1
|
Pandurangan S, Easwaramoorthi S, Ayyadurai N. Engineering proteins with catechol chemistry for biotechnological applications. Crit Rev Biotechnol 2025; 45:606-624. [PMID: 39198031 DOI: 10.1080/07388551.2024.2387165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/01/2023] [Accepted: 06/27/2023] [Indexed: 09/01/2024]
Abstract
Developing proteins with increased chemical space by expanding the amino acids alphabet has been an emerging technique to compete for the obstacle encountered by their need in various applications. 3,4-Dihydroxyphenylalanine (L-DOPA) catecholic unnatural amino acid is abundantly present in mussels foot proteins through post-translational modification of tyrosine to give a strong adhesion toward wet rocks. L-DOPA forms: bidentate coordination, H-bonding, metal-ligand complexes, long-ranged electrostatic, and van der Waals interactions via a pair of donor hydroxyl groups. Incorporating catechol in proteins through genetic code expansion paved the way for developing: protein-based bio-sensor, implant coating, bio-conjugation, adhesive bio-materials, biocatalyst, metal interaction and nano-biotechnological applications. The increased chemical spaces boost the protein properties by offering a new chemically active interaction ability to the protein. Here, we review the technique employed to develop a genetically expanded organism with catechol to provide novel properties and functionalities; and we highlight the importance of L-DOPA incorporated proteins in biomedical and industrial fields.
Collapse
Affiliation(s)
- Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shanmugam Easwaramoorthi
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Department of Inorganic and Physical Chemistry, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, Council of Scientific and Industrial Research - Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
2
|
Nie L, Wang L, Hu S, Wei Z, Ding X, Lu Y, Tang H, Ding P. Dopamine-conjugated hyaluronic acid hydrogel interpenetrated by genipin crosslinked quaternary ammonium chitosan for potential biomedical adhesives applications. Colloids Surf B Biointerfaces 2025; 252:114683. [PMID: 40222113 DOI: 10.1016/j.colsurfb.2025.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/22/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Multifunctional hydrogel adhesives have emerged as promising candidates for advanced biomedical applications, particularly in surgical suture alternatives, hemostatic management, and regenerative wound care. This study developed an interpenetrating polymer network (IPN) hydrogel adhesive system through the synergistic integration of dopamine-functionalized hyaluronic acid (HA-DA) and genipin-crosslinked quaternary ammonium chitosan (QCS). The successful preparation of HA-DA and QCS was confirmed via 1H nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) analysis. The fabricated hydrogel adhesives exhibited the interconnected microstructure, suitable mechanical strength, and elastic solid properties. Additionally, the hydrogel adhesives exhibited expected self-healing abilities and injectability. The hydrogels displayed strong adhesion on different matrix and tissues. The quaternary ammonium group pendants in the hydrogel network result in the excellent antibacterial activity of hydrogels against Escherichia coli and Staphylococcus aureus. Furthermore, hemolysis test, fluorescence images, CCK-8 assay, and wound scratch assay demonstrated that the hydrogel adhesives possessed good hemocompatibility, biocompatibility, and cell migration ability. These multifunctional characteristics, combining structural integrity, rapid self-repair, surgical-grade adhesion, antimicrobial protection, hemocompatibility, and cytocompatibility, establish this IPN hydrogel as a promising candidate for biomedical adhesives.
Collapse
Affiliation(s)
- Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China.
| | - Ling Wang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Shuxin Hu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Zheng Wei
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Yuanyuan Lu
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Hengmin Tang
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Peng Ding
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
3
|
Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024; 330:103206. [PMID: 38823215 DOI: 10.1016/j.cis.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaoling Zuo
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
4
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
5
|
Yun D, Liu D, Liu J, Feng Y, Chen H, Chen S, Xie Q. In Vitro/In Vivo Preparation and Evaluation of cRGDyK Peptide-Modified Polydopamine-Bridged Paclitaxel-Loaded Nanoparticles. Pharmaceutics 2023; 15:2644. [PMID: 38004622 PMCID: PMC10674738 DOI: 10.3390/pharmaceutics15112644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer remains a disease with one of the highest mortality rates worldwide. The poor water solubility and tissue selectivity of commonly used chemotherapeutic agents contribute to their poor efficacy and serious adverse effects. This study proposes an alternative to the traditional physicochemically combined modifications used to develop targeted drug delivery systems, involving a simpler surface modification strategy. cRGDyK peptide (RGD)-modified PLGA nanoparticles (NPs) loaded with paclitaxel were constructed by coating the NP surfaces with polydopamine (PD). The average particle size of the produced NPs was 137.6 ± 2.9 nm, with an encapsulation rate of over 80%. In vitro release tests showed that the NPs had pH-responsive drug release properties. Cellular uptake experiments showed that the uptake of modified NPs by tumor cells was significantly better than that of unmodified NPs. A tumor cytotoxicity assay demonstrated that the modified NPs had a lower IC50 and greater cytotoxicity than those of unmodified NPs and commercially available paclitaxel formulations. An in vitro cytotoxicity study indicated good biosafety. A tumor model in female BALB/c rats was established using murine-derived breast cancer 4T1 cells. RGD-modified NPs had the highest tumor-weight suppression rate, which was higher than that of the commercially available formulation. PTX-PD-RGD-NPs can overcome the limitations of antitumor drugs, reduce drug toxicity, and increase efficacy, showing promising potential in cancer therapy.
Collapse
Affiliation(s)
- Dan Yun
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dengyuan Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinlin Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanyi Feng
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongyu Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Simiao Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qingchun Xie
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
6
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
7
|
Xu H, Su Z, Zhang H, Zhang Y, Bao Y, Zhang H, Wu X, Yan R, Wang Z, Jin Y. Cu 2+-pyropheophorbide-a-cystine conjugate-mediated multifunctional mesoporous silica nanoparticles for photo-chemodynamic therapy/GSH depletion combined with immunotherapy cancer. Int J Pharm 2023; 640:123002. [PMID: 37254284 DOI: 10.1016/j.ijpharm.2023.123002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/03/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
Photodynamic therapy (PDT) and chemodynamic therapy (CDT) can activate immunogenicity, so PDT and CDT combined immunotherapy is a promising treatment strategy. However, insufficient hydrogen peroxide activity, hypoxia, and overexpressed glutathione in the tumor microenvironment (TME) significantly impaired the ability to activate immunogenicity. Thus, in this paper, self-reinforcing conjugates Cu2+-Pyropheophorbide-a-Cysteine (CuPPaCC), combined synergetic NIR and pH triggered PDT/CDT with glutathione depletion ability was constructed. CuPPaCC was encapsulated in mesoporous silica, and spherical HSCuPPaCC nanoparticles were prepared by Hyaluronic acid (HA) on the silica surface by Schiff base modification. HSCuPPaCC has tumor-specific targeting via HA mediated. In acidic solution, the Schiff base of HSCuPPaCC is destroyed and CuPPaCC is released (>70%), with excellent pH response release function. The results of the MTT analysis showed that the PDT/CDT synergistic anti-tumor effect was significant. HSCuPPaCC was activated in TME, catalyzing the decomposition of hydrogen peroxide to generate hydroxyl radicals and oxygen, alleviating TME hypoxia, replenishing oxygen to PDT, and significantly down regulating hypoxia factor HIF-1α expression. HSCuPPaCC has an excellent dual ROS mechanism and a dual depleting GSH mechanism resulting in a surge in intracellular ROS levels to efficiently kill cancer cells, enhance the ability to induce immunogenicity, and make tumors more sensitive to checkpoint PD-L1 blockade therapy. With the CT26 mouse model, not only the primary tumor was eradicated, but also the distal tumor at the end of treatment was completely suppressed by HSCuPPaCC combined with anti-PD-L1 immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Haiying Xu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zhongping Su
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Hui Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Ying Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yujun Bao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huanli Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xiaodan Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Zhiqiang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Yingxue Jin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry & Chemical Engineering, Harbin Normal University, Harbin 150025, China; Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, Harbin, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
8
|
Hyaluronic Acid in Biomedical Fields: New Trends from Chemistry to Biomaterial Applications. Int J Mol Sci 2022; 23:ijms232214372. [PMID: 36430855 PMCID: PMC9695447 DOI: 10.3390/ijms232214372] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this review is to give an updated perspective about the methods for chemical modifications of hyaluronic acid (HA) toward the development of new applications in medical devices and material engineering. After a brief introduction on chemical, structural and biological features of this important natural polysaccharide, the most important methods for chemical and physical modifications are disclosed, discussing both on the formation of new covalent bonds and the interaction with other natural polysaccharides. These strategies are of paramount importance in the production of new medical devices and materials with improved properties. In particular, the use of HA in the development of new materials by means of additive manufacturing techniques as electro fluid dynamics, i.e., electrospinning for micro to nanofibres, and three-dimensional bioprinting is also discussed.
Collapse
|
9
|
Wang Y, Wang P, Wu Q, Qin Z, Xiang Z, Chu Y, Li J. Loading of erythropoietin on biphasic calcium phosphate bioceramics promotes osteogenesis and angiogenesis by regulating EphB4/EphrinB2 molecules. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:19. [PMID: 35072831 PMCID: PMC8786765 DOI: 10.1007/s10856-022-06644-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Improving osteogenesis and angiogenesis using different cells and drugs is critical in the field of bone tissue engineering. Recent research has found that erythropoietin (EPO) plays an important role in both osteogenesis and angiogenesis. In this study, we grafted polydopamine and EPO onto the surface of biphasic calcium phosphate. The characterization and release property of the modified bioceramics were assessed. Cell proliferation, expression of osteoblastic and endothelial markers, and EphB4/EphrinB2 molecules were investigated while employing co-cultures of two different cells [rat vein endothelial cells (VECs) and rat bone marrow mesenchymal stromal cells (BMSCs)]. The modified bioceramics were finally implanted into the SD rats' femurs and followed by investigating the bone defect repair efficacy and the expression of EphB4/EphrinB2 molecules in vivo. The results indicated that the modified bioceramics could control the release of EPO continuously. The osteogenesis and angiogenesis were improved along with the increased expression of EphB4/EphrinB2 molecules. The expression of EphB4/EphrinB2 molecules was also significantly increased in vivo and the bone defect was repaired effectively. Overall, our findings demonstrated that EPO loading on biphasic calcium phosphate bioceramics could promote both osteogenesis and angiogenesis. The results suggest that EphB4/EphrinB2 may be crucial in the process. Graphical abstract.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthognathic & TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthognathic & TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qionghui Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthognathic & TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhifan Qin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthognathic & TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zichao Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthognathic & TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuxian Chu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthognathic & TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jihua Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Orthognathic & TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Liu K, Huang X. Synthesis of self-assembled hyaluronan based nanoparticles and their applications in targeted imaging and therapy. Carbohydr Res 2022; 511:108500. [PMID: 35026559 PMCID: PMC8792315 DOI: 10.1016/j.carres.2022.108500] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 02/08/2023]
Abstract
Hyaluronan (HA) is a polysaccharide consisting of repeating disaccharides of N-acetyl-d-glucosamine and d-glucuronic acid. There are increasing interests in utilizing self-assembled HA nanoparticles (HA-NPs) for targeted imaging and therapy. The principal endogenous receptor of HA, cluster of differentiation 44 (CD44), is overexpressed on many types of tumor cells as well as inflammatory cells in human bodies. Active targeting from HA-CD44 mediated interaction and passive targeting due to the enhanced permeability retention (EPR) effect could lead to selective accumulation of HA-NPs at targeted disease sites. This review focuses on the synthesis strategies of self-assembled HA-NPs, as well as their applications in therapy and biomedical imaging.
Collapse
Affiliation(s)
- Kunli Liu
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA; Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
11
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Hyaluronic Acid and Graphene Oxide-incorporated Hyaluronic Acid Hydrogels for Electrically Stimulated Release of Anticancer Tamoxifen Citrate. J Pharm Sci 2021; 111:1633-1641. [PMID: 34756869 DOI: 10.1016/j.xphs.2021.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/24/2021] [Accepted: 10/24/2021] [Indexed: 01/14/2023]
Abstract
Transdermal drug delivery is the transport of drug across the skin and into the systemic circulation. Patch is a one of transdermal device that is used to attach on skin and contains drug. The drug matrices from hyaluronic acid (HA) and graphene oxide (GO) incorporated HA hydrogel were fabricated for the release of tamoxifen citrate (TMX) as the anticancer drug under applied electrical field. The pristine HA hydrogels as the matrix and GO as the drug encapsulation host were fabricated for transdermal patch by the solution casting using citric acid as the chemical crosslinker. In vitro drug release experiment was investigated by utilizing the modified Franz-diffusion cell under the effects of crosslinking ratio, electric potential, and GO. The TMX release behaviors from the hydrogels were found to be from the three mechanisms: the pure Fickian diffusion; the anomalous or non-Fickian diffusion; and Super case II transport depending on the crosslinking conditions. The TMX diffusion and release amount from the pristine HA hydrogels were increased with smaller crosslinking ratios. With applied electrical potential, the enhanced TMX diffusion and release amount were observed when compared to that without due to the electro-repulsive force. Furthermore, the TMX diffusion from the HA hydrogel with GO as the drug encapsulation host was higher by two orders of magnitude than without GO.
Collapse
|
13
|
Li H, Jiang B, Li J. Recent advances in dopamine-based materials constructed via one-pot co-assembly strategy. Adv Colloid Interface Sci 2021; 295:102489. [PMID: 34352605 DOI: 10.1016/j.cis.2021.102489] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 02/02/2023]
Abstract
Dopamine-based materials have attracted widespread interest due to the outstanding physicochemical and biological properties. Since the first report on polydopamine (PDA) films, great efforts have been devoted to develop new fabrication strategies for obtaining novel nanostructures and desirable properties. Among them, one-pot co-assembly strategy offers a unique pathway for integrating multiple properties and functions into dopamine-based platform in a single simultaneous co-deposition step. This review focuses on the state of the art development of one-pot multicomponent self-assembly of dopamine-based materials and summarizes various single-step co-deposition approaches, including PDA-assisted adaptive encapsulation, co-assembly of dopamine with other molecules through non-covalent interactions or covalent interactions. Moreover, emerging applications of dopamine-based materials in the fields ranging from sensing, cancer therapy, catalysis, oil/water separation to antifouling are outlined. In addition, some critical remaining challenges and opportunities are discussed to pave the way towards the rational design and applications of dopamine-based materials.
Collapse
Affiliation(s)
- Hong Li
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China
| | - Bo Jiang
- Department of Neuro-oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
14
|
Kotla NG, Bonam SR, Rasala S, Wankar J, Bohara RA, Bayry J, Rochev Y, Pandit A. Recent advances and prospects of hyaluronan as a multifunctional therapeutic system. J Control Release 2021; 336:598-620. [PMID: 34237401 DOI: 10.1016/j.jconrel.2021.07.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022]
Abstract
Hyaluronan (HA) is a naturally occurring non-sulfated glycosaminoglycan (GAG), cell-surface-associated biopolymer and is the key component of tissue extracellular matrix (ECM). Along with remarkable physicochemical properties, HA also has multifaceted biological effects that include but not limited to ECM organization, immunomodulation, and various cellular processes. Environmental cues such as tissue injury, infection or cancer change downstream signaling functionalities of HA. Unlike native HA, the fragments of HA have diversified effects on inflammation, cancer, fibrosis, angiogenesis and autoimmune response. In this review, we aim to discuss HA as a therapeutic delivery system development process, source, biophysical-chemical properties, and associated biological pathways (especially via cell surface receptors) of native and fragmented HA. We also tried to address an overview of the potential role of HA (native HA vs fragments) in the modulation of inflammation, immune response and various cancer targeting delivery applications. This review will also highlight the HA based therapeutic systems, medical devices and future perspectives of various biomedical applications were discussed in detail.
Collapse
Affiliation(s)
- Niranjan G Kotla
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France
| | - Swetha Rasala
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jitendra Wankar
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Raghvendra A Bohara
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe- Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris F-75006, France; Indian Institute of Technology Palakkad, Palakkad 678 623, Kerala, India
| | - Yury Rochev
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland; Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow 119992, Russia.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91 W2TY, Ireland.
| |
Collapse
|
15
|
Electrosynthesis of polydopamine-ethanolamine films for the development of immunosensing interfaces. Sci Rep 2021; 11:2237. [PMID: 33500469 PMCID: PMC7838280 DOI: 10.1038/s41598-021-81816-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/26/2020] [Indexed: 12/21/2022] Open
Abstract
We report a straightforward and reproducible electrochemical approach to develop polydopamine-ethanolamine (ePDA-ETA) films to be used as immunosensing interfaces. ETA is strongly attached to polydopamine films during the potentiodynamic electropolymerization of dopamine. The great advantage of the electrochemical methods is to generate the oxidized species (quinones), which can readily react with ETA amine groups present in solution, with the subsequent incorporation of this molecule in the polymer. The presence of ETA and its effect on the electrosynthesis of polydopamine was accessed by cyclic voltammetry, ellipsometry, atomic force microscopy, FTIR and X-ray photoelectron spectroscopy. The adhesive and biocompatible films enable a facile protein linkage, are resilient to flow assays, and display intrinsic anti-fouling properties to block non-specific protein interactions, as monitored by real-time surface plasmon resonance, and confirmed by ellipsometry. Immunoglobulin G (IgG) and Anti-IgG were used in this work as model proteins for the affinity sensor. By using the one-step methodology (ePDA-ETA), the lower amount of immobilized biorecognition element, IgG, compared to that deposited on ePDA or on ETA post-modified film (ePDA/ETA), allied to the presence of ETA, improved the antibody-antigen affinity interaction. The great potential of the developed platform is its versatility to be used with any target biorecognition molecules, allowing both optical and electrochemical detection.
Collapse
|
16
|
Zhang Y, Zhang D, Wang JT, Zhang X, Yang Y. Fabrication of stimuli-responsive nanogels for protein encapsulation and traceless release without introducing organic solvents, surfactants, or small-molecule cross-linkers. Polym Chem 2021. [DOI: 10.1039/d0py01600d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stimuli-responsive nanogels were fabricated by reaction of proteins and polymers without using small-organic-molecules. Once the nanogels dissociated, the proteins were released with functional groups, secondary structures, and activities maintained.
Collapse
Affiliation(s)
- Yue Zhang
- School of Chemical Engineering and Technology
- Hebei Key Laboratory of Functional Polymers
- Hebei University of Technology
- Tianjin 300130
- China
| | - Daowen Zhang
- School of Chemical Engineering and Technology
- Hebei Key Laboratory of Functional Polymers
- Hebei University of Technology
- Tianjin 300130
- China
| | - Jin-Tao Wang
- Henan Key Laboratory of Rare Earth Functional Materials
- Zhoukou Normal University
- Zhoukou
- China
| | - Xiaojie Zhang
- School of Chemical Engineering and Technology
- Hebei Key Laboratory of Functional Polymers
- Hebei University of Technology
- Tianjin 300130
- China
| | - Yongfang Yang
- School of Chemical Engineering and Technology
- Hebei Key Laboratory of Functional Polymers
- Hebei University of Technology
- Tianjin 300130
- China
| |
Collapse
|
17
|
Cavalcanti ADD, Melo BAGD, Ferreira BAM, Santana MHA. Performance of the main downstream operations on hyaluronic acid purification. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
18
|
Thakor P, Bhavana V, Sharma R, Srivastava S, Singh SB, Mehra NK. Polymer–drug conjugates: recent advances and future perspectives. Drug Discov Today 2020; 25:1718-1726. [DOI: 10.1016/j.drudis.2020.06.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/27/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
|
19
|
Bayer IS. Hyaluronic Acid and Controlled Release: A Review. Molecules 2020; 25:molecules25112649. [PMID: 32517278 PMCID: PMC7321085 DOI: 10.3390/molecules25112649] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
Hyaluronic acid (HA) also known as hyaluronan, is a natural polysaccharide—an anionic, non-sulfated glycosaminoglycan—commonly found in our bodies. It occurs in the highest concentrations in the eyes and joints. Today HA is used during certain eye surgeries and in the treatment of dry eye disease. It is a remarkable natural lubricant that can be injected into the knee for patients with knee osteoarthritis. HA has also excellent gelling properties due to its capability to bind water very quickly. As such, it is one the most attractive controlled drug release matrices and as such, it is frequently used in various biomedical applications. Due to its reactivity, HA can be cross-linked or conjugated with assorted bio-macromolecules and it can effectively encapsulate several different types of drugs, even at nanoscale. Moreover, the physiological significance of the interactions between HA and its main membrane receptor, CD44 (a cell-surface glycoprotein that modulates cell–cell interactions, cell adhesion and migration), in pathological processes, e.g., cancer, is well recognized and this has resulted in an extensive amount of studies on cancer drug delivery and tumor targeting. HA acts as a therapeutic but also as a tunable matrix for drug release. Thus, this review focuses on controlled or sustained drug release systems assembled from HA and its derivatives. More specifically, recent advances in controlled release of proteins, antiseptics, antibiotics and cancer targeting drugs from HA and its derivatives were reviewed. It was shown that controlled release from HA has many benefits such as optimum drug concentration maintenance, enhanced therapeutic effects, improved efficiency of treatment with less drug, very low or insignificant toxicity and prolonged in vivo release rates.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| |
Collapse
|
20
|
Zhong W, Pang L, Feng H, Dong H, Wang S, Cong H, Shen Y, Bing Y. Recent advantage of hyaluronic acid for anti-cancer application: a review of "3S" transition approach. Carbohydr Polym 2020; 238:116204. [PMID: 32299556 DOI: 10.1016/j.carbpol.2020.116204] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 12/25/2022]
Abstract
In recent years, nano drug delivery system has been widely concerned because of its good therapeutic effect. However, the process from blood circulation to cancer cell release of nanodrugs will be eliminated by the human body's own defense trap, thus reducing the therapeutic effect. In recent years, a "3S" transition concept, including stability transition, surface transition and size transition, was proposed to overcome the barriers in delivery process. Hyaluronic (HA) acid has been widely used in delivery of anticancer drugs due to its excellent biocompatibility, biodegradability and specific targeting to cancer cells. In this paper, the strategies and methods of HA-based nanomaterials using "3S" theory are reviewed. The applications and effects of "3S" modified nanomaterials in various fields are also introduced.
Collapse
Affiliation(s)
- Wei Zhong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Long Pang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Haohui Feng
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Haonan Dong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yu Bing
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
21
|
Chen J, He H, Deng C, Yin L, Zhong Z. Saporin-loaded CD44 and EGFR dual-targeted nanogels for potent inhibition of metastatic breast cancer in vivo. Int J Pharm 2019; 560:57-64. [PMID: 30699364 DOI: 10.1016/j.ijpharm.2019.01.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
Metastasis poses a long-standing treatment challenge for many cancers including breast cancer. Once spreading out, cell-selective delivery of drug appears especially critical. Here, we report on epidermal growth factor receptor and CD44 dual-targeted hyaluronic acid nanogels (EGFR/CD44-NGs) that afford enhanced targetability and protein therapy for metastatic 4T1 breast cancer in vivo. Flow cytometry in CD44 and EGFR-positive 4T1 metastatic breast cancer cells showed over 6-fold higher cellular uptake of EGFR/CD44-NGs than mono-targeting CD44-NGs. MTT and scratch assays displayed that saporin-loaded EGFR/CD44-NGs (Sap-EGFR/CD44-NGs) was highly potent in inhibiting growth as well as migration of 4T1 cells in vitro, with an IC50 of 5.36 nM, which was 1.7-fold lower than that for Sap-CD44-NGs. In 4T1-luc metastatic breast cancer model in mice, Sap-EGFR/CD44-NGs exhibited significant inhibition of tumor metastasis to lung at a small dose of 3.33 nmol Sap equiv./kg. Increasing the dosage to 13.3 nmol Sap equiv./kg resulted in further reduced lung metastasis without causing notable adverse effects. These dual-targeted nanogels with improved cancer cell selectivity provide a novel platform for combating breast cancer metastasis.
Collapse
Affiliation(s)
- Jing Chen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Hua He
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
22
|
Posey ND, Tew GN. Associative and Dissociative Processes in Non-Covalent Polymer-Mediated Intracellular Protein Delivery. Chem Asian J 2018; 13:3351-3365. [DOI: 10.1002/asia.201800849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Nicholas D. Posey
- Department of Polymer Science and Engineering; University of Massachusetts Amherst; Amherst MA 01003 USA
| | - Gregory N. Tew
- Department of Polymer Science and Engineering; University of Massachusetts Amherst; Amherst MA 01003 USA
- Department of Veterinary and Animal Sciences; University of Massachusetts Amherst; Amherst MA 01003 USA
- Molecular and Cellular Biology Program; University of Massachusetts Amherst; Amherst MA 01003 USA
| |
Collapse
|
23
|
Fallacara A, Baldini E, Manfredini S, Vertuani S. Hyaluronic Acid in the Third Millennium. Polymers (Basel) 2018; 10:E701. [PMID: 30960626 PMCID: PMC6403654 DOI: 10.3390/polym10070701] [Citation(s) in RCA: 445] [Impact Index Per Article: 63.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
Since its first isolation in 1934, hyaluronic acid (HA) has been studied across a variety of research areas. This unbranched glycosaminoglycan consisting of repeating disaccharide units of N-acetyl-d-glucosamine and d-glucuronic acid is almost ubiquitous in humans and in other vertebrates. HA is involved in many key processes, including cell signaling, wound reparation, tissue regeneration, morphogenesis, matrix organization and pathobiology, and has unique physico-chemical properties, such as biocompatibility, biodegradability, mucoadhesivity, hygroscopicity and viscoelasticity. For these reasons, exogenous HA has been investigated as a drug delivery system and treatment in cancer, ophthalmology, arthrology, pneumology, rhinology, urology, aesthetic medicine and cosmetics. To improve and customize its properties and applications, HA can be subjected to chemical modifications: conjugation and crosslinking. The present review gives an overview regarding HA, describing its history, physico-chemical, structural and hydrodynamic properties and biology (occurrence, biosynthesis (by hyaluronan synthases), degradation (by hyaluronidases and oxidative stress), roles, mechanisms of action and receptors). Furthermore, both conventional and recently emerging methods developed for the industrial production of HA and its chemical derivatization are presented. Finally, the medical, pharmaceutical and cosmetic applications of HA and its derivatives are reviewed, reporting examples of HA-based products that currently are on the market or are undergoing further investigations.
Collapse
Affiliation(s)
- Arianna Fallacara
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Erika Baldini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Stefano Manfredini
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| | - Silvia Vertuani
- Department of Life Sciences and Biotechnology, Master Course in Cosmetic Science and Technology (COSMAST), University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy.
| |
Collapse
|