1
|
Aekwattanaphol N, Das SC, Khadka P, Nakpheng T, Ali Khumaini Mudhar Bintang M, Srichana T. Development of a proliposomal pretomanid dry powder inhaler as a novel alternative approach for combating pulmonary tuberculosis. Int J Pharm 2024; 664:124608. [PMID: 39163929 DOI: 10.1016/j.ijpharm.2024.124608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) continue as public health concerns. Inhaled drug therapy for TB has substantial benefits in combating the causal agent of TB (Mycobacterium tuberculosis). Pretomanid is a promising candidate in an optional combined regimen for XDR-TB. Pretomanid has demonstrated high potency against M. tuberculosis in both the active and latent phases. Conventional spray drying was used to formulate pretomanid as dry powder inhalers (DPIs) for deep lung delivery using a proliposomal system with a trehalose coarse excipient to enhance the drug solubility. Co-spray drying with L-leucine protected hygroscopic trehalose in formulations and improved powder aerosolization. Higher amounts of L-leucine (40-50 % w/w) resulted in the formation of mesoporous particles with high percentages of drug content and entrapment efficiency. The aerosolized powders demonstrated both geometric and median aerodynamic diameters < 5 µm with > 90 % emitted dose and > 50 % fine particle fraction. Upon reconstitution in simulated physiological fluid, the proliposomes completely converted to liposomes, exhibiting suitable particle sizes (130-300 nm) with stable colloids and improving drug solubility, leading to higher drug dissolution compared to the drug alone. Inhalable pretomanid showed higher antimycobacterial activity than pretomanid alone. The formulations were safe for all broncho-epithelial cell lines and alveolar macrophages, thus indicating their potential suitability for DPIs targeting pulmonary TB.
Collapse
Affiliation(s)
- Nattanit Aekwattanaphol
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Shyamal C Das
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Prakash Khadka
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin 9054, New Zealand
| | - Titpawan Nakpheng
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Muhammad Ali Khumaini Mudhar Bintang
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| |
Collapse
|
2
|
Magramane S, Vlahović K, Gordon P, Kállai-Szabó N, Zelkó R, Antal I, Farkas D. Inhalation Dosage Forms: A Focus on Dry Powder Inhalers and Their Advancements. Pharmaceuticals (Basel) 2023; 16:1658. [PMID: 38139785 PMCID: PMC10747137 DOI: 10.3390/ph16121658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
In this review, an extensive analysis of dry powder inhalers (DPIs) is offered, focusing on their characteristics, formulation, stability, and manufacturing. The advantages of pulmonary delivery were investigated, as well as the significance of the particle size in drug deposition. The preparation of DPI formulations was also comprehensively explored, including physico-chemical characterization of powders, powder processing techniques, and formulation considerations. In addition to manufacturing procedures, testing methods were also discussed, providing insights into the development and evaluation of DPI formulations. This review also explores the design basics and critical attributes specific to DPIs, highlighting the significance of their optimization to achieve an effective inhalation therapy. Additionally, the morphology and stability of 3 DPI capsules (Spiriva, Braltus, and Onbrez) were investigated, offering valuable insights into the properties of these formulations. Altogether, these findings contribute to a deeper understanding of DPIs and their development, performance, and optimization of inhalation dosage forms.
Collapse
Affiliation(s)
- Sabrina Magramane
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Kristina Vlahović
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Péter Gordon
- Department of Electronics Technology, Budapest University of Technology and Economics, Egry J. Str. 18, H-1111 Budapest, Hungary;
| | - Nikolett Kállai-Szabó
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Romána Zelkó
- Department of Pharmacy Administration, Semmelweis University, Hőgyes Str. 7–9, H-1092 Budapest, Hungary;
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| | - Dóra Farkas
- Department of Pharmaceutics, Semmelweis University, Hőgyes Str. 7, H-1092 Budapest, Hungary; (S.M.); (K.V.); (I.A.)
| |
Collapse
|
3
|
Eedara BB, Fan C, Sinha S, Khadka P, Das SC. Inhalable Combination Powder Formulations for Treating Latent and Multidrug-Resistant Tuberculosis: Formulation and In Vitro Characterization. Pharmaceutics 2023; 15:2354. [PMID: 37765321 PMCID: PMC10536221 DOI: 10.3390/pharmaceutics15092354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Tuberculosis (TB) is an infectious disease resulting in millions of deaths annually worldwide. TB treatment is challenging due to a huge number of global latent infections and due to multidrug-resistant forms of TB. Inhaled administration of anti-TB drugs using dry powder inhalers has various advantages over oral administration due to its direct drug delivery and minimization of systemic side effects. Pretomanid (PA-824, PA) is a relatively new drug with potent activity against both active and latent forms of Mycobacterium tuberculosis (Mtb). It is also known for its synergistic effects in combination with pyrazinamide (PYR) and moxifloxacin (MOX). Fixed-dose combination powder formulations of either PYR and PA or PYR and MOX were prepared for inhaled delivery to the deep lung regions where the Mtb habitats were located. Powder formulations were prepared by spray drying using L-leucine as the aerosolization enhancer and were characterized by their particle size, morphology and solid-state properties. In vitro aerosolization behaviour was studied using a Next Generation Impactor, and stability was assessed after storage at room temperature and 30% relative humidity for three months. Spray drying with L-leucine resulted in spherical dimpled particles, 1.9 and 2.4 µm in size for PYR-PA and PYR-MOX combinations, respectively. The powder formulations had an emitted dose of >83% and a fine particle fraction of >65%. PA and MOX showed better stability in the combination powders compared to PYR. Combination powder formulations with high aerosolization efficiency for direct delivery to the lungs were developed in this study for use in the treatment of latent and multidrug-resistant TB infections.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
- Transpire Bio Inc., 2945 W Corporate Lakes Blvd Suite A, Weston, FL 33331, USA
| | - Claire Fan
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Shubhra Sinha
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
- Department of Physiology, Heart Otago, School of Biomedical Sciences, University of Otago, 270 Great King Street, P.O. Box 913, Dunedin 9054, New Zealand
| | - Prakash Khadka
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| | - Shyamal C. Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
In Vitro Dissolution and Permeability Testing of Inhalation Products: Challenges and Advances. Pharmaceutics 2023; 15:pharmaceutics15030983. [PMID: 36986844 PMCID: PMC10059005 DOI: 10.3390/pharmaceutics15030983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
In vitro dissolution and permeability testing aid the simulation of the in vivo behavior of inhalation drug products. Although the regulatory bodies have specific guidelines for the dissolution of orally administered dosage forms (e.g., tablets and capsules), this is not the case for orally inhaled formulations, as there is no commonly accepted test for assessing their dissolution pattern. Up until a few years ago, there was no consensus that assessing the dissolution of orally inhaled drugs is a key factor in the assessment of orally inhaled products. With the advancement of research in the field of dissolution methods for orally inhaled products and a focus on systemic delivery of new, poorly water-soluble drugs at higher therapeutic doses, an evaluation of dissolution kinetics is proving crucial. Dissolution and permeability testing can determine the differences between the developed formulations and the innovator’s formulations and serve as a useful tool in correlating in vitro and in vivo studies. The current review highlights recent advances in the dissolution and permeability testing of inhalation products and their limitations, including recent cell-based technology. Although a few new dissolution and permeability testing methods have been established that have varying degrees of complexity, none have emerged as the standard method of choice. The review discusses the challenges of establishing methods that can closely simulate the in vivo absorption of drugs. It provides practical insights into method development for various dissolution testing scenarios and challenges with dose collection and particle deposition from inhalation devices for dissolution tests. Furthermore, dissolution kinetic models and statistical tests to compare the dissolution profiles of test and reference products are discussed.
Collapse
|
5
|
Dissolution and Absorption of Inhaled Drug Particles in the Lungs. Pharmaceutics 2022; 14:pharmaceutics14122667. [PMID: 36559160 PMCID: PMC9781681 DOI: 10.3390/pharmaceutics14122667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Dry powder inhalation therapy has been effective in treating localized lung diseases such asthma, chronic obstructive pulmonary diseases (COPD), cystic fibrosis and lung infections. In vitro characterization of dry powder formulations includes the determination of physicochemical nature and aerosol performance of powder particles. The relationship between particle properties (size, shape, surface morphology, porosity, solid state nature, and surface hydrophobicity) and aerosol performance of an inhalable dry powder formulation has been well established. However, unlike oral formulations, there is no standard dissolution method for evaluating the dissolution behavior of the inhalable dry powder particles in the lungs. This review focuses on various dissolution systems and absorption models, which have been developed to evaluate dry powder formulations. It covers a summary of airway epithelium, hurdles to developing an in vitro dissolution method for the inhaled dry powder particles, fine particle dose collection methods, various in vitro dissolution testing methods developed for dry powder particles, and models commonly used to study absorption of inhaled drug.
Collapse
|
6
|
Khadka P, Tucker IG, Das SC. In vitro Dissolution Testing of Rifampicin Powder Formulations For Prediction of Plasma Concentration–Time Profiles After Inhaled Delivery. Pharm Res 2022; 40:1153-1163. [DOI: 10.1007/s11095-022-03439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
|
7
|
Manipulation of Spray-Drying Conditions to Develop an Inhalable Ivermectin Dry Powder. Pharmaceutics 2022; 14:pharmaceutics14071432. [PMID: 35890327 PMCID: PMC9325229 DOI: 10.3390/pharmaceutics14071432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/24/2022] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, predominantly affects the respiratory tract. As a consequence, it seems intuitive to develop antiviral agents capable of targeting the virus right on its main anatomical site of replication. Ivermectin, a U.S. FDA-approved anti-parasitic drug, was originally shown to inhibit SARS-CoV-2 replication in vitro, albeit at relatively high concentrations, which is difficult to achieve in the lung. In this study, we tested the spray-drying conditions to develop an inhalable dry powder formulation that could ensure sufficient antiviral drug concentrations, which are difficult to achieve in the lungs based on the oral dosage used in clinical trials. Here, by using ivermectin as a proof-of-concept, we evaluated spray-drying conditions that could lead to the development of antivirals in an inhalable dry powder formulation, which could then be used to ensure sufficient drug concentrations in the lung. Thus, we used ivermectin in proof-of-principle experiments to evaluate our system, including physical characterization and in vitro aerosolization of prepared dry powder. The ivermectin dry powder was prepared with a mini spray-dryer (Buchi B-290), using a 23 factorial design and manipulating spray-drying conditions such as feed concentration (0.2% w/v and 0.8% w/v), inlet temperature (80 °C and 100 °C) and presence/absence of L-leucine (0% and 10%). The prepared dry powder was in the size range of 1−5 μm and amorphous in nature with wrinkle morphology. We observed a higher fine particle fraction (82.5 ± 1.4%) in high feed concentration (0.8% w/v), high inlet temperature (100 °C) and the presence of L-leucine (10% w/w). The stability study conducted for 28 days confirmed that the spray-dried powder was stable at 25 ± 2 °C/<15% RH and 25 ± 2 °C/ 53% RH. Interestingly, the ivermectin dry powder formulation inhibited SARS-CoV-2 replication in vitro with a potency similar to ivermectin solution (EC50 values of 15.8 µM and 14.1 µM, respectively), with a comparable cell toxicity profile in Calu-3 cells. In summary, we were able to manipulate the spray-drying conditions to develop an effective ivermectin inhalable dry powder. Ongoing studies based on this system will allow the development of novel formulations based on single or combinations of drugs that could be used to inhibit SARS-CoV-2 replication in the respiratory tract.
Collapse
|
8
|
Naz FF, Shah KU, Niazi ZR, Zaman M, Lim V, Alfatama M. Polymeric Microparticles: Synthesis, Characterization and In Vitro Evaluation for Pulmonary Delivery of Rifampicin. Polymers (Basel) 2022; 14:2491. [PMID: 35746067 PMCID: PMC9230634 DOI: 10.3390/polym14122491] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/10/2022] Open
Abstract
Rifampicin, a potent broad-spectrum antibiotic, remains the backbone of anti-tubercular therapy. However, it can cause severe hepatotoxicity when given orally. To overcome the limitations of the current oral therapy, this study designed inhalable spray-dried, rifampicin-loaded microparticles using aloe vera powder as an immune modulator, with varying concentrations of alginate and L-leucine. The microparticles were assessed for their physicochemical properties, in vitro drug release and aerodynamic behavior. The spray-dried powders were 2 to 4 µm in size with a percentage yield of 45 to 65%. The particles were nearly spherical with the tendency of agglomeration as depicted from Carr’s index (37 to 65) and Hausner’s ratios (>1.50). The drug content ranged from 0.24 to 0.39 mg/mg, with an association efficiency of 39.28 to 96.15%. The dissolution data depicts that the in vitro release of rifampicin from microparticles was significantly retarded with a higher L-leucine concentration in comparison to those formulations containing a higher sodium alginate concentration due to its hydrophobic nature. The aerodynamic data depicts that 60 to 70% of the aerosol mass was emitted from an inhaler with MMAD values of 1.44 to 1.60 µm and FPF of 43.22 to 55.70%. The higher FPF values with retarded in vitro release could allow sufficient time for the phagocytosis of synthesized microparticles by alveolar macrophages, thereby leading to the eradication of M. tuberculosis from these cells.
Collapse
Affiliation(s)
- Faiqa Falak Naz
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.F.N.); (K.U.S.); (Z.R.N.); (M.Z.)
| | - Kifayat Ullah Shah
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.F.N.); (K.U.S.); (Z.R.N.); (M.Z.)
| | - Zahid Rasul Niazi
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.F.N.); (K.U.S.); (Z.R.N.); (M.Z.)
| | - Mansoor Zaman
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (F.F.N.); (K.U.S.); (Z.R.N.); (M.Z.)
| | - Vuanghao Lim
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia
| | - Mulham Alfatama
- Faculty of Pharmacy, Universiti Sultan Zainal Abidin, Besut Campus, Besut 22200, Terengganu, Malaysia
| |
Collapse
|
9
|
Nikjoo D, van der Zwaan I, Brülls M, Tehler U, Frenning G. Hyaluronic Acid Hydrogels for Controlled Pulmonary Drug Delivery-A Particle Engineering Approach. Pharmaceutics 2021; 13:pharmaceutics13111878. [PMID: 34834293 PMCID: PMC8618576 DOI: 10.3390/pharmaceutics13111878] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022] Open
Abstract
Hydrogels warrant attention as a potential material for use in sustained pulmonary drug delivery due to their swelling and mucoadhesive features. Herein, hyaluronic acid (HA) is considered a promising material due to its therapeutic potential, the effect on lung inflammation, and possible utility as an excipient or drug carrier. In this study, the feasibility of using HA hydrogels (without a model drug) to engineer inhalation powders for controlled pulmonary drug delivery was assessed. A combination of chemical crosslinking and spray-drying was proposed as a novel methodology for the preparation of inhalation powders. Different crosslinkers (urea; UR and glutaraldehyde; GA) were exploited in the hydrogel formulation and the obtained powders were subjected to extensive characterization. Compositional analysis of the powders indicated a crosslinked structure of the hydrogels with sufficient thermal stability to withstand spray drying. The obtained microparticles presented a spherical shape with mean diameter particle sizes from 2.3 ± 1.1 to 3.2 ± 2.9 μm. Microparticles formed from HA crosslinked with GA exhibited a reasonable aerosolization performance (fine particle fraction estimated as 28 ± 2%), whereas lower values were obtained for the UR-based formulation. Likewise, swelling and stability in water were larger for GA than for UR, for which the results were very similar to those obtained for native (not crosslinked) HA. In conclusion, microparticles could successfully be produced from crosslinked HA, and the ones crosslinked by GA exhibited superior performance in terms of aerosolization and swelling.
Collapse
Affiliation(s)
- Dariush Nikjoo
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 75124 Uppsala, Sweden;
- Division of Material Science, Department of Engineering Science and Mathematic, Luleå University of Technology, 97187 Luleå, Sweden
- Correspondence: (D.N.); (G.F.)
| | - Irès van der Zwaan
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 75124 Uppsala, Sweden;
| | - Mikael Brülls
- Early Product Development & Manufacturing, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden;
| | - Ulrika Tehler
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, Astra Zeneca, 43183 Gothenburg, Sweden;
| | - Göran Frenning
- Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 75124 Uppsala, Sweden;
- Correspondence: (D.N.); (G.F.)
| |
Collapse
|
10
|
Al Ayoub Y, Buzgeia A, Almousawi G, Mazhar HRA, Alzouebi B, Gopalan RC, Assi KH. In-Vitro In-Vivo Correlation (IVIVC) of Inhaled Products Using Twin Stage Impinger. J Pharm Sci 2021; 111:395-402. [PMID: 34599997 DOI: 10.1016/j.xphs.2021.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022]
Abstract
In vitro dissolution testing as a form of quality control has become a necessity in the pharmaceutical industry. As such, the need to establish a method that investigates the in vitro dissolution profile of inhaled products should be taken into account. The prime focus in this study was to examine the in-vitro in-vivo correlation utilising a modified version of the Twin Stage Impinger and to promote an in vitro dissolution model by enhancing the Fine Particle Dose (FPD) collection method for dry powder inhalers. The Twin Impinger was modified by inserting a stainless steel membrane holder disk in the base of the lower chamber. The design, with optimum drug deposition, was adopted for the dissolution study of budesonide and salbutamol. Afterwards, the membrane holder system was placed in the bottom of the dissolution vessel. Phosphate buffer saline (PBS), simulated lung fluid (SLF, Gamble solution) and Phosphate buffer (PB) were used in the study. The paddle dissolution apparatus, containing 300 mL of the medium, was operated at 75 rpm paddle speed. Samples were collected at defined time intervals and analysed using a validated HPLC method. The largest proportion of the budesonide dose was dissolved in PBS compared to PB and SLF. This was due to the presence of surfactant (0.2% w/v polysorbate), which enhances the wettability and the solubility of the poorly soluble drug (budesonide). The similarity factors for PBS and PB were 47.6 and 69.7, respectively, using SLF as a reference, whereas the similarity factor for salbutamol dissolution between PB and SLF was 81.3, suggesting PB is a suitable substitute. Comparison using both the predicted and actual in vivo pharmacokinetics (PK) values of the two drugs, as well as the pattern of their Concentration-Time (c-t) profiles, showed good similarity, which gave an indication of the validity of this in vitro dissolution method.
Collapse
Affiliation(s)
- Yuosef Al Ayoub
- Eurofins Professional Scientific Services UK Limited, Unit G1 Valiant Way, I54 Business Park, Wolverhampton, WV9 5GB, UK
| | - Asma Buzgeia
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - Ghadeer Almousawi
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | | | - B Alzouebi
- Warwick Medical School, University of Warwick, Coventry, UK
| | - Rajendran C Gopalan
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| | - K H Assi
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK.
| |
Collapse
|
11
|
Chi Z, Zhao S, Cui X, Feng Y, Yang L. Portable and automated analyzer for rapid and high precision in vitro dissolution of drugs. J Pharm Anal 2021; 11:490-498. [PMID: 34513125 PMCID: PMC8424365 DOI: 10.1016/j.jpha.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/14/2020] [Accepted: 06/03/2020] [Indexed: 01/17/2023] Open
Abstract
We developed a novel portable and automated dissolution test analyzer for rapid and high precision in vitro dissolution testing of drugs. The analyzer consists of a flow-through-cell drug dissolution system, an automated sequential sampling system, a high-speed capillary electrophoresis (HSCE) system, and a data acquisition system. Combining the high-temporal resolution flow-gating sampling approach with HSCE, which has outstanding advantages of efficient separation and resolution, the analyzer can achieve rapid analysis and exhibits the ability in miniaturization for on-site assessment of different active pharmaceutical ingredients. To integrate the flow-through-cell dissolution system with HSCE, a specially designed flow-gating-injection (FGI) interface was employed. The performance of the analyzer was investigated by analyzing the dissolution of immediate-release drugs including single dose (amoxicillin dispersible tablets) and fixed dose combination (amoxicillin and clavulanate potassium) drug tablets with the high-temporal resolutions of 12 s and 20 s, respectively. The dissolution profiles of different active pharmaceutical ingredients could be simultaneously and automatically monitored with high repeatability and accuracy. The analyzer was successfully utilized for the pharmaceutical quality control and bio-relevant dissolution testing, as well as in vivo-in vitro correlation analysis. Our portable analyzer is miniaturized, convenient and of low-cost, and will provide a valuable tool for dissolution testing in pharmaceutical research and development. Portable automated analyzer for rapid and high precision dissolution of drugs. Miniaturized, low-cost and battery-powered with high repeatability and accuracy. Successful applications in QC, bio-relevant dissolution and IVIVC analysis of drugs. Universal applicability for both immediate-release and fixed dose combination drugs.
Collapse
Affiliation(s)
- Zhongmei Chi
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Siqi Zhao
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiujun Cui
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yunxiang Feng
- Jingke-Oude Science and Education Instruments Co., Ltd, Changchun, 130024, China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
12
|
Bhattacharyya S, Sudheer P, Das K, Ray S. Experimental Design Supported Liposomal Aztreonam Delivery: In Vitro Studies. Adv Pharm Bull 2021; 11:651-662. [PMID: 34888212 PMCID: PMC8642795 DOI: 10.34172/apb.2021.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/25/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
Purpose: The present study focuses on a systemic approach to develop liposomal aztreonam as a promising dosage form for inhalation therapy in the treatment of pneumonia and explores the in-vitro antimicrobial and cell uptake efficacy. Methods: Liposomes were prepared by ethanol injection method using the lipids - soya phosphatidylcholine (SP) and cholesterol (CH). A central composite design (CCD) was employed to optimize the lipid composition to evaluate the effect on vesicle size, zeta potential and entrapment efficiency of the formulation. A numerical and graphical optimization was carried out to predict the optimized blend. The optimized formulation was characterized for vesicle size, surface charge, encapsulation, surface morphology, differential scanning calorimetry (DSC), powder X Ray Diffraction (PXRD), thermogravimetric analysis (TGA), in vitro diffusion, accelerated stability studies, antimicrobial studies on Pseudomonas aeruginosa NCIM 2200 and in vitro cell uptake studies. Results: The optimized formulation was found to have a particle size of 144 nm, a surface charge of -35 mV, with satisfactory drug entrapment. The surface morphology study proved the formation of nanosized vesicles. The drug release from liposomal matrix was biphasic in nature. The solid-state study revealed the reason for good encapsulation of drug. The moisture retention capacity was found to be minimum. The anti-microbial study revealed the potential antibacterial activity of the optimized formulation over the pure drug. The formulation was found to be safe on the epithelial cells and showed a marked increase in cellular uptake of aztreonam in a lipid carrier. Conclusion: It can be concluded that the optimized liposomal aztreonam could be considered as a promising approach for the delivery of aztreonam through inhalation.
Collapse
Affiliation(s)
| | - Preethi Sudheer
- Krupanidhi College of Pharmacy, Bengaluru, Karnataka 560035, India
| | - Kuntal Das
- Krupanidhi College of Pharmacy, Bengaluru, Karnataka 560035, India
| | - Subhabrata Ray
- Dr. BC Roy College of Pharmacy, Durgapur, West Bengal 713206, India
| |
Collapse
|
13
|
Radivojev S, Luschin-Ebengreuth G, Pinto JT, Laggner P, Cavecchi A, Cesari N, Cella M, Melli F, Paudel A, Fröhlich E. Impact of simulated lung fluid components on the solubility of inhaled drugs and predicted in vivo performance. Int J Pharm 2021; 606:120893. [PMID: 34274456 DOI: 10.1016/j.ijpharm.2021.120893] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/03/2021] [Accepted: 07/13/2021] [Indexed: 12/20/2022]
Abstract
Orally inhaled products (OIPs) are gaining increased attention, as pulmonary delivery is a preferred route for the treatment of various diseases. Yet, the field of inhalation biopharmaceutics is still in development phase. For a successful correlation between various in vitro data obtained during formulation characterization and in vivo performance, it is necessary to understand the impact of parameters such as solubility and dissolution of drugs. In this work, we used in vitro-in silico feedback-feedforward approach to gain a better insight into the biopharmaceutics behavior of inhaled Salbutamol Sulphate (SS) and Budesonide (BUD). The thorough characterization of the in vitro test media and the impact of different in vitro fluid components such as lipids and protein on the solubility of aforementioned drugs was studied. These results were subsequently used as an input into the developed in silico models to investigate potential PK parameter changes in vivo. Results revealed that media comprising lipids and albumin were the most biorelevant and impacted the solubility of BUD the most. On the contrary, no notable impact was seen in case of SS. The use of simple media such as phosphate buffer saline (PBS) might be sufficient to use in solubility studies of the highly soluble and permeable drugs. However, its use for the poorly soluble drugs is limited due to the greater potential for interactions within in vivo environment. The use of in silico tools showed that the model response varies, depending on the used media. Therefore, this work highlights the relevance of carefully selecting the media composition when investigating solubility and dissolution behavior, especially in the early phases of drug development and of poorly soluble drugs.
Collapse
Affiliation(s)
- Snezana Radivojev
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; Center for Medical Research, Medical University of Graz, Stiftingtalstraße 24, Graz 8010, Austria
| | | | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria
| | - Peter Laggner
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria
| | | | - Nicola Cesari
- Chiesi Farmaceutici S.p.A., Via Palermo, 26 A, Parma, 43122, Italy
| | - Massimo Cella
- Chiesi Farmaceutici S.p.A., Via Palermo, 26 A, Parma, 43122, Italy
| | - Fabrizio Melli
- Chiesi Farmaceutici S.p.A., Via Palermo, 26 A, Parma, 43122, Italy
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, Graz, 8010, Austria.
| | - Eleonore Fröhlich
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, Graz 8010, Austria; Center for Medical Research, Medical University of Graz, Stiftingtalstraße 24, Graz 8010, Austria.
| |
Collapse
|
14
|
Eedara BB, Alabsi W, Encinas-Basurto D, Polt R, Ledford JG, Mansour HM. Inhalation Delivery for the Treatment and Prevention of COVID-19 Infection. Pharmaceutics 2021; 13:1077. [PMID: 34371768 PMCID: PMC8308954 DOI: 10.3390/pharmaceutics13071077] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease-2019 (COVID-19) is caused by coronavirus-2 (SARS-CoV-2) and has produced a global pandemic. As of 22 June 2021, 178 million people have been affected worldwide, and 3.87 million people have died from COVID-19. According to the Centers for Disease Control and Prevention (CDC) of the United States, COVID-19 virus is primarily transmitted between people through respiratory droplets and contact routes. Since the location of initial infection and disease progression is primarily through the lungs, the inhalation delivery of drugs directly to the lungs may be the most appropriate route of administration for treating COVID-19. This review article aims to present possible inhalation therapeutics and vaccines for the treatment of COVID-19 symptoms. This review covers the comparison between SARS-CoV-2 and other coronaviruses such as SARS-CoV/MERS, inhalation therapeutics for the treatment of COVID-19 symptoms, and vaccines for preventing infection, as well as the current clinical status of inhaled therapeutics and vaccines.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
| | - Wafaa Alabsi
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA;
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA;
| | - Julie G. Ledford
- Department of Immunobiology, The University of Arizona, Tucson, AZ 85724, USA;
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85719, USA
| | - Heidi M. Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel Str., Tucson, AZ 85721, USA; (B.B.E.); (W.A.); (D.E.-B.)
- BIO5 Institute, The University of Arizona, Tucson, AZ 85719, USA
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ 85721, USA
| |
Collapse
|
15
|
Eedara BB, Alabsi W, Encinas-Basurto D, Polt R, Mansour HM. Spray-Dried Inhalable Powder Formulations of Therapeutic Proteins and Peptides. AAPS PharmSciTech 2021; 22:185. [PMID: 34143327 DOI: 10.1208/s12249-021-02043-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
Respiratory diseases are among the leading causes of morbidity and mortality worldwide. Innovations in biochemical engineering and understanding of the pathophysiology of respiratory diseases resulted in the development of many therapeutic proteins and peptide drugs with high specificity and potency. Currently, protein and peptide drugs are mostly administered by injections due to their large molecular size, poor oral absorption, and labile physicochemical properties. However, parenteral administration has several limitations such as frequent dosing due to the short half-life of protein and peptide in blood, pain on administration, sterility requirement, and poor patient compliance. Among various noninvasive routes of administrations, the pulmonary route has received a great deal of attention and is a better alternative to deliver protein and peptide drugs for treating respiratory diseases and systemic diseases. Among the various aerosol dosage forms, dry powder inhaler (DPI) systems appear to be promising for inhalation delivery of proteins and peptides due to their improved stability in solid state. This review focuses on the development of DPI formulations of protein and peptide drugs using advanced spray drying. An overview of the challenges in maintaining protein stability during the drying process and stabilizing excipients used in spray drying of proteins and peptide drugs is discussed. Finally, a summary of spray-dried DPI formulations of protein and peptide drugs, their characterization, various DPI devices used to deliver protein and peptide drugs, and current clinical status are discussed.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA
| | - Wafaa Alabsi
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA.,Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA.,The BIO5 Institute, The University of Arizona, Tucson, Arizona, USA
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA. .,The BIO5 Institute, The University of Arizona, Tucson, Arizona, USA. .,Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona, USA.
| |
Collapse
|
16
|
Bastola R, Young PM, Das SC. Simulation of respiratory tract lining fluid for in vitro dissolution study. Expert Opin Drug Deliv 2021; 18:1091-1100. [PMID: 33504235 DOI: 10.1080/17425247.2021.1882991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Introduction: Drug particles inhaled via the respiratory system must first dissolve in the respiratory tract lining fluid (RTLF) that lies on the surfaces of airways and alveoli, so that they are absorbed and have therapeutic action. Artificial simulated RTLFs are often used for in vitro dissolution studies to determine the solubility and dissolution of inhaled drug particles. Such studies can be used to predict bioavailability minimizing the requirement for in vivo studies. Numerous studies have been conducted to develop bio-relevant simulated RTLFs; however, to date, there is no singular simulated RTLF that closely resembles human RTLF.Areas covered: This review focuses on the composition of natural and simulated RTLFs and their use in in vitro dissolution studies.Expert opinion: There is variation in the composition and thickness of RTLF along the respiratory tract. Identification of the actual concentration of components of endogenous RTLF present in different areas of the respiratory tract helps in the development of region-specific simulated RTLFs. It is recommended that region-specific simulated RTLFs can be prepared by varying concentration of major RTLF components like mucus/gel simulants, lipids/surfactants, peptides/proteins, and inorganic/organic salts.
Collapse
Affiliation(s)
- Rakesh Bastola
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Paul M Young
- Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School, Glebe, Australia
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Almansour K, Alfagih IM, Ali R, Elsayed MM. Inhalable microparticles containing terbinafine for management of pulmonary fungal infections: Spray drying process engineering using lactose vs. mannitol as excipients. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Frenning G, van der Zwaan I, Franek F, Fransson R, Tehler U. Model for the Analysis of Membrane-Type Dissolution Tests for Inhaled Drugs. Mol Pharm 2020; 17:2426-2434. [PMID: 32463245 PMCID: PMC7467770 DOI: 10.1021/acs.molpharmaceut.0c00163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Impactor-type
dose deposition is a common prerequisite for dissolution
testing of inhaled medicines, and drug release typically takes place
through a membrane. The purpose of this work is to develop a mechanistic
model for such combined dissolution and release processes, focusing
on a drug that initially is present in solid form. Our starting points
are the Noyes–Whitney (or Nernst–Brunner) equation and
Fick’s law. A detailed mechanistic analysis of the drug release
process is provided, and approximate closed-form expressions for the
amount of the drug that remains in solid form and the amount of the
drug that has been released are derived. Comparisons with numerical
data demonstrated the accuracy of the approximate expressions. Comparisons
with experimental release data from literature demonstrated that the
model can be used to establish rate-controlling release mechanisms.
In conclusion, the model constitutes a valuable tool for the analysis
of in vitro dissolution data for inhaled drugs.
Collapse
Affiliation(s)
- Göran Frenning
- Department of Pharmacy and the Swedish Drug Delivery Center (SweDeliver), Uppsala University, P.O. Box 580, 751 23 Uppsala, Sweden
| | - Irès van der Zwaan
- Department of Pharmacy and the Swedish Drug Delivery Center (SweDeliver), Uppsala University, P.O. Box 580, 751 23 Uppsala, Sweden
| | - Frans Franek
- Inhaled Product Development, Pharmaceutical Technology & Development, AstraZeneca, 43183 Gothenburg, Sweden
| | - Rebecca Fransson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| | - Ulrika Tehler
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, 43183 Gothenburg, Sweden
| |
Collapse
|
19
|
Eedara BB, Tucker IG, Das SC. A STELLA simulation model for in vitro dissolution testing of respirable size particles. Sci Rep 2019; 9:18522. [PMID: 31811249 PMCID: PMC6898627 DOI: 10.1038/s41598-019-55164-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/25/2019] [Indexed: 11/09/2022] Open
Abstract
In vitro dissolution testing is a useful quality control tool to discriminate the formulations and to approximate the in vivo drug release profiles. A dissolution apparatus has been custom-made for dissolution testing of dry powder formulations in a small volume of stationary medium (25 μL spread over 4.91 cm2 area i.e. ~50 μm thick). To understand the system and predict the key parameters which influence the dissolution of respirable size particles, a simulation model was constructed using STELLA modeling software. Using this model, the permeation (dissolution followed by diffusion through the membrane) of two anti-tubercular drugs of differing solubilities, moxifloxacin (17.68 ± 0.85 mg mL-1) and ethionamide (0.46 ± 0.02 mg mL-1), from the respirable size particles and their diffusion from a solution were simulated. The simulated permeation profiles of moxifloxacin from solution and respirable size particles were similar, indicating fast dissolution of the particles. However, the simulated permeation profile of ethionamide from respirable size particles showed slower permeation compared to the solution indicating the slow dissolution of the respirable size particles of ethionamide. The sensitivity analysis suggested that increased mucus volume and membrane thickness decreased the permeation of drug. While this model was useful in predicting and distinguishing the dissolution behaviours of respirable size moxifloxacin and ethionamide, further improvement could be made using appropriate initial parameter values obtained by experiments.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin, 9054, New Zealand
| | - Ian G Tucker
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin, 9054, New Zealand.
| | - Shyamal C Das
- School of Pharmacy, University of Otago, 18 Frederick St, Dunedin, 9054, New Zealand.
| |
Collapse
|
20
|
Eedara BB, Tucker IG, Zujovic ZD, Rades T, Price JR, Das SC. Crystalline adduct of moxifloxacin with trans-cinnamic acid to reduce the aqueous solubility and dissolution rate for improved residence time in the lungs. Eur J Pharm Sci 2019; 136:104961. [PMID: 31220546 DOI: 10.1016/j.ejps.2019.104961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/31/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
A crystalline adduct of the anti-tubercular drug, moxifloxacin and trans-cinnamic acid (1:1 molar ratio (MCA1:1)) was prepared to prolong the residence time of the drug in the lungs by reducing its solubility and dissolution rate. Whether the adduct is a salt or cocrystal has not been unequivocally determined. Equilibrium solubility and intrinsic dissolution rate measurements for the adduct (MCA1:1) in phosphate buffered saline (PBS, pH 7.4) revealed a significant decrease in the solubility of moxifloxacin (from 17.68 ± 0.85 mg mL-1 to 6.10 ± 0.05 mg mL-1) and intrinsic dissolution rate (from 0.47 ± 0.04 mg cm-2 min-1 to 0.14 ± 0.03 mg cm-2 min-1) compared to the supplied moxifloxacin. The aerosolization behaviour of the adduct from an inhaler device, Aerolizer®, using a Next Generation Impactor showed a fine particle fraction of 30.4 ± 1.2%. The dissolution behaviour of the fine particle dose of respirable particles collected was assessed in a small volume of stationary mucus fluid using a custom-made dissolution apparatus. The respirable adduct particles showed a lower dissolution (microscopic observation) and permeation compared to the supplied moxifloxacin. The crystalline adduct MCA1:1 has a lower solubility and dissolution rate than moxifloxacin and could improve the local residence time and therapeutic action of moxifloxacin in the lungs.
Collapse
Affiliation(s)
| | - Ian G Tucker
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Zoran D Zujovic
- Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jason R Price
- ANSTO - Australian Synchrotron, 800 Blackburn Rd, Clayton, 3168 Victoria, Australia
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|