1
|
Rajput A, Patil A, Kandhare P, Pawar A. Application of microneedle arrays in cosmetics: Promises, advances, and challenges. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2024; 24:100325. [DOI: 10.1016/j.medntd.2024.100325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
2
|
Chakraborty C, Bhattacharya M, Lee SS. Current Status of Microneedle Array Technology for Therapeutic Delivery: From Bench to Clinic. Mol Biotechnol 2024; 66:3415-3437. [PMID: 37987985 DOI: 10.1007/s12033-023-00961-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
In recent years, microneedle (MN) patches have emerged as an alternative technology for transdermal delivery of various drugs, therapeutics proteins, and vaccines. Therefore, there is an urgent need to understand the status of MN-based therapeutics. The article aims to illustrate the current status of microneedle array technology for therapeutic delivery through a comprehensive review. However, the PubMed search was performed to understand the MN's therapeutics delivery status. At the same time, the search shows the number no of publications on MN is increasing (63). The search was performed with the keywords "Coated microneedle," "Hollow microneedle," "Dissolvable microneedle," and "Hydrogel microneedle," which also shows increasing trend. Similarly, the article highlighted the application of different microneedle arrays for treating different diseases. The article also illustrated the current status of different phases of MN-based therapeutics clinical trials. It discusses the delivery of different therapeutic molecules, such as drug molecule delivery, using microneedle array technology. The approach mainly discusses the delivery of different therapeutic molecules. The leading pharmaceutical companies that produce the microneedle array for therapeutic purposes have also been discussed. Finally, we discussed the limitations and future prospects of this technology.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, 756020, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, Republic of Korea
| |
Collapse
|
3
|
Amano T, Fujii N, Kenny GP, Mündel T, Yokoyama S, Yamashita H, Quan YS. Pretreatment of microneedles enhances passive transdermal administration of pilocarpine and pilocarpine-induced sweat production in humans. Int J Pharm 2024; 662:124497. [PMID: 39033941 DOI: 10.1016/j.ijpharm.2024.124497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The development of an effective transdermal drug delivery protocol to eccrine sweat glands is important for the advancement of research on the human sweating response. We investigated whether microneedle treatment prior to the application of pilocarpine, a hydrophilic and sudorific agent that does not induce sweating due to a limited percutaneous passive diffusion by skin application alone, augments sweat production. We applied three microneedle arrays to forearm skin sites simultaneously (n = 20). Upon removal of the microneedles, 1 % pilocarpine was applied to each site for 5-, 15-, and 30-min for the assessment of sweat gland function. In parallel, pilocarpine was administered by transdermal iontophoresis (5-min) at a separate site. Sweat rate was assessed continuously via the ventilated capsule technique. Pilocarpine augmented sweat rate at the 15- and 30-min periods as compared to the application at 5-min. The sweating responses induced by the 15- and 30-min application of pilocarpine were equivalent to ∼ 80 % of that measured at the iontophoretically treated sites. Notably, we observed a correlation in sweat rate between these two transdermal drug delivery methods. Altogether, our findings show that pre-treatment of microneedle arrays can enhance transdermal delivery efficiency of pilocarpine to human eccrine sweat glands.
Collapse
Affiliation(s)
- Tatsuro Amano
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan.
| | - Naoto Fujii
- Institute of Health and Sport Sciences, University of Tsukuba, Tsukuba City, Japan
| | - Glen P Kenny
- Human and Environmental Physiology Research Unit, University of Ottawa, Ontario, Canada
| | - Toby Mündel
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Shotaro Yokoyama
- Laboratory for Exercise and Environmental Physiology, Faculty of Education, Niigata University, Niigata, Japan
| | | | | |
Collapse
|
4
|
Ando D, Miyatsuji M, Sakoda H, Yamamoto E, Miyazaki T, Koide T, Sato Y, Izutsu KI. Mechanical Characterization of Dissolving Microneedles: Factors Affecting Physical Strength of Needles. Pharmaceutics 2024; 16:200. [PMID: 38399254 PMCID: PMC10893124 DOI: 10.3390/pharmaceutics16020200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Dissolving microneedles (MNs) are novel transdermal drug delivery systems that can be painlessly self-administered. This study investigated the effects of experimental conditions on the mechanical characterization of dissolving MNs for quality evaluation. Micromolding was used to fabricate polyvinyl alcohol (PVA)-based dissolving MN patches with eight different cone-shaped geometries. Axial force mechanical characterization test conditions, in terms of compression speed and the number of compression needles per test, significantly affected the needle fracture force of dissolving MNs. Characterization using selected test conditions clearly showed differences in the needle fracture force of dissolving MNs prepared under various conditions. PVA-based MNs were divided into two groups that showed buckling and unbuckling deformation, which occurred at aspect ratios (needle height/base diameter) of 2.8 and 1.8, respectively. The needle fracture force of PVA-based MNs was negatively correlated with an increase in the needle's aspect ratio. Higher residual water or higher loading of lidocaine hydrochloride significantly decreased the needle fracture force. Therefore, setting appropriate methods and parameters for characterizing the mechanical properties of dissolving MNs should contribute to the development and supply of appropriate products.
Collapse
Affiliation(s)
- Daisuke Ando
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Megumi Miyatsuji
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Hideyuki Sakoda
- Division of Medical Devices, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Eiichi Yamamoto
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
- Division of Medical Devices, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Tamaki Miyazaki
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Tatsuo Koide
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Yoji Sato
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
| | - Ken-Ichi Izutsu
- Division of Drugs, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Kanagawa, Japan
- Department of Pharmaceutical Sciences, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara 324-8501, Tochigi, Japan
| |
Collapse
|
5
|
Wang M, Li X, Du W, Sun M, Ling G, Zhang P. Microneedle-mediated treatment for superficial tumors by combining multiple strategies. Drug Deliv Transl Res 2023; 13:1600-1620. [PMID: 36735217 PMCID: PMC9897165 DOI: 10.1007/s13346-023-01297-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/04/2023]
Abstract
Superficial tumors are still challenging to overcome due to the high risk and toxicity of surgery and conventional chemotherapy. Microneedles (MNs) are widely used in the treatment of superficial skin tumors (SST) due to the high penetration rate of the stratum corneum (SC), excellent biocompatibility, simple preparation process, high patient compliance, and minimal invasion. Most importantly, MNs can provide not only efficient and rarely painful delivery carriers, but also combine multi-model strategies with photothermal therapy (PTT), immunotherapy, and gene therapy for synergistic efficacy. To promote an in-depth understanding of their superiorities, this paper systematically summarized the latest application progress of MNs in the treatment of SST by delivering various types of photosensitizers, immune signal molecules, genes, and chemotherapy drugs. Just as important, the advantages, limitations, and drug release mechanisms of MNs based on different materials are introduced in the paper. In addition, the application of MN technology to clinical practice is the ultimate goal of all the work. The obstacles and possible difficulties in expanding the production of MNs and achieving clinical transformation are briefly discussed in this paper. To be anticipated, our work will provide new insights into the precise and rarely painful treatment of SST in the future.
Collapse
Affiliation(s)
- Meng Wang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Xiaodan Li
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Wenzhen Du
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Minge Sun
- Shenyang Narnia Biomedical Technology Company, Ltd, Shenyang, 110167, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
6
|
Lee J, Park S, Le PT, Lee G, Lee HW, Yun G, Jeon J, Park J, Pham DT, Park YS, Lim H, Kim C, Hwang TS, Kim SW, Lim G. Peripheral Microneedle Patch for First-Aid Hemostasis. Adv Healthc Mater 2023; 12:e2201697. [PMID: 36538487 DOI: 10.1002/adhm.202201697] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/21/2022] [Indexed: 01/18/2023]
Abstract
Despite the minimized puncture sizes and high efficiency, microneedle (MN) patches have not been used to inject hemostatic drugs into bleeding wounds because they easily destroy capillaries when a tissue is pierced. In this study, a shelf-stable dissolving MN patch is developed to prevent rebleeding during an emergency treatment. A minimally and site-selectively invasive hemostatic drug delivery system is established by using a peripheral MN (p-MN) patch that does not directly intrude the wound site but enables topical drug absorption in the damaged capillaries. The invasiveness of MNs is histologically examined by using a bleeding liver of a Sprague-Dawley (SD) rat as an extreme wound model in vivo. The skin penetration force is quantified to demonstrate that the administration of the p-MN patch is milder than that of the conventional MN patch. Hemostatic performance is systematically studied by analyzing bleeding weight and time and comparing them with that of conventional hemostasis methods. The superior performance of a p-MN for the heparin-pretreated SD rat model is demonstrated by intravenous injection in vivo.
Collapse
Affiliation(s)
- Jungho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sebin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Phuong Thao Le
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Geunho Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyoun Wook Lee
- Department of Pathology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, 51353, Republic of Korea
| | - Gaeun Yun
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Juhyeong Jeon
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeongwoo Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Duy Tho Pham
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Department of Emergency Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Young Sook Park
- Department of Physical Rehabilitation Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, 51353, Republic of Korea
| | - Hoon Lim
- Department of Emergency Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, 14584, Republic of Korea
| | - Chulhong Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Tae Sik Hwang
- Department of Emergency Medicine, Yonsei University College of Medicine, Yongin Severance Hospital, Yongin, 16995, Republic of Korea
| | - Seung Whan Kim
- Department of Emergency Medicine, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Geunbae Lim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
7
|
Skin-Based Vaccination: A Systematic Mapping Review of the Types of Vaccines and Methods Used and Immunity and Protection Elicited in Pigs. Vaccines (Basel) 2023; 11:vaccines11020450. [PMID: 36851328 PMCID: PMC9962282 DOI: 10.3390/vaccines11020450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The advantages of skin-based vaccination include induction of strong immunity, dose-sparing, and ease of administration. Several technologies for skin-based immunisation in humans are being developed to maximise these key advantages. This route is more conventionally used in veterinary medicine. Skin-based vaccination of pigs is of high relevance due to their anatomical, physiological, and immunological similarities to humans, as well as being a source of zoonotic diseases and their livestock value. We conducted a systematic mapping review, focusing on vaccine-induced immunity and safety after the skin immunisation of pigs. Veterinary vaccines, specifically anti-viral vaccines, predominated in the literature. The safe and potent skin administration to pigs of adjuvanted vaccines, particularly emulsions, are frequently documented. Multiple methods of skin immunisation exist; however, there is a lack of consistent terminology and accurate descriptions of the route and device. Antibody responses, compared to other immune correlates, are most frequently reported. There is a lack of research on the underlying mechanisms of action and breadth of responses. Nevertheless, encouraging results, both in safety and immunogenicity, were observed after skin vaccination that were often comparable to or superior the intramuscular route. Further research in this area will underlie the development of enhanced skin vaccine strategies for pigs, other animals and humans.
Collapse
|
8
|
Pan P, Liu Q, Wang L, Wang C, Hu L, Jiang Y, Deng Y, Li G, Chen J. Recent Advances in Multifunctional Microneedle Patches for Wound Healing and Health Monitoring. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Panpan Pan
- Marine College Shandong University Weihai 264209 China
| | - Qing Liu
- Marine College Shandong University Weihai 264209 China
| | - Lin Wang
- Marine College Shandong University Weihai 264209 China
| | - Chunxiao Wang
- Marine College Shandong University Weihai 264209 China
| | - Le Hu
- Marine College Shandong University Weihai 264209 China
| | - Yongjian Jiang
- Department of Pancreatic Surgery, Nephrology and Radiology Huashan Hospital Fudan University Shanghai 200040 China
| | - Yonghui Deng
- Department of Chemistry Department of Gastroenterology Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fudan University Shanghai 200433 China
- School of Materials Science and Engineering Nanchang Hangkong University Nanchang 330063 China
| | - Guisheng Li
- School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jingdi Chen
- Marine College Shandong University Weihai 264209 China
| |
Collapse
|
9
|
Microneedle arrays for cutaneous and transcutaneous drug delivery, disease diagnosis, and cosmetic aid. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
10
|
Engineering immunity via skin-directed drug delivery devices. J Control Release 2022; 345:385-404. [DOI: 10.1016/j.jconrel.2022.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/18/2022]
|
11
|
Nguyen TT, Nguyen TTD, Tran NMA, Nguyen HT, Vo GV. Microneedles enable the development of skin-targeted vaccines against coronaviruses and influenza viruses. Pharm Dev Technol 2021; 27:83-94. [PMID: 34802372 DOI: 10.1080/10837450.2021.2008967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Throughout the COVID-19 pandemic, many have seriously worried that the plus burden of seasonal influenza that might create a destructive scenario, resulting in overwhelmed healthcare capacities and onwards loss of life. Many efforts to develop a safe and efficacious vaccine to prevent infection by coronavirus and influenza, highlight the importance of vaccination to combat infectious pathogens. While vaccines are traditionally given as injections into the muscle, microneedle (MN) patches designed to precisely deliver cargos into the cutaneous microenvironment, rich in immune cells, provide a noninvasive and self-applicable vaccination approach, reducing overall costs and improving access to vaccines in places with limited supply. The current review aimed to highlight advances in research on the development of MNs-mediated cutaneous vaccine delivery. Concluding remarks and challenges on MNs-based skin immunization are also provided to contribute to the rational development of safe and effective MN-delivered vaccines against these emerging infectious diseases.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City, Vietnam
| | - Thi Thuy Dung Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nguyen-Minh-An Tran
- Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Huy Truong Nguyen
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Giau Van Vo
- Department of Biomedical Engineering, School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam.,Research Center for Genetics and Reproductive Health (CGRH), School of Medicine, Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam.,Vietnam National University - Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, Vietnam
| |
Collapse
|
12
|
Transdermal Drug Delivery in the Pig Skin. Pharmaceutics 2021; 13:pharmaceutics13122016. [PMID: 34959299 PMCID: PMC8707795 DOI: 10.3390/pharmaceutics13122016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
Transdermal delivery can be accomplished through various mechanisms including formulation optimization, epidermal stratum corneum barrier disruption, or directly by removing the stratum corneum layer. Microneedling, electroporation, a combination of both and also the intradermal injection known as mesotherapy have proved efficacy in epidermal-barrier disruption. Here we analyzed the effects of these methods of epidermal-barrier disruption in the structure of the skin and the absorption of four compounds with different characteristics and properties (ketoprofen, biotin, caffein, and procaine). Swine skin (Pietrain x Durox) was used as a human analogue, both having similar structure and pharmacological release. They were biopsied at different intervals, up to 2 weeks after application. High-pressure liquid chromatography and brightfield microscopy were performed, conducting a biometric analysis and measuring histological structure and vascular status. The performed experiments led to different results in the function of the studied molecules: ketoprofen and biotin had the best concentrations with intradermal injections, while delivery methods for obtaining procaine and caffein maximum concentrations changed on the basis of the lapsed time. The studied techniques did not produce significant histological alterations after their application, except for an observed increase in Langerhans cells and melanocytes after applying electroporation, and an epidermal thinning after using microneedles, with variable results regarding dermal thickness. Although all the studied barrier disruptors can accomplish transdermal delivery, the best disruptor is dependent on the particular molecule.
Collapse
|
13
|
Advances of Microneedles in Biomedical Applications. Molecules 2021; 26:molecules26195912. [PMID: 34641460 PMCID: PMC8512585 DOI: 10.3390/molecules26195912] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/16/2023] Open
Abstract
A microneedle (MN) is a painless and minimally invasive drug delivery device initially developed in 1976. As microneedle technology evolves, microneedles with different shapes (cone and pyramid) and forms (solid, drug-coated, hollow, dissolvable and hydrogel-based microneedles) have been developed. The main objective of this review is the applications of microneedles in biomedical areas. Firstly, the classifications and manufacturing of microneedle are briefly introduced so that we can learn the advantages and fabrications of different MNs. Secondly, research of microneedles in biomedical therapy such as drug delivery systems, diagnoses of disease, as well as wound repair and cancer therapy are overviewed. Finally, the safety and the vision of the future of MNs are discussed.
Collapse
|
14
|
Microneedle for transdermal drug delivery: current trends and fabrication. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021; 51:503-517. [PMID: 33686358 PMCID: PMC7931162 DOI: 10.1007/s40005-021-00512-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Background Transdermal delivery has the advantage of bypassing the first-pass effect and allowing sustained release of the drug. However, the drug delivery is limited owing to the barrier created by the stratum corneum. Microneedles are a transdermal drug delivery system that is painless, less invasive, and easy to self-administer, with a high drug bioavailability. Area covered The dose, delivery rate, and efficacy of the drugs can be controlled by the microneedle design and drug formulations. This review introduces the types of microneedles and their design, materials used for fabrication, and manufacturing methods. Additionally, recent biological applications and clinical trials are introduced. Expert opinion With advancements made in formulation technologies, the drug-loading capability of microneedles can be improved. 3D printing and digital technology contribute to the improvement of microneedle fabrication technology. However, regulations regarding the manufacture of microneedle products should be established as soon as possible to promote commercialization.
Collapse
|
15
|
|
16
|
Preclinical study of influenza bivalent vaccine delivered with a two compartmental microneedle array. J Control Release 2020; 324:280-288. [DOI: 10.1016/j.jconrel.2020.05.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/13/2022]
|
17
|
Nguyen TT, Oh Y, Kim Y, Shin Y, Baek SK, Park JH. Progress in microneedle array patch (MAP) for vaccine delivery. Hum Vaccin Immunother 2020; 17:316-327. [PMID: 32667239 PMCID: PMC7872046 DOI: 10.1080/21645515.2020.1767997] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A microneedle array patch (MAP) has been developed as a new delivery system for vaccines. Preclinical and clinical trials with a vaccine MAP showed improved stability, safety, and immunological efficacy compared to conventional vaccine administration. Various vaccines can be delivered with a MAP. Currently, microneedle manufacturers can mass-produce pharmaceutical MAP and cosmetic MAP and this mass-production system can be adapted to produce a vaccine MAP. Clinical trials with a vaccine MAP have shown comparable efficacy with conventional administration, and discussions about regulations for a vaccine MAP are underway. However, there are concerns of reasonable cost, mass production, efficacy, and safety standards that meet FDA approval, as well as the need for feedback regarding the best method of administration. Currently, microneedles have been studied for the delivery of many kinds of vaccines, and preclinical and clinical studies of vaccine microneedles are in progress. For the foreseeable future, some vaccines will continue to be administered with syringes and needles while the use of a vaccine MAP continues to be improved because of the advantages of less pain, self-administration, improved stability, convenience, and safety.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology-HUTECH , Ho Chi Minh, Vietnam
| | - Yujeong Oh
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Yunseo Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Yura Shin
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Seung-Ki Baek
- QuadMedicine R&D Centre, QuadMedicine Inc , Seongnam, Republic of Korea
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| |
Collapse
|
18
|
Zhu DD, Zhang XP, Zhang BL, Hao YY, Guo XD. Safety Assessment of Microneedle Technology for Transdermal Drug Delivery: A Review. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Dan Dan Zhu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xiao Peng Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Bao Li Zhang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yu Ying Hao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and EngineeringBeijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
19
|
Savoy M. What's New in Vaccine Science. Prim Care 2020; 47:517-528. [PMID: 32718447 DOI: 10.1016/j.pop.2020.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Today vaccines can provide immunity against and treatment of a growing number of diseases including noninfectious conditions. Vaccine science continues to evolve newer and safer ways to deliver prevention and treatment of infectious and noninfectious diseases. This includes new adjuvants to enhance immunogenicity; delivery systems to reduce pain and improve acceptability; a wider range of uses including preventing emerging infectious diseases, such as Zika virus and Ebola, treatment of chronic diseases, such as cancer, and autoimmune disorders; and repurposing of existing vaccines, such as bacillus Calmette-Guérin for novel therapies.
Collapse
Affiliation(s)
- Margot Savoy
- Family & Community Medicine, Temple Faculty Practice, Lewis Katz School of Medicine at Temple University, 1316 West Ontario Street, Room 310, Philadelphia, PA 19140, USA.
| |
Collapse
|
20
|
Characteristic of K3 (CpG-ODN) as a Transcutaneous Vaccine Formulation Adjuvant. Pharmaceutics 2020; 12:pharmaceutics12030267. [PMID: 32183437 PMCID: PMC7151019 DOI: 10.3390/pharmaceutics12030267] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 01/18/2023] Open
Abstract
Transcutaneous immunization (TCI) is easy to use, minimally invasive, and has excellent efficacy in vaccines against infections. We focused on toll-like receptor (TLR) ligands as applicable adjuvants for transcutaneous formulations and characterized immune responses. TCI was performed using poke-and-patch methods, in which puncture holes are formed with a polyglycolic acid microneedle on the back skin of mice. Various TLR ligands were applied to the puncture holes and covered with an ovalbumin-loaded hydrophilic gel patch. During the screening process, K3 (CpG-oligonucleotide) successfully produced more antigen-specific antibodies than other TLR ligands and induced T helper (Th) 1-type polarization. Transcutaneously administered K3 was detected in draining lymph nodes and was found to promote B cell activation and differentiation, suggesting a direct transcutaneous adjuvant activity on B cells. Furthermore, a human safety test of K3-loaded self-dissolving microneedles (sdMN) was performed. Although a local skin reaction was observed at the sdMN application site, there was no systemic side reaction. In summary, we report a K3-induced Th1-type immune response that is a promising adjuvant for transcutaneous vaccine formulations using MN and show that K3-loaded sdMN can be safely applied to human skin.
Collapse
|
21
|
Yoo KH, Kwon TR, Oh CT, Ko KC, No YH, Oh WJ, Kim BJ. Improvement of a slimming cream's efficacy using a novel fabric as a transdermal drug delivery system: An in vivo and in vitro study. Exp Ther Med 2020; 19:3282-3288. [PMID: 32266024 PMCID: PMC7132236 DOI: 10.3892/etm.2020.8582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/19/2019] [Indexed: 12/04/2022] Open
Abstract
Penetration of any compound into the body from the outside is prevented primarily by the corneal layer of the epidermis. The only way to circumvent the properties of the corneal layer is to disrupt it. Currently, transdermal systems can currently only deliver drugs that are of low molecular weight. The purpose of the present study was to assess the improvement of the slimming cream's efficacy using a novel fabric, with the aim of developing an improved method for transdermal drug delivery. The current study was conducted on four groups of guinea pigs. The control group was untreated, whereas the test groups were treated with either slimming cream and no fabric, slimming cream with 100% cotton fabric or slimming cream with the novel fabric. Ultrasound and microscopic histological analysis were used to assess animals. The results demonstrated that compared with the other groups, the novel fabric group demonstrated the greatest reductions in fat layer thickness, adipocyte size and number and proliferator-activated receptor-γ levels in adipose tissue. Furthermore, the novel fabric also enhanced the transdermal delivery of rhodamine B base and caffeine penetration compared with the control fabric (3.18-fold). In conclusion, the results of the present study demonstrated that the novel fabric can potentially be used to enhance transdermal drug delivery.
Collapse
Affiliation(s)
- Kwang Ho Yoo
- Department of Dermatology, College of Medicine, Chung-Ang University Hospital, Seoul 156-755, Republic of Korea.,Department of Dermatology, College of Medicine, Catholic Kwandong University, International St. Mary's Hospital, Incheon 22711, Republic of Korea
| | - Tae-Rin Kwon
- Department of Dermatology, College of Medicine, Chung-Ang University Hospital, Seoul 156-755, Republic of Korea
| | - Chang Taek Oh
- Department of Dermatology, College of Medicine, Chung-Ang University Hospital, Seoul 156-755, Republic of Korea.,Research and Development Center, Green Cross Well-Being Corporation, Seongnam 13595, Republic of Korea
| | - Kyeung Chan Ko
- Department of Dermatology, College of Medicine, Chung-Ang University Hospital, Seoul 156-755, Republic of Korea
| | - Yong Hwan No
- Department of Dermatology, College of Medicine, Chung-Ang University Hospital, Seoul 156-755, Republic of Korea
| | - Won Jong Oh
- Department of Dermatology, College of Medicine, Chung-Ang University Hospital, Seoul 156-755, Republic of Korea
| | - Beom Joon Kim
- Department of Dermatology, College of Medicine, Chung-Ang University Hospital, Seoul 156-755, Republic of Korea
| |
Collapse
|
22
|
Jamaledin R, Di Natale C, Onesto V, Taraghdari ZB, Zare EN, Makvandi P, Vecchione R, Netti PA. Progress in Microneedle-Mediated Protein Delivery. J Clin Med 2020; 9:E542. [PMID: 32079212 PMCID: PMC7073601 DOI: 10.3390/jcm9020542] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for patient-compliance therapies in recent years has led to the development of transdermal drug delivery, which possesses several advantages compared with conventional methods. Delivering protein through the skin by transdermal patches is extremely difficult due to the presence of the stratum corneum which restricts the application to lipophilic drugs with relatively low molecular weight. To overcome these limitations, microneedle (MN) patches, consisting of micro/miniature-sized needles, are a promising tool to perforate the stratum corneum and to release drugs and proteins into the dermis following a non-invasive route. This review investigates the fabrication methods, protein delivery, and translational considerations for the industrial scaling-up of polymeric MNs for dermal protein delivery.
Collapse
Affiliation(s)
- Rezvan Jamaledin
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | - Concetta Di Natale
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Valentina Onesto
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Zahra Baghban Taraghdari
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | | | - Pooyan Makvandi
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
- Institute for polymers, Composites and biomaterials (IPCB), National research council (CNR), 80125 Naples, Italy
- Chemistry Department, Faculty of Science, Shahid Chamran University of Ahvaz, P.O. Box: 61537-53843, Ahvaz, Iran
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia (IIT@CRIB), 80125 Naples, Italy; (R.J.); (V.O.)
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| |
Collapse
|
23
|
Badizadegan K, Goodson JL, Rota PA, Thompson KM. The potential role of using vaccine patches to induce immunity: platform and pathways to innovation and commercialization. Expert Rev Vaccines 2020; 19:175-194. [PMID: 32182145 PMCID: PMC7814398 DOI: 10.1080/14760584.2020.1732215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/12/2020] [Indexed: 01/14/2023]
Abstract
Introduction: In the last two decades, the evidence related to using vaccine patches with multiple short projections (≤1 mm) to deliver vaccines through the skin increased significantly and demonstrated their potential as an innovative delivery platform.Areas covered: We review the vaccine patch literature published in English as of 1 March 2019, as well as available information from key stakeholders related to vaccine patches as a platform. We identify key research topics related to basic and translational science on skin physical properties and immunobiology, patch development, and vaccine manufacturing.Expert opinion: Currently, vaccine patch developers continue to address some basic science and other platform issues in the context of developing a potential vaccine patch presentation for an existing or new vaccine. Additional clinical data and manufacturing experience could shift the balance toward incentivizing existing vaccine manufactures to further explore the use of vaccine patches to deliver their products. Incentives for innovation of vaccine patches differ for developed and developing countries, which will necessitate different strategies (e.g. public-private partnerships, push, or pull mechanisms) to support the basic and applied research needed to ensure a strong evidence base and to overcome translational barriers for vaccine patches as a delivery platform.
Collapse
Affiliation(s)
| | - James L Goodson
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul A Rota
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
24
|
Ito S, Hirobe S, Kuwabara Y, Nagao M, Saito M, Quan YS, Kamiyama F, Fujisawa T, Okada N. Immunogenicity of Milk Protein-Containing Hydrophilic Gel Patch for Epicutaneous Immunotherapy for Milk Allergy. Pharm Res 2020; 37:35. [PMID: 31950282 DOI: 10.1007/s11095-019-2728-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/21/2019] [Indexed: 02/06/2023]
Abstract
PURPOSE Epicutaneous immunotherapy (EPIT) involving the skin's immune system is easy to use, painless and has a low risk of systemic side effects; it can be applied to food allergies that have a high morbidity rate in children. In this study, we evaluated the safety and efficacy of hydrophilic gel patch (HG) for EPIT. METHODS Milk protein concentrate (MPC)-containing HG was applied to the skin that maintained a barrier function or formed puncture holes with microneedle, and MPC-specific antibodies were measured. The clinical study was conducted involving patients with severe milk allergy. RESULTS No specific immune response was induced when immunizing to intact skin, and antibody production was observed by forming puncture holes. It was suggested that MPC contained in HG has immunogenicity and a very small amount of MPC was delivered to intact skin. In the clinical study, the symptom induction threshold increased in four of eight subjects, allowing them to consume milk and switch to oral immunotherapy. Although local skin reactions and temporary elevation of specific IgE antibodies were observed, no systemic side effects appeared throughout the study. CONCLUSIONS EPIT using HG is a safe method to enable oral administration even in patients with severe milk allergies.
Collapse
Affiliation(s)
- Sayami Ito
- Project for Vaccine and Immune Regulation, Laboratory of Vaccine and Immune Regulation (BIKEN), Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sachiko Hirobe
- Advanced Research of Medical and Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka Suita, Osaka, 565-0871, Japan.,Project of Clinical Pharmacology and Therapeutics, Center for Advanced Education and Research in Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yu Kuwabara
- Allergy Center and Department of Clinical Research, Mie National Hospital, 357 Osato-kubota, Tsu, Mie, 514-0125, Japan
| | - Mizuho Nagao
- Allergy Center and Department of Clinical Research, Mie National Hospital, 357 Osato-kubota, Tsu, Mie, 514-0125, Japan
| | - Mio Saito
- CosMED Pharmaceutical Co. Ltd, 32 Higashikujokawanishi-cho Minami-ku, Kyoto, 601-8014, Japan
| | - Ying-Shu Quan
- CosMED Pharmaceutical Co. Ltd, 32 Higashikujokawanishi-cho Minami-ku, Kyoto, 601-8014, Japan
| | - Fumio Kamiyama
- CosMED Pharmaceutical Co. Ltd, 32 Higashikujokawanishi-cho Minami-ku, Kyoto, 601-8014, Japan
| | - Takao Fujisawa
- Allergy Center and Department of Clinical Research, Mie National Hospital, 357 Osato-kubota, Tsu, Mie, 514-0125, Japan
| | - Naoki Okada
- Project for Vaccine and Immune Regulation, Laboratory of Vaccine and Immune Regulation (BIKEN), Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Laboratory of Vaccine and Immune Regulation (BIKEN), Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
25
|
He X, Sun J, Zhuang J, Xu H, Liu Y, Wu D. Microneedle System for Transdermal Drug and Vaccine Delivery: Devices, Safety, and Prospects. Dose Response 2019; 17:1559325819878585. [PMID: 31662709 PMCID: PMC6794664 DOI: 10.1177/1559325819878585] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/30/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022] Open
Abstract
Microneedle (MN) delivery system has been greatly developed to deliver drugs into the skin painlessly, noninvasively, and safety. In the past several decades, various types of MNs have been developed by the newer producing techniques. Briefly, as for the morphologically, MNs can be classified into solid, coated, dissolved, and hollow MN, based on the transdermal drug delivery methods of "poke and patch," "coat and poke," "poke and release," and "poke and flow," respectively. Microneedles also have other characteristics based on the materials and structures. In addition, various manufacturing techniques have been well-developed based on the materials. In this review, the materials, structures, morphologies, and fabricating methods of MNs are summarized. A separate part of the review is used to illustrate the application of MNs to deliver vaccine, insulin, lidocaine, aspirin, and other drugs. Finally, the review ends up with a perspective on the challenges in research and development of MNs, envisioning the future development of MNs as the next generation of drug delivery system.
Collapse
Affiliation(s)
- Xiaoxiang He
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Jingyao Sun
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Jian Zhuang
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Hong Xu
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
| | - Ying Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing
University of Chemical Technology, Beijing, China
| | - Daming Wu
- College of Mechanical and Electrical Engineering, Beijing University
of Chemical Technology, Beijing, China
- State Key Laboratory of Organic-Inorganic Composites, Beijing
University of Chemical Technology, Beijing, China
| |
Collapse
|
26
|
Ingrole RSJ, Gill HS. Microneedle Coating Methods: A Review with a Perspective. J Pharmacol Exp Ther 2019; 370:555-569. [PMID: 31175217 PMCID: PMC6806358 DOI: 10.1124/jpet.119.258707] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
A coated microneedle array comprises sharp micrometer-sized needle shafts attached to a base substrate and coated with a drug on their surfaces. Coated microneedles are under investigation for drug delivery into the skin and other tissues, and a broad assortment of active materials, including small molecules, peptides, proteins, deoxyribonucleic acids, and viruses, have been coated onto microneedles. To coat the microneedles, different methods have been developed. Some coating methods achieve selective coating of just the microneedle shafts, whereas other methods coat not only microneedle shafts but also the array base substrate. Selective coating of just the microneedle shafts is more desirable since it provides control over drug dosage, prevents drug waste, and offers high delivery efficiency. Different excipients are added to the coating liquid to modulate its viscosity and surface tension in order to achieve uniform coatings on microneedles. Coated microneedles have been used in a broad range of biomedical applications. To highlight these different applications, a table summarizing the different active materials and the amounts coated on microneedles is provided. We also discuss factors that should be considered when deciding suitability of coated microneedles for new-drug delivery applications. In recent years, many coated microneedles have been investigated in human clinical trials, and there is now a strong effort to bring the first coated microneedle-based product to market.
Collapse
Affiliation(s)
- Rohan S J Ingrole
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | | |
Collapse
|
27
|
Nguyen TT, Choi JA, Kim JS, Park H, Yang E, Lee WJ, Baek SK, Song M, Park JH. Skin immunization with third-generation hepatitis B surface antigen using microneedles. Vaccine 2019; 37:5954-5961. [DOI: 10.1016/j.vaccine.2019.08.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/09/2019] [Accepted: 08/17/2019] [Indexed: 02/07/2023]
|
28
|
Duarah S, Sharma M, Wen J. Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population. Eur J Pharm Biopharm 2019; 136:48-69. [DOI: 10.1016/j.ejpb.2019.01.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/24/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022]
|
29
|
Yang J, Chen Z, Ye R, Li J, Lin Y, Gao J, Ren L, Liu B, Jiang L. Touch-actuated microneedle array patch for closed-loop transdermal drug delivery. Drug Deliv 2018; 25:1728-1739. [PMID: 30182757 PMCID: PMC6127806 DOI: 10.1080/10717544.2018.1507060] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/19/2018] [Accepted: 07/29/2018] [Indexed: 11/05/2022] Open
Abstract
To date, only approximately 20 drugs synthesized with small molecules have been approved by the FDA for use in traditional transdermal patches (TTP) owing to the extremely low permeation rate of the skin barrier for macromolecular drugs. A novel touch-actuated microneedle array patch (TMAP) was developed for transdermal delivery of liquid macromolecular drugs. TMAP is a combination of a typical TTP and a solid microneedle array (MA). High doses of liquid drug formulations, especially heat-sensitive compounds can be easily filled and stored in the drug reservoir of TMAPs. TMAP can easily penetrate the skin and automatically retract from it to create microchannels through the stratum corneum (SC) layer using touch-actuated 'press and release' actions for passive permeation of liquid drugs. Comparison of subcutaneous injection, TTP, solid MA, and dissolvable MA, indicated that insulin-loaded TMAP exhibited the best hypoglycemic effect on type 1 diabetic rats. A 'closed-loop' permeation control was also provided for on-demand insulin delivery based on feedback of blood glucose levels (BGLs). Twenty IU-insulin-loaded TMAP maintained the type 1 diabetic rats in a normoglycemic state for approximately 11.63 h, the longest therapeutic duration among all previously reported results on microneedle-based transdermal patches. TMAP possesses excellent transdermal drug delivery capabilities.
Collapse
Affiliation(s)
- Jingbo Yang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Zhipeng Chen
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Rui Ye
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Jiyu Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, PR China
| | - Yinyan Lin
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Jie Gao
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Lei Ren
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Bin Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, PR China
| |
Collapse
|
30
|
Ono A, Ito S, Sakagami S, Asada H, Saito M, Quan YS, Kamiyama F, Hirobe S, Okada N. Development of Novel Faster-Dissolving Microneedle Patches for Transcutaneous Vaccine Delivery. Pharmaceutics 2017; 9:pharmaceutics9030027. [PMID: 28771172 PMCID: PMC5620568 DOI: 10.3390/pharmaceutics9030027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/24/2017] [Accepted: 07/27/2017] [Indexed: 11/30/2022] Open
Abstract
Microneedle (MN) patches are promising for transcutaneous vaccination because they enable vaccine antigens to physically penetrate the stratum corneum via low-invasive skin puncturing, and to be effectively delivered to antigen-presenting cells in the skin. In second-generation MN patches, the dissolving MNs release the loaded vaccine antigen into the skin. To shorten skin application time for clinical practice, this study aims to develop novel faster-dissolving MNs. We designed two types of MNs made from a single thickening agent, carboxymethylcellulose (CMC) or hyaluronan (HN). Both CMC-MN and HN-MN completely dissolved in rat skin after a 5-min application. In pre-clinical studies, both MNs could demonstrably increase antigen-specific IgG levels after vaccination and prolong antigen deposition compared with conventional injections, and deliver antigens into resected human dermal tissue. In clinical research, we demonstrated that both MNs could reliably and safely puncture human skin without any significant skin irritation from transepidermal water loss measurements and ICDRG (International Contact Dermatitis Research Group) evaluation results.
Collapse
Affiliation(s)
- Akihiko Ono
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Sayami Ito
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Shun Sakagami
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideo Asada
- Department of Dermatology, Nara Medical University, 840 Shin-cho, Kashihara, Nara 634-8522, Japan.
| | - Mio Saito
- CosMED Pharmaceutical Co. Ltd., 32 Higashikujokawanishi-cho, Minami-ku, Kyoto 601-8014, Japan.
| | - Ying-Shu Quan
- CosMED Pharmaceutical Co. Ltd., 32 Higashikujokawanishi-cho, Minami-ku, Kyoto 601-8014, Japan.
| | - Fumio Kamiyama
- CosMED Pharmaceutical Co. Ltd., 32 Higashikujokawanishi-cho, Minami-ku, Kyoto 601-8014, Japan.
| | - Sachiko Hirobe
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Naoki Okada
- Project for Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Laboratory of Biotechnology and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
- Laboratory of Vaccine and Immune Regulation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|