1
|
Zhang R, Zhang X, Zhu X, Li T, Li Y, Zhang P, Chen Y, Li G, Han X. Nanoparticles transfected with plasmid-encoded lncRNA-OIP5-AS1 inhibit renal ischemia-reperfusion injury in mice via the miR-410-3p/Nrf2 axis. Ren Fail 2024; 46:2319327. [PMID: 38419565 PMCID: PMC10906121 DOI: 10.1080/0886022x.2024.2319327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Nanostructures composed of liposomes and polydopamine (PDA) have demonstrated efficacy as carriers for delivering plasmids, effectively alleviating renal cell carcinoma. However, their role in acute kidney injury (AKI) remains unclear. This study aimed to investigate the effects of the plasmid-encoded lncRNA-OIP5-AS1@PDA nanoparticles (POP-NPs) on renal ischemia/reperfusion (RI/R) injury and explore the underlying mechanisms. RI/R or OGD/R models were established in mice and HK-2 cells, respectively. In vivo, vector or POP-NPs were administered (10 nmol, IV) 48 h after RI/R treatment. In the RI/R mouse model, the OIP5-AS1 and Nrf2/HO-1 expressions were down-regulated, while miR-410-3p expression was upregulated. POP-NPs treatment effectively reversed RI/R-induced renal tissue injury, restoring altered levels of blood urea nitrogen, creatinine, malondialdehyde, inflammatory factors (IL-8, IL-6, TNF-α), ROS, apoptosis, miR-410-3p, as well as the suppressed expression of SOD and Nrf2/HO-1 in the model mice. Similar results were obtained in cell models treated with POP-NPs. Additionally, miR-410-3p mimics could reverse the effects of POP-NPs on cellular models, partially counteracted by Nrf2 agonists. The binding relationship between OIP5-AS1 and miR-410-3p, alongside miR-410-3p and Nrf2, has been substantiated by dual-luciferase reporter and RNA pull-down assays. The study revealed that POP-NPs can attenuate RI/R-induced injury through miR-410-3p/Nrf2 axis. These findings lay the groundwork for future targeted therapeutic approaches utilizing nanoparticles for RI/R-induced AKI.
Collapse
Affiliation(s)
- Rongjie Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Xin Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Xuhui Zhu
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Tao Li
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Yansheng Li
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Peng Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Yuanhao Chen
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Gao Li
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| | - Xiuwu Han
- Department of Urology, Beijing Chao-Yang Hospital, Beijing, China
| |
Collapse
|
2
|
Jiang Z, Yang G, Wang G, Wan J, Zhang Y, Song W, Zhang H, Ni J, Zhang H, Luo M, Wang K, Peng B. SEC14L3 knockdown inhibited clear cell renal cell carcinoma proliferation, metastasis and sunitinib resistance through an SEC14L3/RPS3/NFκB positive feedback loop. J Exp Clin Cancer Res 2024; 43:288. [PMID: 39425205 PMCID: PMC11490128 DOI: 10.1186/s13046-024-03206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) arises from the renal parenchymal epithelium and is the predominant malignant entity of renal cancer, exhibiting increasing incidence and mortality rates over time. SEC14-like 3 (SEC14L3) has emerged as a compelling target for cancer intervention; nevertheless, the precise clinical implications and molecular underpinnings of SEC14L3 in ccRCC remain elusive. METHODS By leveraging clinical data and data from the TCGA-ccRCC and GEO datasets, we investigated the association between SEC14L3 expression levels and overall survival rates in ccRCC patients. The biological role and mechanism of SEC14L3 in ccRCC were investigated via in vivo and in vitro experiments. Moreover, siRNA-SEC14L3@PDA@MUC12 nanoparticles (SSPM-NPs) were synthesized and assessed for their therapeutic potential against SEC14L3 through in vivo and in vitro assays. RESULTS Our investigation revealed upregulated SEC14L3 expression in ccRCC tissues, and exogenous downregulation of SEC14L3 robustly suppressed the malignant traits of ccRCC cells. Mechanistically, knocking down SEC14L3 facilitated the ubiquitination-mediated degradation of ribosomal protein S3 (RPS3) and augmented IκBα accumulation in ccRCC. This concerted action thwarted the nuclear translocation of P65, thereby abrogating the activation of the nuclear factor kappa B (NFκB) signaling pathway and impeding ccRCC cell proliferation and metastasis. Furthermore, diminished SEC14L3 levels exerted a suppressive effect on NFKB1 expression within the NFκB signaling cascade. NFKB1 functions as a transcriptional regulator capable of binding to the SEC14L3 enhancer and promoter, thereby promoting SEC14L3 expression. Consequently, the inhibition of SEC14L3 expression was further potentiated, thus forming a positive feedback loop. Additionally, we observed that downregulation of SEC14L3 significantly increased the sensitivity of ccRCC cells to sunitinib. The evaluation of SSPM-NPs nanotherapy highlighted its effectiveness in combination with sunitinib for inhibiting ccRCC growth. CONCLUSION Our findings not only underscore the promise of SEC14L3 as a therapeutic target but also unveil an SEC14L3/RPS3/NFκB positive feedback loop that curtails ccRCC progression. Modulating SEC14L3 expression to engage this positive feedback loop might herald novel avenues for ccRCC treatment.
Collapse
Affiliation(s)
- Ziming Jiang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guangcan Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guangchun Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiayi Wan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Yifan Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Wei Song
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Houliang Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinliang Ni
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Haipeng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Ming Luo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
3
|
Maurelli AM, De Leo V, Catucci L. Polydopamine-Modified Liposomes: Preparation and Recent Applications in the Biomedical Field. ACS OMEGA 2024; 9:24105-24120. [PMID: 38882106 PMCID: PMC11170693 DOI: 10.1021/acsomega.4c02555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
Polydopamine (PDA) is a bioinspired polymer that has unique and desirable properties for emerging applications in the biomedical field, such as extraordinary adhesiveness, extreme ease of functionalization, great biocompatibility, large drug loading capacity, good mucopenetrability, strong photothermal capacity, and pH-responsive behavior. Liposomes are consolidated and attractive biomimetic nanocarriers widely used in the field of drug delivery for their biocompatibility and biodegradability, as well as for their ability to encapsulate hydrophobic, hydrophilic, and amphiphilic compounds, even simultaneously. In addition, liposomes can be decorated with appropriate functionalities for targeted delivery purposes. Thus, combining the interesting properties of PDA with those of liposomes allows us to obtain multifunctional nanocarriers with enhanced stability, biocompatibility, and functionality. In this review, a focus on the most recent developments of liposomes modified with PDA, either in the form of polymer layers trapping multiple vesicles or in the form of PDA-coated nanovesicles, is proposed. These innovative PDA coatings extend the application range of liposomes into the field of biomedical applications, thereby allowing for easier functionalization with targeting ligands, which endows them with active release capabilities and photothermal activity and generally improves their interaction with biological fluids. Therefore, hybrid liposome/PDA systems are proposed for surface-mediated drug delivery and for the development of nanocarriers intended for systemic and oral drug delivery, as well as for multifunctional nanocarriers for cancer therapy. The main synthetic strategies for the preparation of PDA-modified liposomes are also illustrated. Finally, future prospects for PDA-coated liposomes are discussed, including the suggestion of potential new applications, deeper evaluation of side effects, and better personalization of medical treatments.
Collapse
Affiliation(s)
- Anna Maria Maurelli
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Vincenzo De Leo
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- CNR-IPCF S.S. Bari, c/o Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Lucia Catucci
- Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
- CNR-IPCF S.S. Bari, c/o Department of Chemistry, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
4
|
Li W, Xiong X, Gong Y, Li Z. Preparation and In vitro Evaluation of Folated Pluronic F87/TPGS Co-modified Liposomes for Targeted Delivery of Curcumin. Curr Drug Deliv 2024; 21:592-602. [PMID: 37340749 DOI: 10.2174/1567201820666230619112502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Using targeted liposomes to encapsulate and deliver drugs has become a hotspot in biomedical research. Folated Pluronic F87/D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) co-modified liposomes (FA-F87/TPGS-Lps) were fabricated for curcumin delivery, and intracellular targeting of liposomal curcumin was investigated. METHODS FA-F87 was synthesized and its structural characterization was conducted through dehydration condensation. Then, cur-FA-F87/TPGS-Lps were prepared via thin film dispersion method combined with DHPM technique, and their physicochemical properties and cytotoxicity were determined. Finally, the intracellular distribution of cur-FA-F87/TPGS-Lps was investigated using MCF-7 cells. RESULTS Incorporation of TPGS in liposomes reduced their particle size, but increased the negative charge of the liposomes as well as their storage stability, and the encapsulation efficiency of curcumin was improved. While, modification of liposomes with FA increased their particle size, and had no impact on the encapsulation efficiency of curcumin in liposomes. Among all the liposomes (cur-F87-Lps, cur-FA-F87-Lps, cur-FA-F87/TPGS-Lps and cur-F87/TPGS-Lps), cur-FA-F87/TPGS-Lps showed highest cytotoxicity to MCF-7 cells. Moreover, cur-FA-F87/TPGS-Lps was found to deliver curcumin into the cytoplasm of MCF-7 cells. CONCLUSION Folate-Pluronic F87/TPGS co-modified liposomes provide a novel strategy for drug loading and targeted delivery.
Collapse
Affiliation(s)
- Wenjuan Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, People's Republic of China
| | - Xiangyuan Xiong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, People's Republic of China
| | - Yanchun Gong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, People's Republic of China
| | - Ziling Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
5
|
Yun D, Liu D, Liu J, Feng Y, Chen H, Chen S, Xie Q. In Vitro/In Vivo Preparation and Evaluation of cRGDyK Peptide-Modified Polydopamine-Bridged Paclitaxel-Loaded Nanoparticles. Pharmaceutics 2023; 15:2644. [PMID: 38004622 PMCID: PMC10674738 DOI: 10.3390/pharmaceutics15112644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/05/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer remains a disease with one of the highest mortality rates worldwide. The poor water solubility and tissue selectivity of commonly used chemotherapeutic agents contribute to their poor efficacy and serious adverse effects. This study proposes an alternative to the traditional physicochemically combined modifications used to develop targeted drug delivery systems, involving a simpler surface modification strategy. cRGDyK peptide (RGD)-modified PLGA nanoparticles (NPs) loaded with paclitaxel were constructed by coating the NP surfaces with polydopamine (PD). The average particle size of the produced NPs was 137.6 ± 2.9 nm, with an encapsulation rate of over 80%. In vitro release tests showed that the NPs had pH-responsive drug release properties. Cellular uptake experiments showed that the uptake of modified NPs by tumor cells was significantly better than that of unmodified NPs. A tumor cytotoxicity assay demonstrated that the modified NPs had a lower IC50 and greater cytotoxicity than those of unmodified NPs and commercially available paclitaxel formulations. An in vitro cytotoxicity study indicated good biosafety. A tumor model in female BALB/c rats was established using murine-derived breast cancer 4T1 cells. RGD-modified NPs had the highest tumor-weight suppression rate, which was higher than that of the commercially available formulation. PTX-PD-RGD-NPs can overcome the limitations of antitumor drugs, reduce drug toxicity, and increase efficacy, showing promising potential in cancer therapy.
Collapse
Affiliation(s)
- Dan Yun
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dengyuan Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jinlin Liu
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanyi Feng
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongyu Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Simiao Chen
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qingchun Xie
- Center for New Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangdong Provincial Engineering Center of Topical Precision Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
6
|
Lu W, Liu W, Hu A, Shen J, Yi H, Cheng Z. Combinatorial Polydopamine-Liposome Nanoformulation as an Effective Anti-Breast Cancer Therapy. Int J Nanomedicine 2023; 18:861-879. [PMID: 36844433 PMCID: PMC9944797 DOI: 10.2147/ijn.s382109] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/27/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Drug delivery systems (DDSs) based on liposomes are potential tools to minimize the side effects and substantially enhance the therapeutic efficacy of chemotherapy. However, it is challenging to achieve biosafe, accurate, and efficient cancer therapy of liposomes with single function or single mechanism. To solve this problem, we designed a multifunctional and multimechanism nanoplatform based on polydopamine (PDA)-coated liposomes for accurate and efficient combinatorial cancer therapy of chemotherapy and laser-induced PDT/PTT. Methods ICG and DOX were co-incorporated in polyethylene glycol modified liposomes, which were further coated with PDA by a facile two-step method to construct PDA-liposome nanoparticles (PDA@Lipo/DOX/ICG). The safety of nanocarriers was investigated on normal HEK-293 cells, and the cellular uptake, intracellular ROS production capacity, and combinatorial treatment effect of the nanoparticles were assessed on human breast cancer cells MDA-MB-231. In vivo biodistribution, thermal imaging, biosafety assessment, and combination therapy effects were estimated based on MDA-MB-231 subcutaneous tumor model. Results Compared with DOX·HCl and Lipo/DOX/ICG, PDA@Lipo/DOX/ICG showed higher toxicity on MDA-MB-231 cells. After endocytosis by target cells, PDA@Lipo/DOX/ICG produced a large amount of ROS for PDT by 808 nm laser irradiation, and the cell inhibition rate of combination therapy reached up to 80.4%. After the tail vein injection (DOX equivalent of 2.5 mg/kg) in mice bearing MDA-MB-231 tumors, PDA@Lipo/DOX/ICG significantly accumulated at the tumor site at 24 h post injection. After 808 nm laser irradiation (1.0 W/cm2, 2 min) at this timepoint, PDA@Lipo/DOX/ICG efficiently suppressed the proliferation of MDA-MB-231 cell and even thoroughly ablated tumors. Negligible cardiotoxicity and no treatment-induced side effects were observed. Conclusion PDA@Lipo/DOX/ICG is a multifunctional nanoplatform based on PDA-coated liposomes for accurate and efficient combinatorial cancer therapy of chemotherapy and laser-induced PDT/PTT.
Collapse
Affiliation(s)
- Wangxing Lu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| | - Wenjie Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| | - Anna Hu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| | - Jian Shen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| | - Hanxi Yi
- School of Basic Medical Science, Central South University, Changsha, 410000, People’s Republic of China,Correspondence: Hanxi Yi; Wenjie Liu, Email ;
| | - Zeneng Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410000, People’s Republic of China
| |
Collapse
|
7
|
Mao W, Wang K, Zhang W, Chen S, Xie J, Zheng Z, Li X, Zhang N, Zhang Y, Zhang H, Peng B, Yao X, Che J, Zheng J, Chen M, Li W. Transfection with Plasmid-Encoding lncRNA-SLERCC nanoparticle-mediated delivery suppressed tumor progression in renal cell carcinoma. J Exp Clin Cancer Res 2022; 41:252. [PMID: 35986402 PMCID: PMC9389749 DOI: 10.1186/s13046-022-02467-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background The accumulating evidence confirms that long non-coding RNAs (lncRNAs) play a critical regulatory role in the progression of renal cell carcinoma (RCC). But, the application of lncRNAs in gene therapy remains scarce. Here, we investigated the efficacy of a delivery system by introducing the plasmid-encoding tumor suppressor lncRNA-SLERCC (SLERCC) in RCC cells. Methods We performed lncRNAs expression profiling in paired cancer and normal tissues through microarray and validated in our clinical data and TCGA dataset. The Plasmid-SLERCC@PDA@MUC12 nanoparticles (PSPM-NPs) were tested in vivo and in vitro, including cellular uptake, entry, CCK-8 assay, tumor growth inhibition, histological assessment, and safety evaluations. Furthermore, experiments with nude mice xenografts model were performed to evaluate the therapeutic effect of PSPM-NPs nanotherapeutic system specific to the SLERCC. Results We found that the expression of SLERCC was downregulated in RCC tissues, and exogenous upregulation of SLERCC could suppress metastasis of RCC cells. Furthermore, high expression DNMT3A was recruited at the SLERCC promoter, which induced aberrant hypermethylation, eventually leading to downregulation of SLERCC expression in RCC. Mechanistically, SLERCC could directly bind to UPF1 and exert tumor-suppressive effects through the Wnt/β-catenin signaling pathway, thereby inhibiting progression and metastasis in RCC. Subsequently, the PSPM-NPs nanotherapeutic system can effectively inhibit the growth of RCC metastases in vivo. Conclusions Our findings suggested that SLERCC is a promising therapeutic target and that plasmid-encapsulated nanomaterials targeting transmembrane metastasis markers may open a new avenue for the treatment in RCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02467-2.
Collapse
|
8
|
Ma Y, Qian C, Ma L, Guo P, Sun S, Zhang L, Zhang F, Yang D. High-stabilized polydopamine modified low eutectic fatty acids based on near-infrared response for breast cancer therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 220:112213. [PMID: 34023596 DOI: 10.1016/j.jphotobiol.2021.112213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/22/2021] [Accepted: 05/12/2021] [Indexed: 12/23/2022]
Abstract
Low eutectic of lauric acid and stearic acid is one of drug loading candidates for its phase transformation at a certain temperature. Herein we demonstrated a combined photothermal-chemotherapy for breast cancer with near-infrared (NIR) triggered phase transition materials (PCM), which was conjugated with polydopamine (PDA) as the photosensitive agent. The PCM nanoparticles had diameters of ~75 nm based on scanning electron microscope (SEM) and dynamic laser scattering (DLS) measurement. Systematic in vitro and in vivo studies have been performed to investigate the stability, biosafety, photothermal performance, and drug delivery and release of PCM conjugates. Temperature measurement confirmed the prepared PDA modified material still showed strong photothermal effect after five cycles, which was higher than that of IR780 conjugated ones. In vivo photothermal imaging showed that the temperature of the tumor site reached 50.8 °C after 3 h of intravenous injection of PCM conjugates. More effective therapy of near-infrared (NIR)-assisted PDA-M@PCM in 4T1 bearing mice was witnessed when compared with that of non-NIR-assisted ones. Enhanced therapy in 4T1 tumor was demonstrated in DOX-loaded PDA-M@PCM by fluorescence imaging. This NIR-triggered PCM based nanoplatform can serve as useful tool for light-assisted combined tumor therapy.
Collapse
Affiliation(s)
- Yunsu Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Chuntong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lili Ma
- The Third People's Hospital of Linyi, Linyi, Shandong 276023, China
| | - Pengyue Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Shian Sun
- Xuzhou Air Force College, Xuzhou, Jiangsu 221000, China
| | - Li Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fan Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
9
|
Zhong Y, Dong Y, Chen T, Yang L, Yao M, Zhi Y, Yang H, Zhang J, Bi W. 808 nm NIR Laser-Excited Upconversion Nanoplatform for Combinatory Photodynamic and Chemotherapy with Deep Penetration and Acid Bursting Release Performance. ACS APPLIED BIO MATERIALS 2021; 4:2639-2653. [DOI: 10.1021/acsabm.0c01607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yingtao Zhong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Yun Dong
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Tie Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Lingzhi Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Min Yao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Yunshi Zhi
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Haoyi Yang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Jian Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Wenchuan Bi
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
10
|
Wang B, Yuan T, Zha L, Liu Y, Chen W, Zhang C, Bao Y, Dong Q. Oral Delivery of Gambogenic Acid by Functional Polydopamine Nanoparticles for Targeted Tumor Therapy. Mol Pharm 2021; 18:1470-1479. [PMID: 33586444 DOI: 10.1021/acs.molpharmaceut.1c00030] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To enhance the water solubility, oral bioavailability, and tumor targeting of gambogenic acid (GNA), polydopamine nanoparticles (PDA NPs) were prepared to encapsulate and stabilize GNA surface modified by folic acid (FA) and then coated with sodium alginate (GNA@PDA-FA SA NPs) to achieve an antitumor effect by oral administration. GNA@PDA-FA SA NPs exhibited in vitro pH-sensitive release behavior. In vitro cell studies manifested that GNA@PDA-FA NPs had higher cytotoxicity to 4T1 cells compared with raw GNA (IC50 = 2.58 μM vs 7.57 μM). After being modified with FA, GNA@PDA-FA NPs were taken up easily by 4T1 cells. In vivo studies demonstrated that the area under the curve (AUC0→∞) of the plasma drug concentration-time of GNA@PDA-FA SA NPs was 2.97-fold higher than that of raw GNA, along with improving drug distribution in the liver, lung, and kidney tissues. In vivo anti-tumor experiments, GNA@PDA-FA SA NPs significantly inhibited the growth of breast tumors in the 4T1 xenograft breast cancer model via oral administration without obvious toxicity on major organs. Our studies indicated that the GNA@PDA-FA SA NPs modified with FA and coated with SA were a promising drug delivery system for targeting tumor therapy via oral administration.
Collapse
Affiliation(s)
- Beilei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China
| | - Tengteng Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China
| | - Liqiong Zha
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yuanxu Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China
| | - Caiyun Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China
| | - Youmei Bao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, P. R. China
| | - Qiannian Dong
- School of Pharmacy, Anhui University of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui 230012, China
| |
Collapse
|
11
|
Almeida B, Nag OK, Rogers KE, Delehanty JB. Recent Progress in Bioconjugation Strategies for Liposome-Mediated Drug Delivery. Molecules 2020; 25:E5672. [PMID: 33271886 PMCID: PMC7730700 DOI: 10.3390/molecules25235672] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
In nanoparticle (NP)-mediated drug delivery, liposomes are the most widely used drug carrier, and the only NP system currently approved by the FDA for clinical use, owing to their advantageous physicochemical properties and excellent biocompatibility. Recent advances in liposome technology have been focused on bioconjugation strategies to improve drug loading, targeting, and overall efficacy. In this review, we highlight recent literature reports (covering the last five years) focused on bioconjugation strategies for the enhancement of liposome-mediated drug delivery. These advances encompass the improvement of drug loading/incorporation and the specific targeting of liposomes to the site of interest/drug action. We conclude with a section highlighting the role of bioconjugation strategies in liposome systems currently being evaluated for clinical use and a forward-looking discussion of the field of liposomal drug delivery.
Collapse
Affiliation(s)
- Bethany Almeida
- American Society for Engineering Education, Washington, DC 20036, USA;
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| | - Okhil K. Nag
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| | - Katherine E. Rogers
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
- Fischell Department of Bioengineering, 2330 Kim Engineering Building, University of Maryland, College Park, MD 20742, USA
| | - James B. Delehanty
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA; (O.K.N.); (K.E.R.)
| |
Collapse
|
12
|
Nieto C, Vega MA, Enrique J, Marcelo G, Martín Del Valle EM. Size Matters in the Cytotoxicity of Polydopamine Nanoparticles in Different Types of Tumors. Cancers (Basel) 2019; 11:E1679. [PMID: 31671761 PMCID: PMC6896006 DOI: 10.3390/cancers11111679] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Polydopamine has acquired great relevance in the field of nanomedicine due to its physicochemical properties. Previously, it has been reported that nanoparticles synthetized from this polymer are able to decrease the viability of breast and colon tumor cells. In addition, it is well known that the size of therapeutic particles plays an essential role in their effect. As a consequence, the influence of this parameter on the cytotoxicity of polydopamine nanoparticles was studied in this work. For this purpose, polydopamine nanoparticles with three different diameters (115, 200 and 420 nm) were synthetized and characterized. Their effect on the viability of distinct sorts of human carcinomas (breast, colon, liver and lung) and stromal cells was investigated, as well as the possible mechanisms that could be responsible for such cytotoxicity. Moreover, polydopamine nanoparticles were also loaded with doxorubicin and the therapeutic action of the resulting nanosystem was analyzed. As a result, it was demonstrated that a smaller nanoparticle size is related to a more enhanced antiproliferative activity, which may be a consequence of polydopamine's affinity for iron ions. Smaller nanoparticles would be able to adsorb more lysosomal Fe3+ and, when they are loaded with doxorubicin, a synergistic effect can be achieved.
Collapse
Affiliation(s)
- Celia Nieto
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain.
| | - Milena A Vega
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain.
| | - Jesús Enrique
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain.
| | - Gema Marcelo
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Farmacia, Universidad de Alcalá, 28801 Alcalá de Henares (Madrid), Spain.
| | - Eva M Martín Del Valle
- Departamento de Ingeniería Química y Textil, Facultad de Ciencias Químicas, Universidad de Salamanca, 37008 Salamanca, Spain.
| |
Collapse
|
13
|
Xiang Y, Chen L, Zhou R, Huang Y. Enhanced intracellular and intranuclear drug delivery mediated by biomimetic peptide SVS-1 for anticancer therapy. Int J Pharm 2019; 570:118668. [PMID: 31494237 DOI: 10.1016/j.ijpharm.2019.118668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/20/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
Abstract
Tumor cell nucleus is the ultimate target of many first-line chemotherapeutics and therapeutic genes. However, nuclear drug delivery is always hampered by multiple intracellular obstacles especially low efficiency of cellular uptake and insufficient nuclear trafficking. It is urgent to establish novel nuclear drug delivery systems to simultaneously overcome barriers including cell membranes and nuclear envelope. Herein, an N-(2-hydroxypropyl) methacrylamide (HPMA) polymer-based drug delivery system was designed to achieve enhanced intracellular and intranuclear drug delivery. A biomimetic peptide (SVS-1), derived from antimicrobial peptides, which was reported to efficiently penetrate cell membranes and translocate rapidly into nucleus without decreasing cell viability, was conjugated to the HPMA copolymer backbone. The in vitro studies showed that SVS-1 could enhance the uptake and nuclei accumulation of HPMA copolymer by 4.1 and 7.0-fold on human cervical cancer cells (HeLa) separately compared with corresponding non-SVS-1 modified HPMA copolymers (P-DOX). This also transferred to greater DNA damage, more apoptosis and superior cytotoxicity (2.4-fold) of doxorubicin which was chosen as the model drug and attached to SVS-1 modified HPMA copolymer (SVS-1-P-DOX). Furthermore, the in vivo investigation revealed that compared with free doxorubicin, SVS-1-P-DOX not only showed prolonged blood circulation and preferential tumor accumulation, but also suppressed tumor growth more efficiently with tumor growth inhibition of 78.7% in HeLa tumor-bearing BALB/c nude mice without causing noticeable physiological change in major organs. These results demonstrated that the SVS-1 modification was a promising strategy for contemporaneously overcome cell membranes and nuclear envelope, which might provide new opportunities for constructing nucleus-targeted anticancer therapy.
Collapse
Affiliation(s)
- Yucheng Xiang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, PR China
| | - Liqiang Chen
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, PR China
| | - Rui Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, PR China
| | - Yuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, South Renmin Road, Chengdu 610041, PR China.
| |
Collapse
|
14
|
Xiao Y, Chen L, Chen X, Xiao B. Current strategies to enhance the targeting of polydopamine-based platforms for cancer therapeutics. J Drug Target 2019; 28:142-153. [PMID: 31305176 DOI: 10.1080/1061186x.2019.1644650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yin Xiao
- Haikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Lin Chen
- Haikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Xiaoliang Chen
- Haikou People’s Hospital, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Bin Xiao
- Laboratory of Clinical Pharmacy, Ordos School of Clinical Medicine, Inner Mongolia Medical University, Ordos, Inner Mongolia Autonomous region, China
| |
Collapse
|