1
|
Kämäräinen T, Nogami S, Arima-Osonoi H, Iwase H, Uchiyama H, Tozuka Y, Kadota K. Multiscale structure analysis of a pH-responsive gelatin/hydroxypropyl methylcellulose phthalate blend using small-angle scattering. J Colloid Interface Sci 2024; 669:975-983. [PMID: 38759596 DOI: 10.1016/j.jcis.2024.05.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
HYPOTHESIS Hydroxypropyl methylcellulose phthalate (HPMCP) is an enteric polymer that has been employed in drug delivery systems to delay the release of the encapsulated active pharmaceutical ingredients through its pH-responsive solubility change. This has been recently demonstrated as an effective means for delaying the drug release from gelatin/HPMCP hydrogels at gastric pH values. However, structural characteristics of HPMCP agglomeration in gelatin/HPMCP hydrogels is not well understood thus limiting further tailoring of their material properties. EXPERIMENTS We investigated the multiscale structure of a gelatin/HPMCP hydrogel (1:1 by weight) between pH 2 and 6 at 37 °C, i.e. above the upper critical solution transition temperature of gelatin, using small-angle X-ray scattering and contrast-variation small-angle neutron scattering to understand the pH-responsive structure of HPMCP and the cross-correlation between gelatin and HPMCP. FINDINGS Agglomeration of HPMCP between pH 2 and 4 was evidenced by the formation of mass fractal structures, with a fractal dimension ranging from 1.5 to 2.7, comprising primary particles with a radius of gyration ranging from 70 to 140 Å. Blending with gelatin influenced the fractal structure of HPMCP and the primary particle size. Gelatin and HPMCP exhibited negative cross-correlation in all probed length scales and pH values, which was attributed to volume-exclusion interaction in a double-network-like solution architecture.
Collapse
Affiliation(s)
- Tero Kämäräinen
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Satoshi Nogami
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiroshi Arima-Osonoi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
| | - Hiroki Iwase
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; Department of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama-shi, Wakayama 640-8156, Japan.
| |
Collapse
|
2
|
Kim SY, Pena IDL, Weon KY, Park JB. Preparation of tofacitinib sustained-release tablets using hot melt extrusion technology. Pharm Dev Technol 2024; 29:248-257. [PMID: 38416122 DOI: 10.1080/10837450.2024.2323621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024]
Abstract
This study aimed to develop a tablet that shows a drug release profile similar to the tofacitinib sustained-release tablet (Xeljanz XR®; OROS™) using hot melt extrusion technology. Tofacitinib citrate was selected as the drug. HPMCAS, HPMCP, and Kollidon VA64 were used as thermoplastic polymers to prepare a hot-melt extrudate. The extrudate was obtained from a twin screw extruder and pelletizer. The granules were compressed using a single punch press machine and then coated. TGA, DSC, XRD, FT-IR, and SEM were performed on the hot melt extrudate to understand its physicochemical properties. Dissolution tests were performed using the paddle method (USP Apparatus II). The results showed that the crystallinity state of tofacitinib changed to amorphous after the hot melt extrusion process; however, no chemical change was observed. The drug release profile was similar to that of Xeljanz XR®, which has an initial lag time owing to its OROS™ formulation; a coating process was performed to obtain a similar drug release profile. The lag time was controlled by adjusting the thickness of the coating layer. Moreover, the extrudate size and compression force during tableting did not significantly affect drug release. In conclusion, the new tofacitinib sustained-release tablet prepared using hot melt extrusion showed a drug release behavior similar to that of Xeljanz XR®.
Collapse
Affiliation(s)
- Sung-Yeop Kim
- College of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| | - Ike de la Pena
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University School of Pharmacy, Loma Linda, CA, USA
| | - Kwon Yeon Weon
- College of Pharmacy, Daegu Catholic University, Gyeongbuk, Republic of Korea
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Modeling of inter-tablet coating uniformity of electrostatic dry powder coating by discrete element method. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Nogami S, Kadota K, Uchiyama H, Arima-Osonoi H, Shibayama M, Tozuka Y. Evaluation of the rheological and rupture properties of gelatin-based hydrogels blended with polymers to determine their drug diffusion behavior. Polym J 2022. [DOI: 10.1038/s41428-022-00681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Optimization of the Preformulation and Formulation Parameters in the Development of New Extended-Release Tablets Containing Felodipine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, new extended-release tablets containing felodipine were developed. For the orally administered formulations, optimization of the preformulation and formulation parameters was performed to assess the performance of the dosage form. Initially, the morphological and physical characterization of two forms of felodipine (microcrystalline and macrocrystalline) using Fourier transform infrared spectroscopy, differential scanning calorimetry and optical microscopy was performed. The pharmaco-technical properties of the two felodipine forms were also determined. Subsequently, formulation studies for felodipine extended-release tablets were performed. Mathematical modelling of release kinetics of felodipine from developed formulations using a power law model was also performed. Based on the influence of formulation factors on the in vitro availability of felodipine in experimental tablets, a new extended-release tablet formulation was established.
Collapse
|
6
|
Delayed sustained drug release from electrostatic powder coated tablets with ultrafine polymer blends. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.08.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Zhou K, Huo M, Ma W, Mi K, Xu X, Algharib SA, Xie S, Huang L. Application of a Physiologically Based Pharmacokinetic Model to Develop a Veterinary Amorphous Enrofloxacin Solid Dispersion. Pharmaceutics 2021; 13:602. [PMID: 33922109 PMCID: PMC8143505 DOI: 10.3390/pharmaceutics13050602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Zoonotic intestinal pathogens threaten human health and cause huge economic losses in farming. Enrofloxacin (ENR) shows high antibacterial activity against common intestinal bacteria. However, its poor palatability and low aqueous solubility limit the clinical application of ENR. To obtain an ENR oral preparation with good palatability and high solubility, a granule containing an amorphous ENR solid dispersion (ENR-SD) was prepared. Meanwhile, a PBPK model of ENR in pigs was built based on the physiological parameters of pigs and the chemical-specific parameters of ENR to simulate the pharmacokinetics (PK) of ENR-SD granules in the intestinal contents. According to the results of parameter sensitivity analysis (PSA) and the predicted PK parameters at different doses of the model, formulation strategies and potential dose regimens against common intestinal infections were provided. The DSC and XRD results showed that no specific interactions existed between the excipients and ENR during the compatibility tests, and ENR presented as an amorphous form in ENR-SD. Based on the similar PK performance of ENR-SD granules and the commercial ENR soluble powder suggesting continued enhancement of the solubility of ENR, a higher drug concentration in intestinal contents could not be obtained. Therefore, a 1:5 ratio of ENR and stearic acid possessing a saturated aqueous solubility of 1190 ± 7.71 µg/mL was selected. The predictive AUC24h/MIC90 ratios against Campylobacter jejuni, Salmonella, and Escherichia coli were 133, 266 and 8520 (>100), respectively, suggesting that satisfactory efficacy against common intestinal infections would be achieved at a dose of 10 mg/kg b.w. once daily. The PSA results indicated that the intestinal absorption rate constant (Ka) was negatively correlated with the Cmax of ENR in the intestine, suggesting that we could obtain higher intestinal Cmax using P-gp inducers to reduce Ka, thus obtaining a higher Cmax. Our studies suggested that the PBPK model is an excellent tool for formulation and dose design.
Collapse
Affiliation(s)
- Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Kun Mi
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
| | - Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Shuyu Xie
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (K.Z.); (M.H.); (W.M.); (K.M.); (X.X.); (S.A.A.); (S.X.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Khuroo T, Mohamed EM, Dharani S, Afrooz H, Barakh Ali SF, Cook P, Khan MA, Rahman Z. Coating characterization by hyperspectroscopy and predictive dissolution models of tablets coated with blends of cellulose acetate and cellulose acetate phthalate. AAPS PharmSciTech 2021; 22:122. [PMID: 33811299 DOI: 10.1208/s12249-021-01986-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/09/2021] [Indexed: 02/04/2023] Open
Abstract
The objective of current research was to develop the models of dissolution prediction of tablets coated with cellulose acetate (CA 320S or CA 398-10) and cellulose acetate phthalate (C-A-P) blends. Independent variables selected were coating percent (X1) and percent of CA 320S or CA 398-10 (X2) in the blend. Dependent variables selected were dissolution in 1 (Y1), 8 (Y2), and 24 h (Y3). Diclofenac sodium core tablets were coated with blend of either CA 320S and C-A-P or CA 398-10 and C-A-P at approximately 5, 7.5, and 10% weight gain. CA 320S and CA 398-10 content in the corresponding blends varied from 33.3-66.7% and 25.0-50.0% relative to C-A-P, respectively. Dissolution was performed in phosphate buffer 6.8 using USP apparatus 2. Coated tablets were also characterized for surface morphology and coating uniformity by near infrared hyperspectroscopy. Y1, Y2, and Y3 were statistically (p < 0.05) affected by X2 in CA 320S/C-A-P and CA 398-10/C-A-P blends coated tablets. On the other hand, X1 had statistically significant (p < 0.05) effect only on the Y3 in CA 320S/C-A-P while Y1 was statistically (p < 0.05) affected by X2 in CA 398-10/C-A-P. Analysis of variance also indicated statistically significant (p < 0.05) effect of the studied variables on the dependent variables for both the blends. The models were verified by independent experiment. Model predicted and empirical values of Y1, Y2, and Y3 were close with maximum residual of 7.0%. In conclusion, dissolution can be modulated by varying composition of blend, polymer type, and coating weight.
Collapse
|
9
|
Nogami S, Uchiyama H, Kadota K, Tozuka Y. Design of a pH-responsive oral gel formulation based on the matrix systems of gelatin/hydroxypropyl methylcellulose phthalate for controlled drug release. Int J Pharm 2021; 592:120047. [DOI: 10.1016/j.ijpharm.2020.120047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/07/2020] [Accepted: 11/01/2020] [Indexed: 01/24/2023]
|
10
|
Pandey M, Choudhury H, Abdul-Aziz A, Bhattamisra SK, Gorain B, Carine T, Wee Toong T, Yi NJ, Win Yi L. Promising Drug Delivery Approaches to Treat Microbial Infections in the Vagina: A Recent Update. Polymers (Basel) 2020; 13:E26. [PMID: 33374756 PMCID: PMC7795176 DOI: 10.3390/polym13010026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
An optimal host-microbiota interaction in the human vagina governs the reproductive health status of a woman. The marked depletion in the beneficial Lactobacillus sp. increases the risk of infection with sexually transmitted pathogens, resulting in gynaecological issues. Vaginal infections that are becoming increasingly prevalent, especially among women of reproductive age, require an effective concentration of antimicrobial drugs at the infectious sites for complete disease eradication. Thus, topical treatment is recommended as it allows direct therapeutic action, reduced drug doses and side effects, and self-insertion. However, the alterations in the physiological conditions of the vagina affect the effectiveness of vaginal drug delivery considerably. Conventional vaginal dosage forms are often linked to low retention time in the vagina and discomfort which significantly reduces patient compliance. The lack of optimal prevention and treatment approaches have contributed to the unacceptably high rate of recurrence for vaginal diseases. To combat these limitations, several novel approaches including nano-systems, mucoadhesive polymeric systems, and stimuli-responsive systems have been developed in recent years. This review discusses and summarises the recent research progress of these novel approaches for vaginal drug delivery against various vaginal diseases. An overview of the concept and challenges of vaginal infections, anatomy and physiology of the vagina, and barriers to vaginal drug delivery are also addressed.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Azila Abdul-Aziz
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; or
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Bapi Gorain
- Faculty of Health and Medical Sciences, School of Pharmacy, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
- Center for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Teng Carine
- Undergraduate School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (T.C.); (T.W.T.); (N.J.Y.); (L.W.Y.)
| | - Tan Wee Toong
- Undergraduate School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (T.C.); (T.W.T.); (N.J.Y.); (L.W.Y.)
| | - Ngiam Jing Yi
- Undergraduate School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (T.C.); (T.W.T.); (N.J.Y.); (L.W.Y.)
| | - Lim Win Yi
- Undergraduate School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (T.C.); (T.W.T.); (N.J.Y.); (L.W.Y.)
| |
Collapse
|
11
|
Mohamed EM, Khuroo T, Afrooz H, Dharani S, Sediri K, Cook P, Arunagiri R, Khan MA, Rahman Z. Development of a Multivariate Predictive Dissolution Model for Tablets Coated with Cellulose Ester Blends. Pharmaceuticals (Basel) 2020; 13:ph13100311. [PMID: 33076276 PMCID: PMC7602398 DOI: 10.3390/ph13100311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/11/2023] Open
Abstract
The focus of the present investigation was to develop a predictive dissolution model for tablets coated with blends of cellulose acetate butyrate (CAB) 171-15 and cellulose acetate phthalate (C-A-P) using the design of experiment and chemometric approaches. Diclofenac sodium was used as a model drug. Coating weight gain (X1, 5, 7.5 and 10%) and CAB 171-15 percentage (X2, 33.3, 50 and 66.7%) in the coating composition relative to C-A-P and were selected as independent variables by full factorial experimental design. The responses monitored were dissolution at 1 (Y1), 8 (Y2), and 24 (Y3) h. Statistically significant (p < 0.05) effects of X1 on Y1 and X2 on Y1, Y2, and Y3 were observed. The models showed a good correlation between actual and predicted values as indicated by the correlation coefficients of 0.964, 0.914, and 0.932 for Y1, Y2, and Y3, respectively. For the chemometric model development, the near infrared spectra of the coated tablets were collected, and partial least square regression (PLSR) was performed. PLSR also showed a good correlation between actual and model predicted values as indicated by correlation coefficients of 0.916, 0.964, and 0.974 for Y1, Y2, and Y3, respectively. Y1, Y2, and Y3 predicted values of the independent sample by both approaches were close to the actual values. In conclusion, it is possible to predict the dissolution of tablets coated with blends of cellulose esters by both approaches.
Collapse
Affiliation(s)
- Eman M. Mohamed
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
- Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Tahir Khuroo
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
| | - Hamideh Afrooz
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
| | - Sathish Dharani
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
| | - Khaldia Sediri
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
- Laboratory of Applied Chemistry, ACTR Univ. Ain Temouchent DGRCT, BP 248, 46000 Ain Temouchent, Algeria
| | - Phillip Cook
- Eastman Chemical Company, Kingsport, TN 37662, USA; (P.C.); (R.A.)
| | | | - Mansoor A. Khan
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
| | - Ziyaur Rahman
- Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA; (E.M.M.); (T.K.); (H.A.); (S.D.); (K.S.); (M.A.K.)
- Correspondence: ; Tel.: +1-979-436-0873
| |
Collapse
|
12
|
Zhou K, Yan Y, Chen D, Huang L, Li C, Meng K, Wang S, Algharib SA, Yuan Z, Xie S. Solid Lipid Nanoparticles for Duodenum Targeted Oral Delivery of Tilmicosin. Pharmaceutics 2020; 12:pharmaceutics12080731. [PMID: 32759764 PMCID: PMC7466129 DOI: 10.3390/pharmaceutics12080731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/24/2022] Open
Abstract
Developing a targeted oral delivery system to improve the efficacy of veterinary antibiotics and reduce their consumption and environmental risks is urgent. To achieve the duodenum-targeted release of tilmicosin, the enteric granule containing tilmicosin-loaded solid lipid nanoparticles (TIL-SLNs) was prepared based on its absorption site and transport characteristics. The in vitro release, release mechanisms, stability, palatability, and pharmacokinetics of the optimum enteric granules were studied. The intestine perfusion indicated that the main absorption site of tilmicosin was shifted to duodenum from ileum by TIL-SLNs, while, the absorption of TIL-SLNs in the duodenum was hindered by P-glycoprotein (P-gp). In contrast with TIL-SLNs, the TIL-SLNs could be more effectively delivered to the duodenum in intact form after enteric coating. Its effective permeability coefficient was enhanced when P-gp inhibitors were added. Compared to commercial premix, although the TIL-SLNs did not improve the oral absorption of tilmicosin, the time to reach peak concentration (Tmax) was obviously shortened. After the enteric coating of the granules containing SLNs and P-gp inhibitor of polysorbate-80, the oral absorption of tilmicosin was improved 2.72 fold, and the Tmax was shortened by 2 h. The combination of duodenum-targeted release and P-gp inhibitors was an effective method to improve the oral absorption of tilmicosin.
Collapse
Affiliation(s)
- Kaixiang Zhou
- National Reference Laboratory of Veterinary Drug Residues (H.Z.A.U.) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (Y.Y.); (C.L.); (K.M.); (S.W.); (S.A.A.)
| | - Yuanyuan Yan
- National Reference Laboratory of Veterinary Drug Residues (H.Z.A.U.) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (Y.Y.); (C.L.); (K.M.); (S.W.); (S.A.A.)
| | - Dongmei Chen
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (D.C.); (L.H.); (Z.Y.)
| | - Lingli Huang
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (D.C.); (L.H.); (Z.Y.)
| | - Chao Li
- National Reference Laboratory of Veterinary Drug Residues (H.Z.A.U.) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (Y.Y.); (C.L.); (K.M.); (S.W.); (S.A.A.)
| | - Kuiyu Meng
- National Reference Laboratory of Veterinary Drug Residues (H.Z.A.U.) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (Y.Y.); (C.L.); (K.M.); (S.W.); (S.A.A.)
| | - Shuge Wang
- National Reference Laboratory of Veterinary Drug Residues (H.Z.A.U.) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (Y.Y.); (C.L.); (K.M.); (S.W.); (S.A.A.)
| | - Samah Attia Algharib
- National Reference Laboratory of Veterinary Drug Residues (H.Z.A.U.) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan 430070, China; (K.Z.); (Y.Y.); (C.L.); (K.M.); (S.W.); (S.A.A.)
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Zonghui Yuan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (D.C.); (L.H.); (Z.Y.)
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China; (D.C.); (L.H.); (Z.Y.)
- Correspondence: ; Tel.: +86-27-87287323-8221; Fax: +86-27-87672232
| |
Collapse
|
13
|
Liu H, Xie M, Nie S. Recent trends and applications of polysaccharides for microencapsulation of probiotics. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology China–Canada Joint Lab of Food Science and Technology (Nanchang) Nanchang University Nanchang China
| |
Collapse
|