1
|
Park SJ, Kim GL, Han HK. Sustained-Release Solid Dispersions of Fenofibrate for Simultaneous Enhancement of the Extent and Duration of Drug Exposure. Pharmaceutics 2024; 16:1617. [PMID: 39771594 PMCID: PMC11676638 DOI: 10.3390/pharmaceutics16121617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES A sustained-release formulation of fenofibrate while enhancing drug dissolution with minimal food effect is critical for maximizing the therapeutic benefits of fenofibrate. Therefore, this study aimed to develop an effective solid dispersion formulation of fenofibrate for simultaneous enhancement in the extent and duration of drug exposure. METHODS Fenofibrate-loaded solid dispersions (FNSDs) were prepared using poloxamer 407 and Eudragit® RSPO at varied ratios via solvent evaporation. In vitro/in vivo characteristics of FNSDs were examined in comparison with untreated drugs. RESULTS Based on dissolution profiles of FNSDs in aqueous media, the weight ratio of fenofibrate: poloxamer 407: Eudragit® RSPO at 1:1:4 (FNSD2) was selected as the optimal composition for achieving sustained drug release while maximizing the drug dissolution. The enhanced and sustained drug release of FNSD2 was also confirmed in a buffer transition system mimicking the pH change in the gastrointestinal tract. FNSD2 achieved approximately 66% drug release over 12 h, while pure drug exhibited only 12%. Furthermore, FNSD2 maintained similar release rates under fed and fasted conditions, while the entire drug dissolution slightly increased in the fed state. Structural analysis by x-ray diffraction showed that fenofibrate remained crystalline in FNSD2. Pharmacokinetic studies in rats revealed that orally administered FNSD2 significantly improved the extent and duration of systemic drug exposure. Compared to pure drugs, the FNSD2 formulation increased the oral bioavailability of fenofibrate by 22 folds with the delayed Tmax of 4 h in rats. CONCLUSION FNSD2 formulation is effective in improving the extent and duration of drug exposure simultaneously.
Collapse
Affiliation(s)
| | | | - Hyo-Kyung Han
- College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Republic of Korea
| |
Collapse
|
2
|
Zafar S, Sayed E, Rana SJ, Rasekh M, Onaiwu E, Nazari K, Kucuk I, Fatouros DG, Arshad MS, Ahmad Z. Particulate atomisation design methods for the development and engineering of advanced drug delivery systems: A review. Int J Pharm 2024; 666:124771. [PMID: 39341385 DOI: 10.1016/j.ijpharm.2024.124771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/04/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The role and opportunities presented by particulate technologies (due to novel processing methods and advanced materials) have multiplied over the last few decades, leading to promising and ideal properties for drug delivery. For example, the dissolution and bioavailability of poorly soluble drug substances and achieving site- specific drug delivery with a desired release profile are crucial aspects of forming (to some extent) state-of-the-art platforms. Atomisation techniques are intended to achieve efficient control over particle size, improved processing time, improved drug loading efficiency, and the opportunity to encapsulate a broad range of viable yet sensitive therapeutic moieties. Particulate engineering through atomization is accomplished by employing various mechanisms such as air, no air, centrifugal, electrohydrodynamic, acoustic, and supercritical fluid driven processes. These driving forces overcome capillary stresses (e.g., liquid viscosity, surface tension) and transform formulation media (liquid) into fine droplets. More frequently, solvent removal, multiple methods are included to reduce the final size distribution. Nevertheless, a thorough understanding of fluid mechanics, thermodynamics, heat, and mass transfer is imperative to appreciate and predict outputs in real time. More so, in recent years, several advancements have been introduced to improve such processes through complex particle design coupled with quality by-design (QbD) yielding optimal particulate geometry in a predictable manner. Despite these valuable and numerous advancements, atomisation techniques face difficulty scaling up from laboratory scales to manufacturing industry scales. This review details the various atomisation techniques (from design to mechanism) along with examples of drug delivery systems developed. In addition, future perspectives and bottlenecks are provided while highlighting current and selected seminal developments in the field.
Collapse
Affiliation(s)
- Saman Zafar
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Elshaimaa Sayed
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Sadia Jafar Rana
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, United Kingdom
| | - Ekhoerose Onaiwu
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Kazem Nazari
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom
| | - Israfil Kucuk
- Institute of Nanotechnology, Gebze Technical University, Gebze, Turkiye
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, United Kingdom.
| |
Collapse
|
3
|
Sohn JS, Choi YE, Choi JS. Designing starch-based fenofibrate formulations using the melting method. Int J Biol Macromol 2024; 272:132903. [PMID: 38848840 DOI: 10.1016/j.ijbiomac.2024.132903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Fenofibrate (FNF) is used to treat hyperlipidemia. However, FNF is a poorly water-soluble drug, and the dosage of commercial products is relatively high at 160 mg in a Lipidil® tablet. Therefore, this study aimed to develop an FNF-solid dispersion (SD) that solubilizes and stabilizes FNF. The melting method that uses the low melting point of FNF was employed. The dissolution percentage of FNF in the optimal formulation (SD2) increased by 1.2-, 1.3-, and 1.3-fold at 5 min compared to that of Lipidil® and increased by 2.0-, 2.1-, and 2.0-fold compared to the pure FNF in pH 1.2 media, distilled water, and pH 6.8 buffer, which included 0.025 M sodium lauryl sulfate, respectively. The SD2 formulation showed a dissolution percentage of nearly 100 % in all dissolution media after 60 min. The physicochemical properties of the SD2 formulation exhibited slight changes in the melting point and crystallinity of FNF. Moreover, the stability of the SD2 formulation was maintained for six months. In particular, it was challenging to secure stability when starch#1500 was excluded from the SD2 formulation. In conclusion, the dissolution percentage of FNF in the SD2 formulation was improved owing to the weak binding force between FNF and the excipients, stability was secured, and favorable results are expected in future animal experiments.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- Division of Interdisciplinary Studies, Chosun University, Ph.D, Associate Professor, Gwangju 61452, Republic of Korea
| | - Ye Eun Choi
- School of Medicine, St. George's University, Student, West Indies, Grenada
| | - Jin-Seok Choi
- Department of Medical Management, Chodang University, Ph.D, Assistant Professor, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, Republic of Korea.
| |
Collapse
|
4
|
Sohn JS, Choi JS. Febuxostat solubilization and stabilization approach using solid dispersion method: Synergistic effect of dicalcium phosphate dehydrate and chitosan. Int J Biol Macromol 2023; 253:127266. [PMID: 37802445 DOI: 10.1016/j.ijbiomac.2023.127266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Drug solubilization studies are continuously being conducted. Febuxostat (FBX) has a low solubility in water. This study aims to develop a stable FBX-solid dispersion (SD) formulation using a solvent evaporation method. The solubilization strategy of FBX is to develope an optimal FBX-SD formulation by selecting a solubilizer and carrier through the screening method. The final selected solubilizer, macrogol 15 hydroxystearate and polyoxyl 15 hydroxystearate (Kolliphor® HS-15), is widely used in the pharmaceutical industry as a nonionic solubilizing and emulsifying agent and has low toxicity. Especially when commonly used in developing lipophilic drug formulations, it dissolves well in water and ethyl alcohol. The optimal composition ratio of the formulation (SD4) was FBX:HS-15®:granular dicalcium phosphate dehydrate (DCP-D): A synthetic magnesium aluminometasilicate (Neusilin®UFL2):chitosan = 1:3:3:1:1 (w/w) and showed 3.0-, 2.3-, and 1.1-fold higher dissolution (%) of FBX compared to that of the Feburic tab® in pH 1.2 media, distilled water (DW), and pH 6.8 buffer, respectively. Also, in vitro release and in vitro permeability in SD4 formulation showed higher than that of Feburic tab®. Based on its stability over 6 months, it was confirmed that chitosan acted as a stabilizer. Moreover, due to weak intermolecular interactions, FBX in the SD4 formulation was considered to exist in a mixed state of amorphous and crystalline FBX. In conclusion, the improved dissolution (%) and stability of FBX in SD4 formulation were secured through the synergistic effect of excipients.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- College of General Education, Chosun University, Gwangju 61452, Republic of Korea
| | - Jin-Seok Choi
- Department of Medical Management, Chodang University, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, Republic of Korea.
| |
Collapse
|
5
|
Becelaere J, Frateur O, Schoolaert E, Vanhoorne V, D'hooge DR, Vervaet C, Hoogenboom R, De Clerck K. Solvent electrospinning amorphous solid dispersions with high itraconazole, celecoxib, mebendazole and fenofibrate drug loading and release potential. J Control Release 2023; 362:268-277. [PMID: 37648083 DOI: 10.1016/j.jconrel.2023.08.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
In this work, the feasibility of ultra-high drug loaded amorphous solid dispersions (ASDs) for the poorly soluble itraconazole, mebendazole and celecoxib via solvent electrospinning in combination with poly(2-ethyl-2-oxazoline) and fenofibrate in combination with polyvinylpyrrolidone is demonstrated. By lowering the polymer concentration in the electrospinning solution below its individual spinnable limit, ASDs with a drug content of up to 80 wt% are obtained. This is attributed to drug-polymer interactions not being limited by default to hydrogen bonds, as also Van der Waals interactions can result in high drug loadings. The theoretically predicted miscibility by the Flory-Huggins theory is corroborated by the experimental findings based on (modulated) differential scanning calorimetry and x-ray diffraction. Globally, the maximally obtained amorphous drug loadings are higher compared to the loadings found in literature. Additionally, non-sink dissolution tests demonstrate an increase in solubility of up to 50 times compared to their crystalline counterparts. Moreover, due to the lack of precipitation biocompatible PEtOx succeeds in stabilizing the dissolved drug and inhibiting its instant precipitation. The current work thus demonstrates the broader applicability of the electrospinning technique for the production of physically stable ASDs with ultra-high drug loadings, a result which has been validated for several Biopharmaceutics Classification System class II drugs.
Collapse
Affiliation(s)
- Jana Becelaere
- Ghent University, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Technologiepark 70A, B-9052 Ghent, Belgium
| | - Olmo Frateur
- Ghent University, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Technologiepark 70A, B-9052 Ghent, Belgium
| | - Ella Schoolaert
- Ghent University, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Technologiepark 70A, B-9052 Ghent, Belgium
| | - Valérie Vanhoorne
- Ghent University, Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Dagmar R D'hooge
- Ghent University, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Technologiepark 70A, B-9052 Ghent, Belgium
| | - Chris Vervaet
- Ghent University, Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Richard Hoogenboom
- Ghent University, Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Krijgslaan 281 - S4, B-9000 Ghent, Belgium.
| | - Karen De Clerck
- Ghent University, Department of Materials, Textiles and Chemical Engineering, Faculty of Engineering and Architecture, Technologiepark 70A, B-9052 Ghent, Belgium.
| |
Collapse
|
6
|
Kumar R, Thakur AK, Kali G, Pitchaiah KC, Arya RK, Kulabhi A. Particle preparation of pharmaceutical compounds using supercritical antisolvent process: current status and future perspectives. Drug Deliv Transl Res 2023; 13:946-965. [PMID: 36575354 DOI: 10.1007/s13346-022-01283-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2022] [Indexed: 12/29/2022]
Abstract
The low aqueous solubility and subsequently slow dissolution rate, as well as the poor bioavailability of several active pharmaceutical ingredients (APIs), are major challenges in the pharmaceutical industry. In this review, the particle engineering approaches using supercritical carbon dioxide (SC CO2) as an antisolvent are critically reviewed. The different SC CO2-based antisolvent processes, such as the gas antisolvent process (GAS), supercritical antisolvent process (SAS), and a solution-enhanced dispersion system (SEDS), are described. The effect of process parameters such as temperature, pressure, solute concentration, nozzle diameter, SC CO2 flow rate, solvent type, and solution flow rate on the average particle size, particle size distribution, and particle morphology is discussed from the fundamental perspective of the SAS process. The applications of the SAS process in different formulation approaches such as solid dispersion, polymorphs, cocrystallization, inclusion complexation, and encapsulation to enhance the dissolution rate, solubility, and bioavailability are critically reviewed. This review highlights some areas where the SAS process has not been adequately explored yet. This review will be helpful to researchers working in this area or planning to explore SAS process to particle engineering approaches to tackle the challenge of low solubility and subsequently slow dissolution rate and poor bioavailability.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India.
| | - Amit K Thakur
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Gergely Kali
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | | | - Raj Kumar Arya
- Department of Chemical Engineering, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar, 144011, Punjab, India
| | - Anurag Kulabhi
- Department of Chemical Engineering, Energy Cluster, University of Petroleum and Energy Studies, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
7
|
Atneriya U, Kapoor D, Sainy J, Maheshwari R. In vitro profiling of fenofibrate solid dispersion mediated tablet formulation to treat high blood cholesterol. ANNALES PHARMACEUTIQUES FRANÇAISES 2023; 81:284-299. [PMID: 36037932 DOI: 10.1016/j.pharma.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Fenofibrate (FNF), an anti-hyperlipidemic agent, suffers from poor water solubility (0.000707mg/ml) and belongs to class II drug as per BCS, shows a slow dissolution rate. The current investigation aimed to fabricate a fast-dissolving tablet of FNF (not available in the commercial market) using solid dispersion technique employing Vitamin E-D-α-Tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) as molecular biomaterial to enhance dissolution rate and reduce the time required to reach the systemic circulation. MATERIALS AND METHODS Firstly, carrier material was selected based on the release study via preparing solid dispersion using the melting method, and prepared solid dispersion was characterized. Secondly, fast-dissolving tablets from solid dispersion were fabricated using the direct compression tool and characterized for X-ray diffraction (XRD) pattern, friability, hardness, content uniformity, weight variation and in vitro disintegration test. RESULTS The X-ray diffraction study confirmed the successful formation of solid dispersion using vitamin E TPGS by analyzing the change in physical state. The fabricated solid dispersion exhibited higher drug content than a physical mixture of FNF. An excipient interference study was also performed in methanol and 0.75% w/v sodium lauryl sulphate. It revealed no significant alterations in the absorption peak of FNF as analyzed using UV spectroscopy at 287nm. In addition, water absorption ratio phase solubility and wetting time were also assessed. In -vitro release of FNF from developed tablets was found significantly higher (93.23%±3.11; p<0.001) as compared to prepared compressed tablet of pure FNF (12.21±2.34%). The dissolution rate was also determined, and data were then kept to various kinetic models such as zero-order chemical kinetic, first-order chemical kinetic, Hixon-Crowell and Higuchi chemical kinetic. CONCLUSION A complete and sequential in vitro and physicochemical characterization of developed formulation was carried out to set-up improved and effective treatment for high blood cholesterol.
Collapse
Affiliation(s)
- U Atneriya
- School of Pharmacy Devi Ahilya Vishwavidhylaya, 452020 Indore, India
| | - D Kapoor
- Dr. Dayaram Patel Pharmacy College, SardarBaug, Station Road, 394601 Bardoli, Gujarat, India
| | - J Sainy
- School of Pharmacy Devi Ahilya Vishwavidhylaya, 452020 Indore, India
| | - R Maheshwari
- School of Pharmacy and Technology Management, SVKM'S NMIMS, Green Pharma Industrial Park, TSIIC, Jadcherla, 509301 Hyderabad, India.
| |
Collapse
|
8
|
Wang X, He S, Wang K, Wang X, Yan T, Yan T, Wang Z. Fabrication of betamethasone micro- and nanoparticles using supercritical antisolvent technology: In vitro drug release study and Caco-2 cell cytotoxicity evaluation. Eur J Pharm Sci 2023; 181:106341. [PMID: 36435356 DOI: 10.1016/j.ejps.2022.106341] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Poor solubility limits the pharmacological activities of betamethasone (BM), including its anti-inflammatory and anti-allergic effects. To improve the aqueous solubility and dissolution rate of BM, supercritical antisolvent (SAS) technology was used to prepare BM microparticles and BM-polyvinylpyrrolidone (PVP) solid dispersion nanoparticles. The effects of temperature, pressure, solution feeding rate, and drug concentration on particle formation were investigated using both single-factor and orthogonal experimental methods, and the optimal preparation process was screened. The physicochemical properties of the BM particles were characterized by scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, and X-ray diffraction. After the SAS process, the particle size was reduced significantly and the crystalline shape was altered, which considerably increased the solubility and dissolution rate of BM. Furthermore, the toxicity of BM to live cells was reduced because of the BM-PVP solid dispersions.
Collapse
Affiliation(s)
- Xiangxiang Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China; Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, PR China
| | - Shuang He
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China
| | - Kaiye Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China
| | - Xin Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China
| | - Tingyuan Yan
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China
| | - Tingxuan Yan
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, PR China.
| | - Zhixiang Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, Jiangsu, PR China.
| |
Collapse
|
9
|
Ha ES, Kang HT, Park H, Kim S, Kim MS. Advanced technology using supercritical fluid for particle production in pharmaceutical continuous manufacturing. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2022. [DOI: 10.1007/s40005-022-00601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Sohn JS, Choi JS. A study on the improved dissolution and permeability of ticagrelor with sodium oleate in a ternary system. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Supercritical Fluid Technologies for the Incorporation of Synthetic and Natural Active Compounds into Materials for Drug Formulation and Delivery. Pharmaceutics 2022; 14:pharmaceutics14081670. [PMID: 36015296 PMCID: PMC9413081 DOI: 10.3390/pharmaceutics14081670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022] Open
Abstract
Various active compounds isolated from natural sources exhibit remarkable benefits, making them attractive for pharmaceutical and biomedical applications, such as antioxidant, antimicrobial, and anti-inflammatory activities, which contribute to the treatment of cardiovascular diseases, neurodegenerative disorders, various types of cancer, diabetes, and obesity. However, their major drawbacks are their reactivity, instability, relatively poor water solubility, and consequently low bioavailability. Synthetic drugs often face similar challenges associated with inadequate solubility or burst release in gastrointestinal media, despite being otherwise a safe and effective option for the treatment of numerous diseases. Therefore, drug-eluting pharmaceutical formulations have been of great importance over the years in efforts to improve the bioavailability of active compounds by increasing their solubility and achieving their controlled release in body media. This review highlights the success of the fabrication of micro- and nanoformulations using environmentally friendly supercritical fluid technologies for the processing and incorporation of active compounds. Several novel approaches, namely micronization to produce micro- and nano-sized particles, supercritical drying to produce aerogels, supercritical foaming, and supercritical solvent impregnation, are described in detail, along with the currently available drug delivery data for these formulations.
Collapse
|
12
|
Fayed MH, Alalaiwe A, Almalki ZS, Helal DA. Design Space Approach for the Optimization of Green Fluidized Bed Granulation Process in the Granulation of a Poorly Water-Soluble Fenofibrate Using Design of Experiment. Pharmaceutics 2022; 14:pharmaceutics14071471. [PMID: 35890366 PMCID: PMC9316798 DOI: 10.3390/pharmaceutics14071471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
In the pharmaceutical industry, the systematic optimization of process variables using a quality-by-design (QbD) approach is highly precise, economic and ensures product quality. The current research presents the implementation of a design-of-experiment (DoE) driven QbD approach for the optimization of key process variables of the green fluidized bed granulation (GFBG) process. A 32 full-factorial design was performed to explore the effect of water amount (X1; 1–6% w/w) and spray rate (X2; 2–8 g/min) as key process variables on critical quality attributes (CQAs) of granules and tablets. Regression analysis have demonstrated that changing the levels of X1 and X2 significantly affect (p ≤ 0.05) the CQAs of granules and tablets. Particularly, X1 was found to have the pronounced effect on the CQAs. The GFBG process was optimized, and a design space (DS) was built using numerical optimization. It was found that X1 and X2 at high (5.69% w/w) and low (2 g/min) levels, respectively, demonstrated the optimum operating conditions. By optimizing X1 and X2, GFBG could enhance the disintegration and dissolution of tablets containing a poorly water-soluble drug. The prediction error values of dependent responses were less than 5% that confirm validity, robustness and accuracy of the generated DS in optimization of GFBG.
Collapse
Affiliation(s)
- Mohamed H. Fayed
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
- Correspondence:
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Ziyad S. Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Doaa A. Helal
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Fayoum 63514, Egypt;
| |
Collapse
|
13
|
Microparticle Production of Active Pharmaceutical Ingredient Using Supercritical Antisolvent Process: A Case Study of Allopurinol. CRYSTALS 2022. [DOI: 10.3390/cryst12070922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Allopurinol is a relatively water-insoluble drug and, consequently, its efficacy was frequently limited by the dissolution or solubility phenomena. The purpose of this study was to improve the solid-state properties and dissolution behavior of allopurinol via a supercritical antisolvent (SAS) process using CO2 as an antisolvent. The effects of operating parameters: temperature (35–55 °C), pressure (80–100 bar), solution concentration (8–15 mg/mL), CO2 flow rate (2–4 L/min), and solution flow rate (0.25–0.50 mL/min) were studied. Moreover, the physical properties of unprocessed and SAS-processed allopurinol were analyzed by SEM, FTIR, DSC, TGA, and PXRD. The dissolution rate of unprocessed and SAS-processed allopurinol was also investigated and compared. In this case study, allopurinol was effectively micronized from 15.3 μm to 1.35 μm at the optimal operating condition. The results verify that the solid-state properties and dissolution rate of allopurinol can be controlled and improved via the micronization process by using SAS technology.
Collapse
|
14
|
Liu Q, Li M, Liu C, Yin J, Zhu X, Chen D. Continuous Synthesis of Polymer-Coated Drug Nanoparticles by Heterogeneous Nucleation in a Hollow-Fiber Membrane Module. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Qiuhong Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Mao Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chen Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Jieli Yin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xuan Zhu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dengyue Chen
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
15
|
Tran P, Park JS. Application of supercritical fluid technology for solid dispersion to enhance solubility and bioavailability of poorly water-soluble drugs. Int J Pharm 2021; 610:121247. [PMID: 34740762 DOI: 10.1016/j.ijpharm.2021.121247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 11/28/2022]
Abstract
Many new chemical entities (NCEs) have been discovered with the development of the pharmaceutical industry. However, the main disadvantage of these drugs is their low aqueous solubility, which results in poor bioavailability, posing a challenge for pharmaceutical scientists in the field of drug development. Solid dispersion (SD) technology is one of the most successful techniques used to resolve these problems. SD has been widely used to improve the solubility and bioavailability of poorly water-soluble drugs using several methods such as melting, supercritical fluid (SCF), solvent evaporation, spray drying, hot-melt extrusion, and freeze-drying. Among them, SCF with carbon dioxide (CO2) has recently attracted great attention owing to its enhanced dissolution and bioavailability with non-toxic, economical, non-polluting, and high-efficiency properties. Compared with the conventional methods using organic solvents in the preparation of the formulation (solvent evaporation method), SCF used CO2 to replace the organic solvent with high pressure to avoid the limitation of solvent residues. The solubility of a substance in CO2 plays an important role in the success of the formulation. In the present review, the various processes involved in SCF technology, application of SCF to prepare SD, and future perspectives of SCF are described.
Collapse
Affiliation(s)
- Phuong Tran
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Jeong-Sook Park
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
16
|
Chen T, Ma Z, Qiu Z, Zhong Z, Xing L, Guo Q, Luo D, Weng Z, Ge F, Huang Y, Zhang X, He H, Zhuang X, Li Q, Yuan T. Characterization of excipients to improve pharmaceutical properties of sirolimus in the supercritical anti-solvent fluidized process. Int J Pharm 2021; 611:121240. [PMID: 34780928 DOI: 10.1016/j.ijpharm.2021.121240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/26/2022]
Abstract
Enhanced drug release and bioavailability of poorly soluble active pharmaceutical ingredient (API) can be achieved via a fluidized bed coating integrated with supercritical anti-solvent (SAS-FB) - a process of precipitating drug particles onto carrier granules. However, in the absence of excipients, SAS-FB often results in crystalline of the API on the surface of carriers, limiting the improvement of pharmaceutical properties. Co-processing with excipients is considered an effective approach to improve drug release in the SAS-FB process. Our study used sirolimus, an immune suppressive agent, as the model API to characterize excipients for their effect on pharmaceutical properties in the SAS-FB process. We show that co-precipitation of excipients and sirolumus impacts on carrier specific surface area and drug yield. Among the tested excipients, formulation containing polyvinylpyrrolidone K30 achieved the highest drug yield. Importantly, compared with Rapamune® tablet, our optimized formulation displayed a superior in vivo oral bioavailability by 3.05-fold in Sprague-Dawley rats and 3.99-fold in beagle dogs. A series of characterization of the processed API was performed to understand the mechanism by which excipients contributed to drug dissolution properties. Our study provides a useful guidance for the use of excipients in the SAS-FB technology to improve pharmaceutical properties of sirolimus and other poorly soluble drugs.
Collapse
Affiliation(s)
- Tingting Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zhimin Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Zhenwen Qiu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zhong Zhong
- Department of Pharmacy and Medical Equipment, Foshan Chancheng People's Hospital, Foshan 528000, PR China
| | - Lei Xing
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
| | - Qiuping Guo
- Drug Non-Clinical Evaluation and Research Center of Guangzhou General Pharmaceutical Research Institute, Guangzhou 510240, PR China
| | - Dandong Luo
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Zhiwei Weng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Fucheng Ge
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Yating Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiubing Zhang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China
| | - Hongling He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, OX3 7FZ, UK.
| | - Qingguo Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Tianhui Yuan
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, PR China.
| |
Collapse
|
17
|
Kim DH, Nguyen TN, Han YM, Tran P, Rho J, Lee JY, Son HY, Park JS. Local drug delivery using poly(lactic-co-glycolic acid) nanoparticles in thermosensitive gels for inner ear disease treatment. Drug Deliv 2021; 28:2268-2277. [PMID: 34668836 PMCID: PMC8530482 DOI: 10.1080/10717544.2021.1992041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intratympanic (IT) therapies have been explored to address several side effects that could be caused by systemic administration of steroids to treat inner ear diseases. For effective drug delivery to the inner ear, an IT delivery system was developed using poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and thermosensitive gels to maintain sustained release. Dexamethasone (DEX) was used as a model drug. The size and zeta potential of PLGA NPs and the gelation time of the thermosensitive gel were measured. In vitro drug release was studied using a Franz diffusion cell. Cytotoxicity of the formulations was investigated using SK-MEL-31 cells. Inflammatory responses were evaluated by histological observation of spiral ganglion cells and stria vascularis in the mouse cochlea 24 h after IT administration. In addition, the biodistribution of the formulations in mouse ears was observed by fluorescence imaging using coumarin-6. DEX-NPs showed a particle size of 150.0 ± 3.2 nm in diameter and a zeta potential of −18.7 ± 0.6. The DEX-NP-gel showed a gelation time of approximately 64 s at 37 °C and presented a similar release profile and cytotoxicity as that for DEX-NP. Furthermore, no significant inflammatory response was observed after IT administration. Fluorescence imaging results suggested that DEX-NP-gel sustained release compared to the other formulations. In conclusion, the PLGA NP-loaded thermosensitive gel may be a potential drug delivery system for the inner ear.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Thu Nhan Nguyen
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Min Han
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Phuong Tran
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jinhyung Rho
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hwa-Young Son
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong-Sook Park
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
18
|
Sohn JS, Kim JS, Choi JS. Development of a naftopidil-chitosan-based fumaric acid solid dispersion to improve the dissolution rate and stability of naftopidil. Int J Biol Macromol 2021; 176:520-529. [PMID: 33607140 DOI: 10.1016/j.ijbiomac.2021.02.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 02/13/2021] [Indexed: 11/18/2022]
Abstract
Naftopidil (NAF), an α1-adrenoceptor antagonist, is administered as a treatment for benign prostatic hyperplasia; however, according to the Biopharmaceutical Classification System (BCS IV), it is a poorly-soluble drug that exhibits poor permeability. We aimed to increase the dissolution (%) of NAF by adding chitosan to a polymer-free formulation. Compared to the formulation prepared using Flivas®, at 60 min, the solid dispersion (SD) formulation containing NAF, fumaric acid, chitosan, and US2® in a 1:1:2:1 weight ratio improved the dissolution (%) of NAF in distilled water, pH 1.2 media, pH 4.0 and pH 6.8 buffers by 27.2-, 1.2-, 1.1- and 6.5-fold, respectively. The physicochemical properties of the SD1 formulation were also found to be altered, including its thermal properties, crystal intensity, and chemical interaction. As a result, the hydrogen bonding that occurs between NAF and fumaric acid was identified as a major factor in the increase in NAF dissolution (%). Further, chitosan was observed to contribute to the stability of NAF and SD1, which was assessed over a 3-month period. To our knowledge, this is the first study to employ a polymer-free system to improve the solubilization of NAF.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- College of General Education, Chosun University, Gwangju 61452, Republic of Korea
| | - Jae-Seon Kim
- Central R&D Center, Yuyu Phama, 17, Daehak4-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Jin-Seok Choi
- Department of Health Care and Medical Administration, Chodang University, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, Republic of Korea.
| |
Collapse
|
19
|
Pyo YC, Tran P, Kim DH, Park JS. Chitosan-coated nanostructured lipid carriers of fenofibrate with enhanced oral bioavailability and efficacy. Colloids Surf B Biointerfaces 2020; 196:111331. [DOI: 10.1016/j.colsurfb.2020.111331] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/01/2022]
|
20
|
Sohn JS, Choi JS. Solubilization of tadalafil using a tartaric acid and chitosan-based multi-system. Int J Biol Macromol 2020; 168:866-874. [PMID: 33249149 DOI: 10.1016/j.ijbiomac.2020.11.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022]
Abstract
Solubilization studies of tadalafil (TDF) have recently improved the dissolution (%) using weak acids and bases in our group. However, the weak acid formulations have a low dissolution (%) of TDF as limitation. Thus, the purpose of this study was to improve the dissolution (%) of TDF over 90% in distilled water (DW) by weak acid-chitosan based multi-system. The SD formulation (SD11: TDF, tartaric acid, chitosan, Aerosil®200, and PVP/VA S-630 in a 1:2:1:1:2 weight ratio) showed higher dissolution (%) of TDF by 5.0-, 6.0-, and 5.8-fold at 60 min than that of Cialis® in DW and pH 1.2 and pH 6.8 buffers, respectively. The physical properties of the SD11 formulation were changed. Moreover, the SD11 formulation maintained stability for 3 months. In conclusion, the solubilization of TDF using chitosan was successfully performed for the first time.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- College of General Education, Chosun University, Gwangju 61452, Republic of Korea
| | - Jin-Seok Choi
- Department of Medical Management, Chodang University, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, Republic of Korea.
| |
Collapse
|
21
|
Tang HX, Cai YY, Liu CG, Zhang JT, Kankala RK, Wang SB, Chen AZ. Sub-micronization of disulfiram and disulfiram-copper complexes by Rapid expansion of supercritical solution toward augmented anticancer effect. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Ghosh MK, Wahed MII, Khan RI, Habib A, Barman RK. Pharmacological screening of fenofibrate-loaded solid dispersion in fructose-induced diabetic rat. J Pharm Pharmacol 2020; 72:909-915. [PMID: 32306394 DOI: 10.1111/jphp.13267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/14/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Hyperlipidaemia is a common phenomenon in diabetes mellitus. Fenofibrate (FF) is a good candidate for the treatment of lipid abnormalities in patients with type 2 diabetes. But the bioavailability as well as therapeutic efficacy of this drug is limited to its dissolution behaviour. Here, the authors assess the therapeutic efficacy of a newly formulated solid dispersion of fenofibrate (SDF) having enhanced dissolution profiles in contrast to pure FF using fructose-induced diabetic rat model. METHODS Fructose-induced diabetic rat model was developed to assess the pharmacological efficacy of the formulated SDF, and the results were compared with the effects of conventional FF therapy. KEY FINDINGS The 14 days treatment showed better improvement in lipid-lowering potency of SDF than pure FF. SDF containing one-third dose of pure FF showed similar effect in terms of triglyceride, total cholesterol and low-density lipoprotein lowering efficacy, whereas increased high-density lipoprotein at same extent. The similar dose of SDF produced more prominent effect than FF. Histological studies also demonstrated the enhanced lipid clearance from liver by SDF than FF that was concordant with the biochemical results. CONCLUSIONS This newly formulated SDF would be a promising alternative for conventional fenofibrate in treating hyperlipidaemia.
Collapse
Affiliation(s)
- Milon Kumar Ghosh
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh.,Department of Pharmacy, Islamic University, Kushtia, Bangladesh
| | | | | | - Anwar Habib
- Department of Pharmacology, Rajshahi Medical College, Rajshahi, Bangladesh
| | | |
Collapse
|
23
|
Sun J, Hong H, Zhu N, Han L, Suo Q. Response surface methodology to optimize the preparation of tosufloxacin tosylate/hydroxypropyl-β-cyclodextrin inclusion complex by supercritical antisolvent process. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Design of Coenzyme Q10 solid dispersion for improved solubilization and stability. Int J Pharm 2019; 572:118832. [DOI: 10.1016/j.ijpharm.2019.118832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/28/2019] [Accepted: 10/27/2019] [Indexed: 01/21/2023]
|
25
|
Purification of Polybutylene Terephthalate by Oligomer Removal Using a Compressed CO 2 Antisolvent. Polymers (Basel) 2019; 11:polym11071230. [PMID: 31340537 PMCID: PMC6680407 DOI: 10.3390/polym11071230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, the cyclic oligomers in the highly chemically resistant polyester polybutylene terephthalate (PBT) were effectively removed using a compressed CO2 antisolvent technique in which 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) was used as the solvent. In addition to the oligomers, tetrahydrofuran was completely removed because of its low molecular weight and liquid state. The effects of the operating variables, including temperature, pressure, and the PBT concentration in HFIP, on the degree of removal of the oligomers were systematically studied using experimental design and the response surface methodology. The most appropriate operating conditions for the purification of PBT were 8.3 MPa and 23.4 °C when using 4.5 wt % PBT in HFIP. Under these conditions, the cyclic trimers and dimers could be removed by up to 81.4% and 95.7%, respectively, in a very short operating time.
Collapse
|