582 PMCID: PMC11680071 DOI: 10.3390/pharmaceutics16121604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
This review aims to examine existing research on the development of ocular drug delivery devices utilizing hyaluronic acid (HA). Renowned for its exceptional biocompatibility, viscoelastic properties, and ability to enhance drug bioavailability, HA is a naturally occurring biopolymer. The review discussed specific mechanisms by which HA enhances drug delivery, including prolonging drug residence time on ocular surfaces, facilitating controlled drug release, and improving drug penetration through ocular tissues. By focusing on these unique functionalities, this review highlights the potential of HA-based systems to revolutionize ocular treatment. Various fabrication techniques for HA-based ocular drug delivery systems, including hydrogels, nanoparticles, and microneedles, are discussed, highlighting their respective advantages and limitations. Additionally, this review explores the clinical applications of HA-based devices in treating a range of ocular diseases, such as dry eye syndrome, glaucoma, retinal disorders, and ocular infections. By comparing the efficacy and safety profiles of these devices with traditional ocular drug delivery methods, this review aims to provide a comprehensive understanding of the potential benefits and challenges associated with HA-based systems. Moreover, this review discusses current limitations and future directions in the field, such as the need for standardized fabrication protocols, long-term biocompatibility studies, and large-scale clinical trials. The insights and advancements presented in this review aim to guide future research and development efforts, ultimately enhancing the effectiveness of ocular drug delivery and improving patient outcomes.
Collapse
Affiliation(s)
- Martha Kim
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Mi-Young Jung
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Do-Yeon Lee
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - So Min Ahn
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Gyeong Min Lee
- Department of Ophthalmology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea; (M.K.); (M.-Y.J.); (D.-Y.L.); (S.M.A.); (G.M.L.)
| | - Choul Yong Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| |
Collapse
|
5
|
Wang TJ, Rethi L, Ku MY, Nguyen HT, Chuang AEY. A review on revolutionizing ophthalmic therapy: Unveiling the potential of chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer in eye disease treatments. Int J Biol Macromol 2024; 273:132700. [PMID: 38879998 DOI: 10.1016/j.ijbiomac.2024.132700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Ocular disorders, encompassing both common ailments like dry eye syndrome and more severe situations for instance age-related macular degeneration, present significant challenges to effective treatment due to the intricate architecture and physiological barriers of the eye. Polysaccharides are emerging as potential solutions for drug delivery to the eyes due to their compatibility with living organisms, natural biodegradability, and adhesive properties. In this review, we explore not only the recent advancements in polysaccharide-based technologies and their transformative potential in treating ocular illnesses, offering renewed optimism for both patients and professionals but also anatomy of the eye and the significant obstacles hindering drug transportation, followed by an investigation into various drug administration methods and their ability to overcome ocular-specific challenges. Our focus lies on biological adhesive polymers, including chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer, known for their adhesive characteristics enhancing drug retention on ocular surfaces and increasing bioavailability. A detailed analysis of material designs used in ophthalmic formulations, such as gels, lenses, eye drops, nanofibers, microneedles, microspheres, and nanoparticles, their advantages and limitations, the potential of formulations in improving therapeutic outcomes for various eye conditions. Moreover, we underscore the discovery of novel polysaccharides and their potential uses in ocular drug delivery.
Collapse
Affiliation(s)
- Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Min-Yi Ku
- School of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
6
|
Ch S, Paul M, Padaga SG, Ghosh B, Biswas S. Cationized gelatin-sodium alginate polyelectrolyte nanoparticles encapsulating moxifloxacin as an eye drop to treat bacterial keratitis. Int J Biol Macromol 2024; 264:130457. [PMID: 38432265 DOI: 10.1016/j.ijbiomac.2024.130457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/16/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
A mucoadhesive polyelectrolyte complex (PEC) nanoparticles were developed for ocular moxifloxacin (Mox) delivery in Bacterial Keratitis (BK). Moxifloxacin-loaded G/CG-Alg NPs were prepared by an amalgamation of cationic polymers (gelatin (G)/cationized gelatin (CG)), and anionic polymer (sodium alginate (Alg)) along with Mox respectively. Mox@CG-Alg NPs were characterized for physicochemical parameters such as particle size (DLS technique), morphology (SEM analysis), DSC, XRD, encapsulation efficiency, drug loading, mucoadhesive study (by texture analyzer), mucin turbidity, and viscosity assessment. The NPs uptake and toxicity of the formulation were analyzed in the Human Corneal Epithelial (HCE) cell line and an ocular irritation study was performed on the HET-CAM. The results indicated that the CG-Alg NPs, with optimal size (217.2 ± 4 nm) and polydispersity (0.22 ± 0.05), have shown high cellular uptake in monolayer and spheroids of HCE. The drug-loaded formulation displayed mucoadhesiveness, trans-corneal permeation, and sustained the release of the Mox. The anti-bacterial efficacy studied on planktonic bacteria/biofilms of P. aeruginosa and S. aureus (in vitro) indicated that the Mox@CG-Alg NPs displayed low MIC, higher zone of bacterial growth inhibition, and cell death compared to free Mox. A significant reduction of bacterial load was observed in the BK-induced mouse model.
Collapse
Affiliation(s)
- Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Sri Ganga Padaga
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, Telangana, India.
| |
Collapse
|
7
|
Tighsazzadeh M, Boateng J. Matrix hyaluronic acid and bilayer poly-hydroxyethyl methacrylate-hyaluronic acid films as potential ocular drug delivery platforms. Int J Biol Macromol 2024; 260:129496. [PMID: 38244742 DOI: 10.1016/j.ijbiomac.2024.129496] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
This study aimed to design hydrogel based films comprising hyaluronic acid (HA) to overcome limitations of currently used eye drops. Timolol-loaded crosslinked (X2) HA-based and bilayer (B2) (pHEMA/PVP-HA-based layers) films were designed and characterized. The films were transparent (UV, visual observation) with crosslinked (<80 %) films showing lower light transmittance than bilayer (>80 %) films. X2 showed significantly higher swelling capacity, tensile strength and elastic modulus (5491.6 %, 1539.8 Nmm-2, 1777.2 mPa) than B2 (1905.0 %, 170.0N mm-2, 67.3 mPa) respectively. However, X2 showed lower cumulative drug released and adhesive force (27.3 %, 6.2 N) than B2 (57.5 %, 8.6 N). UV sterilization did not significantly alter physical properties, while SEM and IR microscopy showed smooth surface morphology and homogeneous drug distribution. Timolol permeation (EpiCorneal™/porcine cornea) depended on the film matrix with erodible films showing similar permeation to commercial eyedrops. Drug permeation for porcine cornea (X2 = 549.0.2, B2 = 312.1 μgcm-2 h-1) was significantly faster than EpiCorneal™ (X2 = 55.2, B2 = 37.6 μgcm-2 h-1), but with a linear correlation between them. All the selected optimized films showed acceptable compatibility (MTT assay) with both HeLa cells and EpiCorneal™. In conclusion, crosslinked and bilayer HA based films showed ideal characteristics suitable for potential ocular drug delivery, though further work is required to further optimize these properties and confirm their efficacy including in vivo tests.
Collapse
Affiliation(s)
- Mohammad Tighsazzadeh
- School of Science, Faculty of Engineering and Science, University of Greenwich, Medway, Kent ME4 4TB, UK
| | - Joshua Boateng
- School of Science, Faculty of Engineering and Science, University of Greenwich, Medway, Kent ME4 4TB, UK.
| |
Collapse
|
8
|
Račić A, Krajišnik D. Biopolymers in Mucoadhesive Eye Drops for Treatment of Dry Eye and Allergic Conditions: Application and Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020470. [PMID: 36839790 PMCID: PMC9962975 DOI: 10.3390/pharmaceutics15020470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Dry eye syndrome and allergic conjunctivitis are the most common inflammatory disorders of the eye surface. Although eye drops are the most usual prescribed dosage form, they are characterized by low ocular availability due to numerous barrier mechanisms of the eye. The use of biopolymers in liquid ophthalmic preparations has numerous advantages, such as increasing the viscosity of the tear film, exhibiting bioadhesive properties, and resisting the drainage system, leading to prolonged retention of the preparation at the site of application, and improvement of the therapeutic effect. Some mucoadhesive polymers are multifunctional excipients, so they act by different mechanisms on increasing the permeability of the cornea. Additionally, many hydrophilic biopolymers can also represent the active substances in artificial tear preparations, due to their lubrication and moisturizing effect. With the modification of conventional ophthalmic preparations, there is a need for development of new methods for their characterization. Numerous methods for the assessment of mucoadhesiveness have been suggested by the literature. This review gives an overview related to the development of mucoadhesive liquid ophthalmic formulations for the treatment of dry eye and allergic conditions.
Collapse
Affiliation(s)
- Anđelka Račić
- Department of Pharmacy, University of Banja Luka-Faculty of Medicine, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina
| | - Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-395-1359
| |
Collapse
|
9
|
Zheng X, Wang B, Tang X, Mao B, Zhang Q, Zhang T, Zhao J, Cui S, Chen W. Absorption, metabolism, and functions of hyaluronic acid and its therapeutic prospects in combination with microorganisms: A review. Carbohydr Polym 2023; 299:120153. [PMID: 36876779 DOI: 10.1016/j.carbpol.2022.120153] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022]
Abstract
Hyaluronic acid (HA) is key to the stability of the internal environment of tissues. HA content in tissues gradually decreases with age, causing age-related health problems. Exogenous HA supplements are used to prevent or treat these problems including skin dryness and wrinkles, intestinal imbalance, xerophthalmia, and arthritis after absorption. Moreover, some probiotics are able to promote endogenous HA synthesis and alleviate symptoms caused by HA loss, thus introducing potential preventative or therapeutic applications of HA and probiotics. Here, we review the oral absorption, metabolism, and biological function of HA as well as the potential role of probiotics and HA in increasing the efficacy of HA supplements.
Collapse
Affiliation(s)
- Xueli Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Bloomage Biotechnology Co., Ltd, Jinan 250000, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Co., Ltd, Jinan 250000, China; School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Mucoadhesive brinzolamide-loaded nanofibers for alternative glaucoma treatment. Eur J Pharm Biopharm 2022; 180:48-62. [PMID: 36167272 DOI: 10.1016/j.ejpb.2022.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/21/2022]
Abstract
Despite the advances in the field of pharmaceutical materials and technology, topical administration remains a method of choice for the treatment of eye diseases such as glaucoma, with eye drops being a leading dosage form. Their main disadvantage is a very short drug residence time and thus poor drug bioavailability, leading to the necessity of continuous repeated dosing. Mucoadhesive electrospun nanofibers are promising candidates for overcoming these challenges, while still benefiting from topical ocular administration. As an alternative for eye drops, a nanofibrous drug delivery system (DDS) for the delivery of brinzolamide (BRZ), based on β-cyclodextrin (β-CD), hydroxypropyl cellulose (HPC) and polycaprolactone (PCL), was designed. The results showed β-CD/BRZ guest-host interactions, successful drug incorporation into the nanofibers, and the possibility of more accurate dosing in comparison with the control eye drops. Drug permeation through sheep corneas was almost linear in time, achieving therapeutic concentrations in the receptor medium, and mucoadhesion to sheep eye mucosa was relatively high in case of formulations with high HPC content. All formulations were biocompatible, their mechanical properties were sufficient to handle them without caution and UV irradiation was suitable to reduce bioburden of the fibers matrix, yet no antibacterial properties of BRZ were observed.
Collapse
|
11
|
Tang Z, Fan X, Chen Y, Gu P. Ocular Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2003699. [PMID: 35150092 PMCID: PMC9130902 DOI: 10.1002/advs.202003699] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2021] [Indexed: 05/07/2023]
Abstract
Intrinsic shortcomings associated with conventional therapeutic strategies often compromise treatment efficacy in clinical ophthalmology, prompting the rapid development of versatile alternatives for satisfactory diagnostics and therapeutics. Given advances in material science, nanochemistry, and nanobiotechnology, a broad spectrum of functional nanosystems has been explored to satisfy the extensive requirements of ophthalmologic applications. In the present review, the recent progress in nanosystems, both conventional and emerging nanomaterials in ophthalmology from state-of-the-art studies, are comprehensively examined and the role of their fundamental physicochemical properties in bioavailability, tissue penetration, biodistribution, and elimination after interacting with the ophthalmologic microenvironment emphasized. Furthermore, along with the development of surface engineering of nanomaterials, emerging theranostic methodologies are promoted as potential alternatives for multipurpose ocular applications, such as emerging biomimetic ophthalmology (e.g., smart electrochemical eye), thus provoking a holistic review of "ocular nanomedicine." By affording insight into challenges encountered by ocular nanomedicine and further highlighting the direction of future studies, this review provides an incentive for enriching ocular nanomedicine-based fundamental research and future clinical translation.
Collapse
Affiliation(s)
- Zhimin Tang
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Xianqun Fan
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Ping Gu
- Department of OphthalmologyShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai Key Laboratory of Orbital Diseases and Ocular OncologyShanghai200011P. R. China
| |
Collapse
|
12
|
Gyarmati B, Dargó G, Aron Szilagyi B, Vincze A, Facskó R, Budai-Szűcs M, Kiss EL, Szente L, Szilagyi A, Balogh GT. Synthesis, complex formation and corneal permeation of cyclodextrin-modified, thiolated poly(aspartic acid) as self-gelling formulation of dexamethasone. Eur J Pharm Biopharm 2022; 174:1-9. [PMID: 35341942 DOI: 10.1016/j.ejpb.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/09/2022] [Accepted: 03/22/2022] [Indexed: 11/25/2022]
Abstract
The present study aimed at developing a potential in situ gellable dexamethasone (DXM) eye drop. Poly(aspartic acid) (PASP) derivatives were synthesized with dual functionality to improve the solubility of DXM, and to achieve in situ gelation. First, amine-modified β-cyclodextrin (CD) was attached to polysuccinimide (PSI), second, thiol functionalities were added by the reaction of cysteamine and succinimide rings. Finally, the PSI derivatives were hydrolysed to the corresponding PASP derivatives to get water-soluble polymers. Phase-solubility studies confirmed the complexation ability of CD-containing PASP derivatives. In situ gelation and the effect of the CD immobilization on this behaviour were characterized by rheological measurements. The solubilizing effect of CD was confirmed by kinetic solubility measurements, whereas in vitro corneal permeability assay (corneal-PAMPA) measurements were performed to determine in vitro permeability and flux values. The effect of the PASP derivatives on permeation strongly depended on chemical composition and polymer concentration.
Collapse
Affiliation(s)
- Benjámin Gyarmati
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Gergő Dargó
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary
| | - Barnabas Aron Szilagyi
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Anna Vincze
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary
| | - Réka Facskó
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., H-6720 Szeged, Hungary
| | - Eszter L Kiss
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6., H-6720 Szeged, Hungary
| | - Lajos Szente
- CycloLab Cyclodextrin R. and D. Laboratory, Ltd, H-1070 Budapest, Illatos út 7. Hungary
| | - Andras Szilagyi
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - György T Balogh
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rakpart 3., H-1111 Budapest, Hungary; Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös utca 6., H-6720 Szeged, Hungary.
| |
Collapse
|
13
|
How liposomes pave the way for ocular drug delivery after topical administration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Silva B, São Braz B, Delgado E, Gonçalves L. Colloidal nanosystems with mucoadhesive properties designed for ocular topical delivery. Int J Pharm 2021; 606:120873. [PMID: 34246741 DOI: 10.1016/j.ijpharm.2021.120873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022]
Abstract
Over the last years, the scientific interest about topical ocular delivery targeting the posterior segment of the eye has been increasing. This is probably due to the fact that this is a non-invasive administration route, well tolerated by patients and with fewer local and systemic side effects. However, it is a challenging task due to the external ocular barriers, tear film clearance, blood flow in the conjunctiva and choriocapillaris and due to the blood-retinal barriers, amongst other features. An enhanced intraocular bioavailability of drugs can be achieved by either improving corneal permeability or by improving precorneal retention time. Regarding this last option, increasing residence time in the precorneal area can be achieved using mucoadhesive polymers such as xyloglucan, poly(acrylate), hyaluronic acid, chitosan, and carbomers. On the other hand, colloidal particles can interact with the ocular mucosa and enhance corneal and conjunctival permeability. These nanosystems are able to deliver a wide range of drugs, including macromolecules, providing stability and improving ocular bioavailability. New pharmaceutical approaches based on nanotechnology associated to bioadhesive compounds have emerged as strategies for a more efficient treatment of ocular diseases. Bearing this in mind, this review provides an overview of the current mucoadhesive colloidal nanosystems developed for ocular topical administration, focusing on their advantages and limitations.
Collapse
Affiliation(s)
- Beatriz Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Berta São Braz
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Esmeralda Delgado
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Portugal.
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
15
|
Hyaluronic acid in ocular drug delivery. Carbohydr Polym 2021; 264:118006. [DOI: 10.1016/j.carbpol.2021.118006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
|
16
|
Conde Penedo A, Díaz Tomé V, Fernández Ferreiro A, González Barcia M, Otero Espinar FJ. Enhancement in corneal permeability of riboflavin using cyclodextrin derivates complexes as a previous step to transepithelial cross-linking. Eur J Pharm Biopharm 2021; 162:12-22. [PMID: 33667681 DOI: 10.1016/j.ejpb.2021.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 01/14/2023]
Abstract
Corneal cross-linking has been described as an effective treatment to slow the progression of keratoconus. The standard protocol entails corneal epithelial removal to allow the diffusion of riboflavin into the stroma. Although, de-epithelization can generate risks or complications that transepithelial cross-linking tries to solve or avoid. Different formulations were developed after verifying that hydroxypropyl-β-cyclodextrin (HPβCD) and sulfobuthylether-β-cyclodextrin (SBEβCD) in a 20% concentration, increased the solubility of practically insoluble in water drugs such as riboflavin from 0.12 mg/mL to 0.35 mg/mL and 0.29 mg/mL respectively. These values were higher when chitosan and arginine were added to the formulation, showing solubility of 0.78 mg/mL when HPβCD concentration was not modified. Ex vivo corneal permeability was measured after having kept in contact bovine corneas with intact epithelium for 5 h with the 0.1 mg/mL riboflavin solution, the formulations developed and a reproduced nanoemulsion from another work. Riboflavin's permeability was increased when cyclodextrins, chitosan, and arginine were part of the formulations, compared to the control drug solution. The best permeability coefficient was reached when riboflavin was combined with 40% (w/v) HPβCD, 0.5% (w/w) arginine, and 0.5% (w/w) chitosan. After having carried out toxicity studies as bovine corneal opacity and permeability (BCOP) and Heńs Egg Test - Chorioallantoic Membrane Test (HET-CAM) it was verified that both, the active ingredients and the excipients of the different formulations were not harmful without generating irritation, loss of transparency or corneal permeability alterations. The results show the great potential of the ocular developed solution for their use in transepithelial cross-linking for keratoconus treatment.
Collapse
Affiliation(s)
- Andrea Conde Penedo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain; Paraquasil Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Victoria Díaz Tomé
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain; Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Anxo Fernández Ferreiro
- Pharmacy Department, University Clinical Hospital Santiago de Compostela, Santiago de Compostela, Spain; Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Miguel González Barcia
- Pharmacy Department, University Clinical Hospital Santiago de Compostela, Santiago de Compostela, Spain; Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Francisco J Otero Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain; Paraquasil Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
17
|
Bíró T, Bocsik A, Jurišić Dukovski B, Gróf I, Lovrić J, Csóka I, Deli MA, Aigner Z. New Approach in Ocular Drug Delivery: In vitro and ex vivo Investigation of Cyclodextrin-Containing, Mucoadhesive Eye Drop Formulations. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:351-360. [PMID: 33568896 PMCID: PMC7868180 DOI: 10.2147/dddt.s264745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/18/2020] [Indexed: 01/31/2023]
Abstract
Background Optimal transcorneal penetration is necessary for ocular therapy; meanwhile, it is limited by the complex structure and defensive mechanisms of the eye. Antimicrobial stability of topical ophthalmic formulations is especially important. According to previous studies, the mostly used preservative, benzalkonium-chloride is irritative and toxic on corneal epithelial cells; therefore, novel non-toxic, antimicrobial agents are required. In this study, prednisolone-containing ophthalmic formulations were developed with expected optimal permeation without toxic or irritative effects. Methods The toxicity and permeability of prednisolone-containing eye drops were studied on a human corneal epithelial cell line (HCE-T) and ex vivo cornea model. The lipophilic drug is dissolved by the formation of cyclodextrin inclusion complex. Zinc-containing mucoadhesive biopolymer was applied as an alternative preservative agent, whose toxicity was compared with benzalkonium-chloride. Results As the results show, benzalkonium-chloride-containing samples were toxic on HCE-T cells. The biopolymer caused no cell damage after the treatment. This was confirmed by immunohistochemistry assay. The in vitro permeability was significantly higher in formulations with prednisolone-cyclodextrin complex compared with suspension formulation. According to the ex vivo permeability study, the biopolymer-containing samples had significantly lower permeability. Conclusion Considering the mucoadhesive attribute of target formulations, prolonged absorption is expected after application with less frequent administration. It can be stated that the compositions are innovative approaches as novel non-toxic ophthalmic formulations with optimal drug permeability.
Collapse
Affiliation(s)
- Tivadar Bíró
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Alexandra Bocsik
- Institute of Biophysics, Biological Research Centre,, Szeged, Hungary
| | - Bisera Jurišić Dukovski
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ilona Gróf
- Institute of Biophysics, Biological Research Centre,, Szeged, Hungary.,Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre,, Szeged, Hungary
| | - Zoltán Aigner
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
18
|
Díaz-Tomé V, García-Otero X, Varela-Fernández R, Martín-Pastor M, Conde-Penedo A, Aguiar P, González-Barcia M, Fernández-Ferreiro A, Otero-Espinar FJ. In situ forming and mucoadhesive ophthalmic voriconazole/HPβCD hydrogels for the treatment of fungal keratitis. Int J Pharm 2021; 597:120318. [PMID: 33540021 DOI: 10.1016/j.ijpharm.2021.120318] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 11/18/2022]
Abstract
Fungal keratitis is a severe infectious corneal disease. At present, no voriconazole ophthalmic formulations are approved by the FDA or EMA. This lack of therapeutic options leads to the reformulation of intravenous voriconazole preparations (VFEND®) by the hospital pharmacy departments to prepare the appropriate ophthalmic formulations (pharmacy compounding). However, the limited residence time of these formulations leads to an intensive treatment posology that may increase the occurrence of side effects. In the present study, two different hydrogels were developed and characterized in order to improve the voriconazole's ophthalmic solubility, permanence, and security. Voriconazole-cyclodextrin (HPβCD or HPɣCD) inclusion complexes in aqueous solutions were characterized by NMR and molecular modeling. Complexes were formed by encapsulation of voriconazole into the cyclodextrin's internal cavity which considerably increases its water solubility. Ocular safety was proven by ocular irritation studies. Permeability studies suggest both hydrogels have good corneal permeability. Furthermore, in vivo ocular permanence study by PET/CT showed a longer permanence time on the ocular surface (t1/2 = 58.91 ± 13.4 min and 96.28 ± 49.11 min for VZHAH and VZISH 0.65 respectively) compared to the voriconazole control formulation (VFEND® t1/2 = 32.27 ± 15.56 min). Results suggest these formulations are a good alternative for the treatment of fungal keratitis.
Collapse
Affiliation(s)
- Victoria Díaz-Tomé
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela. Spain; Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Xurxo García-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela. Spain; Molecular Imaging Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Rubén Varela-Fernández
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela. Spain; Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Manuel Martín-Pastor
- Nuclear Magnetic Resonance Unit, Research Infrastructures Area, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - Andrea Conde-Penedo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela. Spain
| | - Pablo Aguiar
- Molecular Imaging Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Miguel González-Barcia
- Pharmacy Department. University Clinical Hospital Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department. University Clinical Hospital Santiago de Compostela (SERGAS), Santiago de Compostela, Spain; Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology and Industrial Pharmacy Institute, Faculty of Pharmacy, University of Santiago de Compostela (USC), Santiago de Compostela. Spain; Paraquasil Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
19
|
Kashapov R, Gaynanova G, Gabdrakhmanov D, Kuznetsov D, Pavlov R, Petrov K, Zakharova L, Sinyashin O. Self-Assembly of Amphiphilic Compounds as a Versatile Tool for Construction of Nanoscale Drug Carriers. Int J Mol Sci 2020; 21:E6961. [PMID: 32971917 PMCID: PMC7555343 DOI: 10.3390/ijms21186961] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/12/2022] Open
Abstract
This review focuses on synthetic and natural amphiphilic systems prepared from straight-chain and macrocyclic compounds capable of self-assembly with the formation of nanoscale aggregates of different morphology and their application as drug carriers. Since numerous biological species (lipid membrane, bacterial cell wall, mucous membrane, corneal epithelium, biopolymers, e.g., proteins, nucleic acids) bear negatively charged fragments, much attention is paid to cationic carriers providing high affinity for encapsulated drugs to targeted cells. First part of the review is devoted to self-assembling and functional properties of surfactant systems, with special attention focusing on cationic amphiphiles, including those bearing natural or cleavable fragments. Further, lipid formulations, especially liposomes, are discussed in terms of their fabrication and application for intracellular drug delivery. This section highlights several features of these carriers, including noncovalent modification of lipid formulations by cationic surfactants, pH-responsive properties, endosomal escape, etc. Third part of the review deals with nanocarriers based on macrocyclic compounds, with such important characteristics as mucoadhesive properties emphasized. In this section, different combinations of cyclodextrin platform conjugated with polymers is considered as drug delivery systems with synergetic effect that improves solubility, targeting and biocompatibility of formulations.
Collapse
Affiliation(s)
- Ruslan Kashapov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov street 8, Kazan 420088, Russia; (G.G.); (D.G.); (D.K.); (R.P.); (K.P.); (L.Z.); (O.S.)
| | | | | | | | | | | | | | | |
Collapse
|
20
|
El-Feky YA, Mostafa DA, Al-Sawahli MM, El-Telbany RFA, Zakaria S, Fayez AM, Ahmed KA, Alolayan EM, El-Telbany DFA. Reduction of intraocular pressure using timolol orally dissolving strips in the treatment of induced primary open-angle glaucoma in rabbits. ACTA ACUST UNITED AC 2020; 72:682-698. [PMID: 32170884 DOI: 10.1111/jphp.13239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To enhance bioavailability of timolol (TML) and utilize alternatives for traditional eye drops for more patient compliance, this study was aiming to develop biodegradable orally dissolving strips (ODSs) of TML for treatment of primary open-angle glaucoma (POAG). METHODS Novel ODSs of TML were formulated and optimized using solvent casting method according to full factorial design (31 .22 ). TML ODSs were characterized with respect to many parameters. In-vivo test was carried out using four groups of 24 New Zealand albino rabbits. POAG was induced by subconjunctival treatment of betamethasone. Histopathological examination and oxidative stress markers assay were carried out. KEY FINDINGS The optimized formula (F9) exhibited a remarkably 15-s disintegration time and 96% dissolution rate after 10 min. The results revealed a potent significant inhibitory effect of the optimized TML ODS to reduce IOP in induced rabbits in comparison with control rabbits and TML eye drops-treated rabbits. The formula showed also high activity against oxidative stress and absence of histopathological changes in iridocorneal angle and cornea. CONCLUSION The ODSs could be a promising alternative delivery system for eye drops with more compliance to enhance delivery and therapeutic activity of TML in treatment of POAG.
Collapse
Affiliation(s)
- Yasmin A El-Feky
- Department of Pharmaceutics, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Dalia A Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Majid M Al-Sawahli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kafr Elsheikh University, Kafr Elsheikh, Egypt
| | - Rania Farag A El-Telbany
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Sherin Zakaria
- Department of Pharmacology and Toxicology, Kafr Elsheikh University, Kafr Elsheikh, Egypt
| | - Ahmed M Fayez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ebtesam M Alolayan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dalia Farag A El-Telbany
- Department of Pharmaceutics, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| |
Collapse
|
21
|
Dubashynskaya N, Poshina D, Raik S, Urtti A, Skorik YA. Polysaccharides in Ocular Drug Delivery. Pharmaceutics 2019; 12:E22. [PMID: 31878298 PMCID: PMC7023054 DOI: 10.3390/pharmaceutics12010022] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023] Open
Abstract
Polysaccharides, such as cellulose, hyaluronic acid, alginic acid, and chitosan, as well as polysaccharide derivatives, have been successfully used to augment drug delivery in the treatment of ocular pathologies. The properties of polysaccharides can be extensively modified to optimize ocular drug formulations and to obtain biocompatible and biodegradable drugs with improved bioavailability and tailored pharmacological effects. This review discusses the available polysaccharide choices for overcoming the difficulties associated with ocular drug delivery, and it explores the reasons for the dependence between the physicochemical properties of polysaccharide-based drug carriers and their efficiency in different formulations and applications. Polysaccharides will continue to be of great interest to researchers endeavoring to develop ophthalmic drugs with improved effectiveness and safety.
Collapse
Affiliation(s)
- Natallia Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
| | - Daria Poshina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
| | - Sergei Raik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
| | - Arto Urtti
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, 199004 St. Petersburg, Russia; (N.D.); (D.P.); (S.R.)
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, 198504 St. Petersburg, Russia;
| |
Collapse
|
22
|
Moiseev RV, Morrison PWJ, Steele F, Khutoryanskiy VV. Penetration Enhancers in Ocular Drug Delivery. Pharmaceutics 2019; 11:E321. [PMID: 31324063 PMCID: PMC6681039 DOI: 10.3390/pharmaceutics11070321] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
There are more than 100 recognized disorders of the eye. This makes the development of advanced ocular formulations an important topic in pharmaceutical science. One of the ways to improve drug delivery to the eye is the use of penetration enhancers. These are defined as compounds capable of enhancing drug permeability across ocular membranes. This review paper provides an overview of anatomical and physiological features of the eye and discusses some common ophthalmological conditions and permeability of ocular membranes. The review also presents the analysis of literature on the use of penetration-enhancing compounds (cyclodextrins, chelating agents, crown ethers, bile acids and bile salts, cell-penetrating peptides, and other amphiphilic compounds) in ocular drug delivery, describing their properties and modes of action.
Collapse
Affiliation(s)
- Roman V Moiseev
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Peter W J Morrison
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Fraser Steele
- MC2 Therapeutics, James House, Emlyn Lane, Leatherhead KT22 7EP, UK
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK.
| |
Collapse
|
23
|
Development and evaluation of performance characteristics of timolol-loaded composite ocular films as potential delivery platforms for treatment of glaucoma. Int J Pharm 2019; 566:111-125. [DOI: 10.1016/j.ijpharm.2019.05.059] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/24/2019] [Accepted: 05/22/2019] [Indexed: 02/04/2023]
|
24
|
Mehta P, Al-Kinani AA, Arshad MS, Singh N, van der Merwe SM, Chang MW, Alany RG, Ahmad Z. Engineering and Development of Chitosan-Based Nanocoatings for Ocular Contact Lenses. J Pharm Sci 2019; 108:1540-1551. [DOI: 10.1016/j.xphs.2018.11.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/28/2018] [Accepted: 11/07/2018] [Indexed: 12/15/2022]
|
25
|
|
26
|
Račić A, Čalija B, Milić J, Milašinović N, Krajišnik D. Development of polysaccharide-based mucoadhesive ophthalmic lubricating vehicles: The effect of different polymers on physicochemical properties and functionality. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.10.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Ren T, Lin X, Zhang Q, You D, Liu X, Tao X, Gou J, Zhang Y, Yin T, He H, Tang X. Encapsulation of Azithromycin Ion Pair in Liposome for Enhancing Ocular Delivery and Therapeutic Efficacy on Dry Eye. Mol Pharm 2018; 15:4862-4871. [DOI: 10.1021/acs.molpharmaceut.8b00516] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Promzeleva M, Volkova T, Proshin A, Siluykov O, Mazur A, Tolstoy P, Ivanov S, Kamilov F, Terekhova I. Improved Biopharmaceutical Properties of Oral Formulations of 1,2,4-Thiadiazole Derivative with Cyclodextrins: in Vitro and in Vivo Evaluation. ACS Biomater Sci Eng 2018; 4:491-501. [PMID: 33418739 DOI: 10.1021/acsbiomaterials.7b00887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The synthesized 1,2,4-thiadiazole derivative displaying biological activity has low aqueous solubility and dissolution rate. Novel oral formulations of thiadiazole with β- and hydroxypropyl-β-cyclodextrins were obtained by grinding and freeze-drying methods with the purpose to improve the aqueous solubility. Complex formation of 1,2,4-thiadiazole derivative with cyclodextrins was confirmed by means of solid-state 13C MAS CP/TOSS NMR. Solubility, dissolution rate and permeability of the solid inclusion complexes were evaluated in different biorelevant media (SGF, FaSSGF, FaSSIF) simulating the conditions in the gastrointestinal tract. It was demonstrated that the content of biorelevant media affects the properties of the inclusion complexes. In particular, solubilizing effect of cyclodextrins became less pronounced when the micelles of taurocholic acid and lecithin are formed in the dissolution media. The inclusion of thiadiazole into cyclodextrin cavity is in competition with its partitioning into the micelles and this should be taken into account when the in vivo behavior is predicted. The results of in vitro and in vivo experiments were found to be in agreement and showed the highest solubility, dissolution rate and bioavailability of the freeze-dried complexes of thiadiazole with hydroxypropyl-β-cyclodextrin. These complexes can be proposed as more effective dosage forms for oral administration.
Collapse
Affiliation(s)
- Maria Promzeleva
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russia
| | - Tatyana Volkova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russia
| | - Alexey Proshin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Oleg Siluykov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russia.,St. Petersburg State University, St. Petersburg 199034, Russia
| | - Anton Mazur
- St. Petersburg State University, St. Petersburg 199034, Russia
| | - Peter Tolstoy
- St. Petersburg State University, St. Petersburg 199034, Russia
| | - Sergey Ivanov
- Ufa Institute of Chemistry, Russian Academy of Sciences, Ufa 450054, Russia
| | - Felix Kamilov
- Bashkir State Medical University, Ufa 450076, Russia
| | - Irina Terekhova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo 153045, Russia
| |
Collapse
|
29
|
Morrison PWJ, Porfiryeva NN, Chahal S, Salakhov IA, Lacourt C, Semina II, Moustafine RI, Khutoryanskiy VV. Crown Ethers: Novel Permeability Enhancers for Ocular Drug Delivery? Mol Pharm 2017; 14:3528-3538. [PMID: 28825493 DOI: 10.1021/acs.molpharmaceut.7b00556] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crown ethers are cyclic molecules consisting of a ring containing several ether groups. The most common and important members of this series are 12-crown-4 (12C4), 15-crown-5 (15C5), and 18-crown-6 (18C6). These container molecules have the ability to sequester metal ions, and their complexes with drugs are able to traverse cell membranes. This study investigated 12C4, 15C5, and 18C6 for their ability to increase solubility of ocular drugs and enhance their penetration into the cornea. Phase solubility analysis determined crown ethers' ability to enhance the solubility of riboflavin, a drug used for the therapy of keratoconus, and these solutions were investigated for ocular drug permeation enhancing properties. Atomic absorption spectroscopy demonstrated crown ether solutions' ability to sequester Ca2+ from corneal epithelia, and crown ether mediated adsorption of riboflavin into the stroma was investigated. Induced corneal opacity studies assessed potential toxicity of crown ethers. Crown ethers enhanced riboflavin's aqueous solubility and its penetration into in vitro bovine corneas; the smaller sized crown ethers gave greatest enhancement. They were shown to sequester Ca2+ ions from corneal epithelia; doing so loosens cellular membrane tight junctions thus enhancing riboflavin penetration. Induced corneal opacity was similar to that afforded by benzalkonium chloride and less than is produced using polyaminocarboxylic acids. However, in vivo experiments performed in rats with 12C4 did not show any statistically significant permeability enhancement compared to enhancer-free formulation.
Collapse
Affiliation(s)
- Peter W J Morrison
- School of Pharmacy, University of Reading , Whiteknights, PO Box 224, Reading, RG6 6AD, United Kingdom
| | - Natalia N Porfiryeva
- Department of Pharmaceutical, Analytical and Toxicological Chemistry, Kazan State Medical University , 49 Butlerov Street, 420012 Kazan, Russian Federation
| | - Sukhmanpreet Chahal
- School of Pharmacy, University of Reading , Whiteknights, PO Box 224, Reading, RG6 6AD, United Kingdom
| | - Ilgiz A Salakhov
- Nanopharma Development Ltd , 100 Vosstaniya Street, 420095, Kazan, Russian Federation
| | - Charlène Lacourt
- E.B.I. (École de Biologie Industrielle) , 32, Boulevard du Port, 95094 Cergy Cedex, France
| | - Irina I Semina
- Central Research Laboratory, Kazan State Medical University , 6/30 Tolstogo Street, 420012 Kazan, Russian Federation
| | - Rouslan I Moustafine
- Department of Pharmaceutical, Analytical and Toxicological Chemistry, Kazan State Medical University , 49 Butlerov Street, 420012 Kazan, Russian Federation.,Central Research Laboratory, Kazan State Medical University , 6/30 Tolstogo Street, 420012 Kazan, Russian Federation
| | - Vitaliy V Khutoryanskiy
- School of Pharmacy, University of Reading , Whiteknights, PO Box 224, Reading, RG6 6AD, United Kingdom
| |
Collapse
|