1
|
Sakkal M, Arafat M, Yuvaraju P, Beiram R, AbuRuz S. Preparation and Characterization of Theophylline Controlled Release Matrix System Incorporating Poloxamer 407, Stearyl Alcohol, and Hydroxypropyl Methylcellulose: A Novel Formulation and Development Study. Polymers (Basel) 2024; 16:643. [PMID: 38475326 DOI: 10.3390/polym16050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Theophylline (THN), a bronchodilator with potential applications in emerging conditions like COVID-19, requires a controlled-release delivery system due to its narrow therapeutic range and short half-life. This need is particularly crucial as some existing formulations demonstrate impaired functionality. This study aims to develop a new 12-h controlled-release matrix system (CRMS) in the form of a capsule to optimize dosing intervals. METHODS CRMSs were developed using varying proportions of poloxamer 407 (P-407), stearyl alcohol (STA), and hydroxypropyl methylcellulose (HPMC) through the fusion technique. Their in vitro dissolution profiles were then compared with an FDA-approved THN drug across different pH media. The candidate formulation underwent characterization using X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Additionally, a comprehensive stability study was conducted. RESULTS In vitro studies showed that adjusting the concentrations of excipients effectively controlled drug release. Notably, the CRMS formulation 15 (CRMS-F15), which was composed of 30% P-407, 30% STA, and 10% HPMC, closely matched the 12 h controlled-release profile of an FDA-approved drug across various pH media. Characterization techniques verified the successful dispersion of the drug within the matrix. Furthermore, CRMS-F15 maintained a consistent controlled drug release and demonstrated stability under a range of storage conditions. CONCLUSIONS The newly developed CRMS-F15 achieved a 12 h controlled release, comparable to its FDA-approved counterpart.
Collapse
Affiliation(s)
- Molham Sakkal
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain P.O. Box 64141, United Arab Emirates
| | - Priya Yuvaraju
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Rami Beiram
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Salahdein AbuRuz
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
2
|
Nguyen TM, Chen HH, Chang YC, Ning TC, Chen KF. Remediation of groundwater contaminated with trichloroethylene (TCE) using a long-lasting persulfate/biochar barrier. CHEMOSPHERE 2023; 333:138954. [PMID: 37201606 DOI: 10.1016/j.chemosphere.2023.138954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Accepted: 05/14/2023] [Indexed: 05/20/2023]
Abstract
Groundwater contamination by chlorinated solvents causes potential threats to water resources and human health. Therefore, it is important to develop effective technologies to remediate contaminated groundwater. This study uses biodegradable hydrophilic polymers, hydroxypropyl methylcellulose (HPMC), hydroxyethyl cellulose (HEC) and polyvinyl pyrrolidone (PVP) as binders to manufacture persulfate (PS) tablets for the sustained release of persulfate to treat trichloroethylene (TCE) in groundwater. The release time for different tablets decreases in the order: HPMC (8-15 days) > HEC (7-8 days) > PVP (2-5 days). The efficiency with which persulfate is released is: HPMC (73-79%) > HEC (60-72%) > PVP (12-31%). HPMC is the optimal binder for the manufacture of persulfate tablets and persulfate is released from a tablet of HPMC/PS ratio (wt/wt) of 4/3 for 15 days at a release rate of 1127 mg/day. HPMC/PS/biochar (BC) ratios (wt/wt/wt) between 1/1/0.02 and 1/1/0.0333 are suitable for PS/BC tablets. PS/BC tablets release persulfate for 9-11 days at release rates of 1243 to 1073 mg/day. The addition of too much biochar weakens the structure of the tablets, which results in a rapid release of persulfate. TCE is oxidized by a PS tablet with an efficiency of 85% and a PS/BC tablet eliminates more TCE, with a removal efficiency of 100%, due to oxidation and adsorption during the 15 days of reaction. Oxidation is the predominant mechanism for TCE elimination by a PS/BC tablet. The adsorption of TCE by BC fits well with the pseudo-second-order kinetics and the pseudo-first-order kinetics, which describes the removal of TCE by PS and PS/BC tablets. The results of this study show that a PS/BC tablet can be used in a permeable reactive barrier for long-term passive remediation of groundwater.
Collapse
Affiliation(s)
- Thi-Manh Nguyen
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan
| | - Hung-Hsiang Chen
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan
| | - Yu-Chen Chang
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan
| | - Tzu-Chien Ning
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Puli, Nantou, 545301, Taiwan.
| |
Collapse
|
3
|
Sohail Arshad M, Zafar S, Yousef B, Alyassin Y, Ali R, AlAsiri A, Chang MW, Ahmad Z, Ali Elkordy A, Faheem A, Pitt K. A review of emerging technologies enabling improved solid oral dosage form manufacturing and processing. Adv Drug Deliv Rev 2021; 178:113840. [PMID: 34147533 DOI: 10.1016/j.addr.2021.113840] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022]
Abstract
Tablets are the most widely utilized solid oral dosage forms because of the advantages of self-administration, stability, ease of handling, transportation, and good patient compliance. Over time, extensive advances have been made in tableting technology. This review aims to provide an insight about the advances in tablet excipients, manufacturing, analytical techniques and deployment of Quality by Design (QbD). Various excipients offering novel functionalities such as solubility enhancement, super-disintegration, taste masking and drug release modifications have been developed. Furthermore, co-processed multifunctional ready-to-use excipients, particularly for tablet dosage forms, have benefitted manufacturing with shorter processing times. Advances in granulation methods, including moist, thermal adhesion, steam, melt, freeze, foam, reverse wet and pneumatic dry granulation, have been proposed to improve product and process performance. Furthermore, methods for particle engineering including hot melt extrusion, extrusion-spheronization, injection molding, spray drying / congealing, co-precipitation and nanotechnology-based approaches have been employed to produce robust tablet formulations. A wide range of tableting technologies including rapidly disintegrating, matrix, tablet-in-tablet, tablet-in-capsule, multilayer tablets and multiparticulate systems have been developed to achieve customized formulation performance. In addition to conventional invasive characterization methods, novel techniques based on laser, tomography, fluorescence, spectroscopy and acoustic approaches have been developed to assess the physical-mechanical attributes of tablet formulations in a non- or minimally invasive manner. Conventional UV-Visible spectroscopy method has been improved (e.g. fiber-optic probes and UV imaging-based approaches) to efficiently record the dissolution profile of tablet formulations. Numerous modifications in tableting presses have also been made to aid machine product changeover, cleaning, and enhance efficiency and productivity. Various process analytical technologies have been employed to track the formulation properties and critical process parameters. These advances will contribute to a strategy for robust tablet dosage forms with excellent performance attributes.
Collapse
Affiliation(s)
| | - Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Bushra Yousef
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Yasmine Alyassin
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Radeyah Ali
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Ali AlAsiri
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom; Pharmacy College, Pharmaceutics Department, Najran University, Najran, Saudi Arabia
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, Northern Ireland, United Kingdom
| | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing,University of Sunderland, Sunderland, United Kingdom
| | - Ahmed Faheem
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing,University of Sunderland, Sunderland, United Kingdom; Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Kendal Pitt
- Manufacturing, Science & Technology, Pharma Supply Chain, GlaxoSmithKline, Ware, United Kingdom.
| |
Collapse
|
4
|
Dos Santos J, Deon M, da Silva GS, Beck RCR. Multiple variable effects in the customisation of fused deposition modelling 3D-printed medicines: A design of experiments (DoE) approach. Int J Pharm 2021; 597:120331. [PMID: 33540012 DOI: 10.1016/j.ijpharm.2021.120331] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/21/2022]
Abstract
Fused deposition modelling (FDM) is the most explored three-dimensional (3D) printing technique in pharmaceutics. However, there is still a lack of knowledge about the factors influencing the properties of the printed forms. Here, the main and combined effects of the presence of a pore former (mannitol, 0% or 10%), the infill percentage (50% or 100%) and the drug percentage (5% or 10%) on the pharmaceutical properties of 3D-printed forms were evaluated by a design of experiments (DoE) approach. Poly(Ɛ-caprolactone) filaments were produced by hot-melt extrusion and dexamethasone was used as a hydrophobic model drug. The 23 factorial design afforded eight formulations printed at 105 °C. The drug content ranged from 9.87 to 25.59 mg/unit, depending on the drug and infill percentages. The drug release profiles followed the Higuchi model. The infill percentage modulated the drug release rate, whereas the pore former had a combined effect on this parameter, depending on the drug and infill percentage levels. According to the DoE data, besides the changes in the infill percentage, the addition of a pore former can also tailor the drug release rate from 3D-printed solid forms. These findings may assist the development of personalised tumour implants by 3D printing.
Collapse
Affiliation(s)
- Juliana Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Monique Deon
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
5
|
Chang Y, Hu C, Yang R, He D, Wang X, Ning B, Sun H, Xiong Y, Tu J, Sun C. A Raman imaging-based technique to assess HPMC substituent contents and their effects on the drug release of commercial extended-release tablets. Carbohydr Polym 2020; 244:116460. [PMID: 32536397 DOI: 10.1016/j.carbpol.2020.116460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 10/24/2022]
Abstract
In this study, we tried to assess the substitute contents of HPMC used in commercial extended-release tablets directly by an innovative Raman imaging-based analysis technique and find their effects on the in vitro performance of these pharmaceuticals. Twenty-seven batches of metformin hydrochloride extended-release tablets from various sources were collected in the Chinese mainland market. While Raman imaging was used to qualitatively analyze the composition of the tablets, the MeO and HPO contents of HPMC were quantitatively assessed by a newly proposed calculation method based on the Raman intensity of corresponding characteristic band. Additionally, the dissolution test was performed to evaluate the relationship between HPMC substitution pattern and in vitro behavior. In sum, our findings indicate that the drug release rate can be downregulated by increasing the MeO content of HPMC, while the high HPO content would largely eliminate the variation of drug release profiles among batches.
Collapse
Affiliation(s)
- Yan Chang
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, Institute for Chemical Drug Control, National Institutes for Food and Drug Control, 31 Huatuo Road, Beijing 102629, China
| | - Changqin Hu
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, Institute for Chemical Drug Control, National Institutes for Food and Drug Control, 31 Huatuo Road, Beijing 102629, China.
| | - Rui Yang
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Institute for Control of Pharmaceutical Excipient and Packaging Material, National Institutes for Food and Drug Control, 2 Tiantan Xili, Beijing 100050, China
| | - Dongsheng He
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Xueyi Wang
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Baoming Ning
- NMPA Key Laboratory for Quality Research and Evaluation of Chemical Drugs, Institute for Chemical Drug Control, National Institutes for Food and Drug Control, 31 Huatuo Road, Beijing 102629, China
| | - Huimin Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Institute for Control of Pharmaceutical Excipient and Packaging Material, National Institutes for Food and Drug Control, 2 Tiantan Xili, Beijing 100050, China
| | - Yerong Xiong
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China
| | - Jiasheng Tu
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | - Chunmeng Sun
- State Key Laboratory of Natural Medicines, Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, and Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
6
|
Wang W, Fan J, Zhu G, Wang J, Qian Y, Li H, Ju J, Shan L. Targeted Prodrug-Based Self-Assembled Nanoparticles for Cancer Therapy. Int J Nanomedicine 2020; 15:2921-2933. [PMID: 32425524 PMCID: PMC7187935 DOI: 10.2147/ijn.s247443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/07/2020] [Indexed: 01/10/2023] Open
Abstract
Background Targeted prodrug has various applications as drug formulation for tumor therapy. Therefore, amphoteric small-molecule prodrug combined with nanoscale characteristics for the self-assembly of the nano-drug delivery system (DDS) is a highly interesting research topic. Methods and Results In this study, we developed a prodrug self-assembled nanoplatform, 2-glucosamine-fluorescein-5(6)-isothiocyanate-glutamic acid-paclitaxel (2DA-FITC-PTX NPs) by integration of targeted small molecule and nano-DDS with regular structure and perfect targeting ability. 2-glucosamine (DA) and paclitaxel were conjugated as the targeted ligand and anti-tumor chemotherapy drug by amino acid group. 2-DA molecular structure can enhance the targeting ability of prodrug-based 2DA-FITC-PTX NPs and prolong retention time, thereby reducing the toxicity of normal cell/tissue. The fluorescent dye FITC or near-infrared fluorescent dye ICG in prodrug-based DDS was attractive for in vivo optical imaging to study the behavior of 2DA-FITC-PTX NPs. In vitro and in vivo results proved that 2DA-FITC-PTX NPs exhibited excellent targeting ability, anticancer activity, and weak side effects. Conclusion This work demonstrates a new combination of nanomaterials for chemotherapy and may promote prodrug-based DDS clinical applications in the future.
Collapse
Affiliation(s)
- Weiwei Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Junting Fan
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Guang Zhu
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Jing Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Yumei Qian
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Hongxia Li
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| | - Jianming Ju
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, People's Republic of China
| | - Lingling Shan
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering, Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, People's Republic of China
| |
Collapse
|
7
|
Hu M, Zhu Z, Wu Y, Meng Q, Luo J, Wang H. Exploring the Potential of Hydrophilic Matrix Combined with Insoluble Film Coating: Preparation and Evaluation of Ambroxol Hydrochloride Extended Release Tablets. AAPS PharmSciTech 2020; 21:93. [PMID: 32076885 DOI: 10.1208/s12249-020-1628-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/22/2020] [Indexed: 11/30/2022] Open
Abstract
To explore the potential utility of combination of hydrophilic matrix with membrane-controlled technology, the present study prepared tablets of a water-soluble model drug (ambroxol hydrochloride), through process of direct compression and spray coating. Single-factor experiments were accomplished to optimize the formulation. In vivo pharmacokinetics was then performed to evaluate the necessity and feasibility of further development of this simple process and low-cost approach. Various release rates could be easily obtained by adjusting the viscosity and amount of hypromellose, pore-former ratios in coating dispersions and coating weight gains. Dissolution profiles of coated tablets displayed initial delay, followed by near zero-order kinetics. The pharmacokinetic study of different formulations showed that lag time became longer as the permeability of coating membrane decreased, which was consistent with the in vitro drug release trend. Besides, in vitro/in vivo correlation study indicated that coated tablets exhibited a good correlation between in vitro release and in vivo absorption. The results, therefore, demonstrated that barrier-membrane-coated matrix formulations were extremely promising for further application in industrialization and commercialization.
Collapse
|
8
|
Preparation of a supersaturatable self-microemulsion as drug delivery system for ellagic acid and evaluation of its antioxidant activities. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|