1
|
Simon L, Durand E, Dorandeu C, Baréa B, Sanchez-Ballester NM, Begu S, Villeneuve P. Evaluation of antioxidant efficacy of quercetin encapsulated in micelles, mixed micelles, or liposomes in oil-in-water emulsions. Food Chem 2025; 478:143650. [PMID: 40054206 DOI: 10.1016/j.foodchem.2025.143650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 04/06/2025]
Abstract
Quercetin was encapsulated in polyoxyethylene laurylether (Brij 35®) micelles, 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes and Brij 35®/DMPC mixed micelles. These obtained formulations were then physically characterized for their particle size, morphology, physical stability and polydispersity index. All quercetin formulations were evaluated for their antioxidant efficiency in two oil-in-water emulsion systems and compared to the one of free quercetin. In short-term assays, results showed that among the tested formulations, quercetin liposomal form offered superior antioxidant protection, in comparison with polymer micelles or mixed micelles form or free quercetin. These results were attributed to a better synergistic effect of liposomal quercetin formulation with tocopherols present in the oil phase of the emulsion. However, in long-term assay, the loaded quercetin showed chemical degradation over the long term in the liposomal form, thus limiting its long-term antioxidant effectiveness in food emulsions.
Collapse
Affiliation(s)
- Laurianne Simon
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France.
| | - Erwann Durand
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QUALISUD, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | | | - Bruno Baréa
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QUALISUD, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Noelia M Sanchez-Ballester
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nîmes, France
| | - Sylvie Begu
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France.
| | - Pierre Villeneuve
- CIRAD, UMR QualiSud, F-34398 Montpellier, France; QUALISUD, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France.
| |
Collapse
|
2
|
Simon L, Constanzo J, Terraza-Aguirre C, Ibn Elfekih Z, Berthelot J, Benkhaled BT, Haute T, Pednekar K, Clark K, Emerson SJ, Atis S, Benedetti C, Langlois S, Marquant A, Prakash J, Wang A, Devoisselle JM, Montier T, Djouad F, Pouget JP, Lapinte V, Morille M. Surface modification of extracellular vesicles with polyoxazolines to enhance their plasma stability and tumor accumulation. Biomaterials 2025; 313:122748. [PMID: 39180918 DOI: 10.1016/j.biomaterials.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
Extracellular vesicles (EVs) are future promising therapeutics, but their instability in vivo after administration remains an important barrier to their further development. Many groups evaluated EV surface modification strategies to add a targeting group with the aim of controlling EV biodistribution. Conversely, fewer groups focused on their stabilization to obtain "stealth" allogenic EVs. Modulating their stabilization and biodistribution is an essential prerequisite for their development as nano-therapeutics. Here, we explored polyoxazolines with lipid anchors association to the EV membrane (POxylation as an alternative to PEGylation) to stabilize EVs in plasma and control their biodistribution, while preserving their native properties. We found that this modification maintained and seemed to potentiate the immunomodulatory properties of EVs derived from mesenchymal stem/stromal cells (MSC). Using a radiolabeling protocol to track EVs at a therapeutically relevant concentration in vivo, we demonstrated that POxylation is a promising option to stabilize EVs in plasma because it increased EV half-life by 6 fold at 6 h post-injection. Moreover, EV accumulation in tumors was higher after POxylation than after PEGylation.
Collapse
Affiliation(s)
- L Simon
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | | | - Z Ibn Elfekih
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Berthelot
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - B T Benkhaled
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Haute
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France
| | - K Pednekar
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - K Clark
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S J Emerson
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - S Atis
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - C Benedetti
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - S Langlois
- Montpellier Ressources Imagerie, BioCampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - A Marquant
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - J Prakash
- Department of Advanced Organ Bioengineering and Therapeutics, Engineered Therapeutics Section, Technical Medical Centre, University of Twente, 7500 AE, Enschede, the Netherlands
| | - A Wang
- Center for Surgical Bioengineering, Deparment of Surgery, University of California Davis School of Medicine, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Children's Northern California, Sacramento, CA, USA
| | - J M Devoisselle
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - T Montier
- Univ Brest, INSERM, EFS, UMR 1078, GGB, F-29200, Brest, France; CHU de Brest, Service de Génétique Médicale et de Biologie de La Reproduction, Centre de Référence des Maladies Rares Maladies Neuromusculaires, 29200, Brest, France
| | - F Djouad
- IRMB, University of Montpellier, INSERM, 34295, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France
| | - J P Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional Du Cancer de Montpellier (ICM), Montpellier, France
| | - V Lapinte
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - Marie Morille
- ICGM, Montpellier University, CNRS, ENSCM, Montpellier, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
3
|
Toor J, Agrawal S, Birajdar MR, Tiwari P, Tiwari S. A nonionic microemulsion co-loaded with atorvastatin and quercetin: Simultaneous spectroscopic analysis and payload release kinetics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124237. [PMID: 38579427 DOI: 10.1016/j.saa.2024.124237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
In this study, we have co-loadedatorvastatin (ATR) and quercetin (QCT) in a nonionic microemulsion. After developing a derivative ratio spectrophotometric technique for simultaneous analysis of ATR and QCT, pseudoternary phase diagram was constructed utilizing1:4 d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and ethanol as surfactant and cosurfactant, respectively. Oleic acid was used as oil phase. Structural characterization of the formulation was carried out along a water dilution line created in monophasic region. Characterizations at these dilution points were performed using dynamic light scattering and polarized light microscopy. The average hydrodynamic size of the optimized formulation was found to be 18.9 nm and it did not change upon loading of ATR and QCT. In vitro release was assessed for the formulations loaded with different ratios of ATR and QCT, and the data were fitted to different mathematical models. Interestingly, we noticed differences in release kinetics during changes in dose ratios, particularly for QCT. Higuchi kinetics, observed at equal dose, shifted to Korsmeyer-Peppas model at higher QCT-ATR ratio (2:1 and 4:1). This difference is attributable to the ability of QCT molecules of overwhelming the interface at higher concentrations. Altogether, our observations highlight that the ratio of payloads should be selected carefully in order to avoid unpredictable release patterns.
Collapse
Affiliation(s)
- Jastarn Toor
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Mayuri R Birajdar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Priyanka Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
4
|
Liu X, Yu S, Lu X, Zhang Y, Zhong H, Zhou Z, Guan R. Optimization of Preparation Conditions for Quercetin Nanoliposomes Using Response Surface Methodology and Evaluation of Their Stability. ACS OMEGA 2024; 9:17154-17162. [PMID: 38645336 PMCID: PMC11024936 DOI: 10.1021/acsomega.3c09892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/25/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Quercetin is a flavonol compound with excellent biological activities. However, quercetin exhibits poor stability and solubility in water, which limits its application. In this study, quercetin nanoliposomes (QUE-NL-1) were prepared using an ultrasonic thin-film dispersion method, and the preparation conditions were optimized using response surface methodology. The optimal conditions for preparing QUE-NL-1 were as follows: an evaporation temperature of 35 °C, a drug concentration of 0.20 mg/mL, and a lipid bile ratio of 4:1. The encapsulation rate of QUE-NL-1 is (63.73 ± 2.09)%, the average particle size is 134.11 nm, and the average absolute value of the zeta potential is 37.50 and PDI = 0.24. By analyzing the storage temperature, storage time, and leakage rate of QUE-NL-1 in simulated gastrointestinal fluid, it was found that quercetin exhibits good stability after embedding and can achieve sustained release in intestinal juice. In addition, the cytotoxicity of QUE-NL-1 was not significant, and the survival rate of Caco-2 cells was >90% when the concentration range of QUE-NL-1 was 0.1-0.4 mg/mL. This study provides an efficient method for preparing QUE-NL-1 with small particle sizes, good stability, and high safety, which is of great significance for expanding the application range of quercetin.
Collapse
Affiliation(s)
- Xiaofeng Liu
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Shuzhen Yu
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoqin Lu
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yao Zhang
- Zhejiang
Provincial Key Lab for Chem and Bio Processing Technology of Farm
Produces, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China
| | - Hao Zhong
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Zhiyuan Zhou
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| | - Rongfa Guan
- College
of Food Science and Technology, Zhejiang
University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
5
|
Bisi H, Bonnard M, Simon L, Morille M, Bégu S, Parrot I. Antioxidant capacity of an ethanolic extract of Elaeagnus x submacrophylla Servett. leaves. Heliyon 2024; 10:e28067. [PMID: 38560166 PMCID: PMC10981013 DOI: 10.1016/j.heliyon.2024.e28067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
In this study, we investigated the ethanolic extraction of the leaves of a very common but little studied plant species, Elaeagnus x submacrophylla Servett. and the opportunity of generating an antioxidant ingredient. The phytochemical profile of an ethanolic extract is also described here using gas chromatography and ultra-performance liquid chromatography, both combined with mass spectrometry (GC-MS and UPLC-MS), highlighting the presence of flavonoids, saponins, triterpenoids and a set of volatile compounds. Through in vitro assays (DPPH, ABTS, ORAC), the free radical scavenging capacity of the ingredient was then investigated (from 0.25 to 1.75 mmol TE/g) and compared with well-known standard antioxidants (BHT, gallic acid, quercetin, Trolox and vitamin C). In addition, in cellulo antioxidant capacity was performed using mice fibroblasts, revealing an activity equivalent to 50 mg/L of quercetin when tested the ethanolic extract in the concentration range of 50-300 mg/L, suggesting a synergistic combination effect of the identified phytochemicals. These results support the use of Elaeagnus x submacrophylla as a source of antioxidant ingredients.
Collapse
Affiliation(s)
- Hélène Bisi
- IBMM, University of Montpellier, CNRS, ENSCM, 1919 Route de Mende, 34095, Montpellier, France
| | - Michel Bonnard
- IBMM, University of Montpellier, CNRS, ENSCM, 1919 Route de Mende, 34095, Montpellier, France
- FLORE SCOLA, 541 Rue des Vautes, 34980, Saint-Gély-du-Fesc, France
| | - Laurianne Simon
- ICGM, University of Montpellier, CNRS, ENSCM, 1919 Route de Mende, 34095, Montpellier, France
| | - Marie Morille
- ICGM, University of Montpellier, CNRS, ENSCM, 1919 Route de Mende, 34095, Montpellier, France
| | - Sylvie Bégu
- ICGM, University of Montpellier, CNRS, ENSCM, 1919 Route de Mende, 34095, Montpellier, France
| | - Isabelle Parrot
- IBMM, University of Montpellier, CNRS, ENSCM, 1919 Route de Mende, 34095, Montpellier, France
| |
Collapse
|
6
|
Simon L, De Taddeo M, Coeurvolan A, Colpaert M, Richard J, Devoisselle JM, Morille M, Marcotte N, Bégu S, Lapinte V. Various lipid anchors on amphiphilic polyoxazolines to reach efficient intracellular delivery. Int J Pharm 2023:123103. [PMID: 37277088 DOI: 10.1016/j.ijpharm.2023.123103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
This work aimed at evaluating the potential of amphiphilic polyoxazolines bearing lipid chain called lipopolyoxazolines to reach efficient intracellular delivery. Four lipid chains: linear saturated, linear unsaturated and two branched one of various length were associated to poly(2-methyl-2-oxazoline) block. The evaluation of their physicochemical features and their impact on cell viability and internalization capacity indicated that the linear saturated gathered the highest cell internalization with a good cell viability. Its intracellular delivery capacity was compared to the PEG reference (DSPE-PEG) after being formulated in liposomes and loaded with fluorescent probe. Both POxylated and PEGylated liposomes showed similar characteristics regarding size distribution, drug loading and cell viability. However, their intracellular delivery was dramatically different, with an improved delivery by 30 folds for the POxylated ones. This significantly better performance highlighted the difficulty of PEGylated liposomes to enter the cells by endocytosis, contrary to POxylated liposomes. This study promotes the value of lipopoly(oxazoline) as a lipopoly(ethylene glycol) alternative for effective intracellular delivery and holds great promises for development of nanoformulations for intravenous administration.
Collapse
Affiliation(s)
- L Simon
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - M De Taddeo
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - A Coeurvolan
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - M Colpaert
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - J Richard
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - M Morille
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - N Marcotte
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - S Bégu
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - V Lapinte
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
7
|
Design of Quercetin-Loaded Natural Oil-Based Nanostructured Lipid Carriers for the Treatment of Bacterial Skin Infections. Molecules 2022; 27:molecules27248818. [PMID: 36557947 PMCID: PMC9785768 DOI: 10.3390/molecules27248818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The biological activity of natural plant-oil-based nanostructured lipid carriers (NPO-NLCs) can be enhanced by the encapsulation of bioactive compounds, and they in turn can improve topical delivery of the drugs. Quercetin (QR), a vital plant flavonoid, expresses antibacterial properties, and we recently showed that empty NPO-NLCs also have antimicrobial activity. The main objective of this study was to evaluate the synergetic effect of loading natural plant-oil-based nanostructured lipid carriers with quercetin (QR-NPO-NLCs) as a topical delivery system for the treatment of bacterial skin infections. Five nanostructured lipid carrier systems containing different oils (sunflower, olive, corn, coconut, and castor) were engineered. The particles’ stability, structural properties, bioavailability, and antimicrobial activity were studied. NLCs with an average size of <200 nm and Z-potential of −40 mV were developed. Stable QR-NPO-NLCs were obtained with high encapsulation efficiency (>99%). The encapsulation of QR decreased cytotoxicity and increased the antioxidant effect of nanocarriers. An increase in antibacterial activity of the systems containing QR was demonstrated against Staphylococcus aureus. QR-NPO-NLCs could transport QR to an intranuclear location within HaCaT cells, indicating that QR-NPO-NLCs are promising candidates for controlled topical drug delivery.
Collapse
|
8
|
Bardoula V, Leclercq L, Hoogenboom R, Nardello-Rataj V. Amphiphilic nonionic block and gradient copoly(2-oxazoline)s based on 2-methyl-2-oxazoline and 2-phenyl-2-oxazoline as efficient stabilizers for the formulation of tailor-made emulsions. J Colloid Interface Sci 2022; 632:223-236. [DOI: 10.1016/j.jcis.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
|
9
|
Simon L, Bellard E, Jouanmiqueou B, Lapinte V, Marcotte N, Devoisselle J, Lamaze C, Rols M, Golzio M, Begu S. Interactions of amphiphilic polyoxazolines formulated or not in lipid nanocapsules with biological systems: Evaluation from membrane models up to in vivo mice epidermis. Eur J Pharm Biopharm 2022; 180:308-318. [DOI: 10.1016/j.ejpb.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022]
|
10
|
Chen YJ, Cheng HW, Yen WY, Tsai JH, Yeh CY, Chen CJ, Liu JT, Chen SY, Chang SJ. The Treatment of Keloid Scars via Modulating Heterogeneous Gelatin-Structured Composite Microneedles to Control Transdermal Dual-Drug Release. Polymers (Basel) 2022; 14:4436. [PMID: 36298014 PMCID: PMC9607586 DOI: 10.3390/polym14204436] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/02/2022] [Accepted: 10/15/2022] [Indexed: 07/29/2023] Open
Abstract
Keloid scarring is an abnormal scar disease characterised by excessive proliferation of fibroblasts and over-deposition of collagen during wound healing. Although various treatments for keloid scars have been developed, preventive medicine is believed to be a promising strategy. The skin barrier limits the gentle topical administration of medicaments such as creams and hydrogel dressings, resulting in reduced therapeutic efficacy. In recent years, microneedles (MNs) have been regarded as an appreciable device for topical administration without inducing side effects, and they are painless and do not cause bleeding. In this study, an MN patch with controlled transdermal dual-drug release was developed to achieve combinatory treatment of keloid scars using a heterogeneous gelatin-structured composite MN. Gelatin hydrogel was used as a substrate to load gallic acid (GA) and quercetin-loaded amphiphilic gelatin nanoparticles to fabricate dual-drug heterogeneous composite MNs. The results of the insertion test and mechanical properties of the MNs showed that the heterogeneous composite MN patches could be self-pressed into the stratum corneum and control dual-drug release at different time periods. GA was released at an earlier stage to retard the proliferation of fibroblasts, and quercetin was released at a later stage as a strong antioxidant to erase the generation of reactive oxygen species. Furthermore, real-time quantitative polymerase chain reaction data indicated that the gene expression of fibroblasts (such as Col I and III) was downregulated in the dual-drug system. The above results demonstrate that using heterogeneous composite MNs with the combination of dual-drug pharmacology is beneficial for preventing keloid scar formation.
Collapse
Affiliation(s)
- Yong-Ji Chen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan
| | - Hung-Wei Cheng
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Wan-Yu Yen
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan
| | - Jen-Hao Tsai
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chin-Yi Yeh
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jen Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - San-Yuan Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung 406040, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shwu-Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
11
|
Nakmode D, Bhavana V, Thakor P, Madan J, Singh PK, Singh SB, Rosenholm JM, Bansal KK, Mehra NK. Fundamental Aspects of Lipid-Based Excipients in Lipid-Based Product Development. Pharmaceutics 2022; 14:pharmaceutics14040831. [PMID: 35456665 PMCID: PMC9025782 DOI: 10.3390/pharmaceutics14040831] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
Poor aqueous solubility of drugs is still a foremost challenge in pharmaceutical product development. The use of lipids in designing formulations provides an opportunity to enhance the aqueous solubility and consequently bioavailability of drugs. Pre-dissolution of drugs in lipids, surfactants, or mixtures of lipid excipients and surfactants eliminate the dissolution/dissolving step, which is likely to be the rate-limiting factor for oral absorption of poorly water-soluble drugs. In this review, we exhaustively summarize the lipids excipients in relation to their classification, absorption mechanisms, and lipid-based product development. Methodologies utilized for the preparation of solid and semi-solid lipid formulations, applications, phase behaviour, and regulatory perspective of lipid excipients are discussed.
Collapse
Affiliation(s)
- Deepa Nakmode
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Valamla Bhavana
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Pradip Thakor
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Jitender Madan
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Pankaj Kumar Singh
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
| | - Shashi Bala Singh
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India;
| | - Jessica M. Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
| | - Kuldeep K. Bansal
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland;
- Correspondence: (K.K.B.); (N.K.M.)
| | - Neelesh Kumar Mehra
- Pharmaceutical Nanotechnology Research Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India; (D.N.); (V.B.); (P.T.); (J.M.); (P.K.S.)
- Correspondence: (K.K.B.); (N.K.M.)
| |
Collapse
|
12
|
Makhayeva DN, Filippov SK, Yestemes SS, Irmukhametova GS, Khutoryanskiy VV. Polymeric iodophors with poly(2-ethyl-2-oxazoline) and poly(N-vinylpyrrolidone): optical, hydrodynamic, thermodynamic, and antimicrobial properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Determination of the Degree of Crystallinity of Poly(2-methyl-2-oxazoline). Polymers (Basel) 2021; 13:polym13244356. [PMID: 34960906 PMCID: PMC8704864 DOI: 10.3390/polym13244356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
A new method for purification of 2-methyl-2-oxazoline using citric acid was developed and living cationic ring-opening polymerization of 2-methyl-2-oxazoline was carried out. Polymerization was conducted in acetonitrile using benzyl chloride—boron trifluoride etherate initiating system. According to DSC data, the temperature range of melting of the crystalline phase of the resulting polymer was 95–180 °C. According to small-angle X-ray scattering and wide-angle X-ray diffraction data, the degree of crystallinity of the polymer was 12%. Upon cooling of the polymer melt, the polymer became amorphous. Using thermogravimetric analysis, it was found that the thermal destruction of poly(2-methyl-2-oxazoline) started above 209 °C.
Collapse
|
14
|
Simon L, Picard C, Calixto L, Lapinte V, Devoisselle J, Bégu S. Study of the physicochemical interactions of nanoformulations based on polyoxazolines with a skin surface model. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Haider MS, Ahmad T, Yang M, Hu C, Hahn L, Stahlhut P, Groll J, Luxenhofer R. Tuning the Thermogelation and Rheology of Poly(2-Oxazoline)/Poly(2-Oxazine)s Based Thermosensitive Hydrogels for 3D Bioprinting. Gels 2021; 7:78. [PMID: 34202652 PMCID: PMC8293086 DOI: 10.3390/gels7030078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
As one kind of "smart" material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈100 repeat units). The tube inversion and rheological tests showed that the material has then a reversible sol-gel transition above 25 wt.% concentration. Rheological tests further revealed a gel strength around 3 kPa, high shear thinning property and rapid shear recovery after stress, which are highly desirable properties for extrusion based three-dimensional (3D) (bio) printing. Attributed to the rheology profile, well resolved printability and high stackability (with added laponite) was also possible. (Cryo) scanning electron microscopy exhibited a highly porous, interconnected, 3D network. The sol-state at lower temperatures (in ice bath) facilitated the homogeneous distribution of (fluorescently labelled) human adipose derived stem cells (hADSCs) in the hydrogel matrix. Post-printing live/dead assays revealed that the hADSCs encapsulated within the hydrogel remained viable (≈97%). This thermoreversible and (bio) printable hydrogel demonstrated promising properties for use in tissue engineering applications.
Collapse
Affiliation(s)
- Malik Salman Haider
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry, Institute for Functional Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (T.A.); (P.S.); (J.G.)
| | - Mengshi Yang
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Chen Hu
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry, Institute for Functional Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (T.A.); (P.S.); (J.G.)
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Institute for Functional Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (T.A.); (P.S.); (J.G.)
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB 55, 00014 Helsinki, Finland
| |
Collapse
|
16
|
Ghosh B, Biswas S. Polymeric micelles in cancer therapy: State of the art. J Control Release 2021; 332:127-147. [PMID: 33609621 DOI: 10.1016/j.jconrel.2021.02.016] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
In recent years, polymeric micelles have been extensively utilized in pre-clinical studies for delivering poorly soluble chemotherapeutic agents in cancer. Polymeric micelles are formed via self-assembly of amphiphilic polymers in facile manners. The wide availability of hydrophobic and, to some extent, hydrophilic polymeric blocks allow researchers to explore various polymeric combinations for optimum loading, stability, systemic circulation, and delivery to the target cancer tissues. Moreover, polymeric micelles could easily be tailor-made by increasing and decreasing the number of monomers in each polymeric chain. Some of the widely accepted hydrophobic polymers are poly(lactide) (PLA), poly(caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA), polyesters, poly(amino acids), lipids. The hydrophilic polymers used to wrap the hydrophobic core are poly(ethylene glycol), poly(oxazolines), chitosan, dextran, and hyaluronic acids. Drugs could be conjugated to polymers at the distal ends to prepare pharmacologically active polymeric systems that impart enhanced solubility and stability of the conjugates and provide an opportunity for combination drug delivery. Their nano-size enables them to accumulate to the tumor microenvironment via the Enhanced Permeability and Retention (EPR) effect. Moreover, the stimuli-sensitive breakdown provides the micelles an effective means to deliver the therapeutic cargo effectively. The tumor micro-environmental stimuli are pH, hypoxia, and upregulated enzymes. Externally applied stimuli to destroy micellar disassembly to release the payload include light, ultrasound, and temperature. This article delineates the current trend in developing polymeric micelles combining various block polymeric scaffolds. The development of stimuli-sensitive micelles to achieve enhanced therapeutic activity are also discussed.
Collapse
Affiliation(s)
- Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Medchal, Hyderabad 500078, India.
| |
Collapse
|
17
|
Guan F, Wang Q, Bao Y, Chao Y. Anti-rheumatic effect of quercetin and recent developments in nano formulation. RSC Adv 2021; 11:7280-7293. [PMID: 35423269 PMCID: PMC8695102 DOI: 10.1039/d0ra08817j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Quercetin is a potential anti-rheumatoid drug. Nano formulation strategies could improve its solubility and efficacy.
Collapse
Affiliation(s)
- Feng Guan
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
- P. R. China
| | - Qi Wang
- Norwich Medical School
- University of East Anglia
- Norwich NR4 7UQ
- UK
| | - Yongping Bao
- Norwich Medical School
- University of East Anglia
- Norwich NR4 7UQ
- UK
| | - Yimin Chao
- School of Chemistry
- University of East Anglia
- Norwich NR4 7TJ
- UK
| |
Collapse
|
18
|
Simon L, Marcotte N, Devoisselle JM, Begu S, Lapinte V. Recent advances and prospects in nano drug delivery systems using lipopolyoxazolines. Int J Pharm 2020; 585:119536. [PMID: 32531447 DOI: 10.1016/j.ijpharm.2020.119536] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/29/2022]
Abstract
Facing the growing demand in nano drug delivery systems (nDDS), hybrid excipients based on natural molecules and well-defined synthetic polymers are intensively investigated. Lipopolyoxazolines (LipoPOx) composed of a polyoxazoline block (POx) and a lipid or lipid-like derivative are detailed in this review. The nature of lipids used, the route to synthesize LipoPOx and their advantages for the formulation of drugs are reported. The place of POx family in nanomedicine is discussed compared to PEG, considered as the gold standard of hydrophilic polymers. LipoPOx nanoformulations including liposomes, mixed micelles, lipid nanocapsules are provided alongside discussion of the nDDS for intravenous or topical administration.
Collapse
Affiliation(s)
- L Simon
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - N Marcotte
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - S Begu
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - V Lapinte
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
19
|
Osorio M, Martinez E, Naranjo T, Castro C. Recent Advances in Polymer Nanomaterials for Drug Delivery of Adjuvants in Colorectal Cancer Treatment: A Scientific-Technological Analysis and Review. Molecules 2020; 25:E2270. [PMID: 32408538 PMCID: PMC7288015 DOI: 10.3390/molecules25102270] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is the type with the second highest morbidity. Recently, a great number of bioactive compounds and encapsulation techniques have been developed. Thus, this paper aims to review the drug delivery strategies for chemotherapy adjuvant treatments for CRC, including an initial scientific-technological analysis of the papers and patents related to cancer, CRC, and adjuvant treatments. For 2018, a total of 167,366 cancer-related papers and 306,240 patents were found. Adjuvant treatments represented 39.3% of the total CRC patents, indicating the importance of adjuvants in the prognosis of patients. Chemotherapy adjuvants can be divided into two groups, natural and synthetic (5-fluorouracil and derivatives). Both groups can be encapsulated using polymers. Polymer-based drug delivery systems can be classified according to polymer nature. From those, anionic polymers have garnered the most attention, because they are pH responsive. The use of polymers tailors the desorption profile, improving drug bioavailability and enhancing the local treatment of CRC via oral administration. Finally, it can be concluded that antioxidants are emerging compounds that can complement today's chemotherapy treatments. In the long term, encapsulated antioxidants will replace synthetic drugs and will play an important role in curing CRC.
Collapse
Affiliation(s)
- Marlon Osorio
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Estefanía Martinez
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| | - Tonny Naranjo
- School of Health Sciences, Universidad Pontificia Bolivariana, Calle 78 B # 72 A-109, Medellín 050034, Colombia;
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Carrera 72 A # 78 B-141, Medellín 050034, Colombia
| | - Cristina Castro
- School of Engineering, Universidad Pontificia Bolivariana, Circular 1 # 70-01, Medellín 050031, Colombia; (M.O.); (E.M.)
| |
Collapse
|
20
|
Simon L, Lapinte V, Lionnard L, Marcotte N, Morille M, Aouacheria A, Kissa K, Devoisselle J, Bégu S. Polyoxazolines based lipid nanocapsules for topical delivery of antioxidants. Int J Pharm 2020; 579:119126. [DOI: 10.1016/j.ijpharm.2020.119126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/03/2023]
|
21
|
Permana AD, Utami RN, Courtenay AJ, Manggau MA, Donnelly RF, Rahman L. Phytosomal nanocarriers as platforms for improved delivery of natural antioxidant and photoprotective compounds in propolis: An approach for enhanced both dissolution behaviour in biorelevant media and skin retention profiles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 205:111846. [DOI: 10.1016/j.jphotobiol.2020.111846] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
|
22
|
Hahn L, Maier M, Stahlhut P, Beudert M, Flegler V, Forster S, Altmann A, Töppke F, Fischer K, Seiffert S, Böttcher B, Lühmann T, Luxenhofer R. Inverse Thermogelation of Aqueous Triblock Copolymer Solutions into Macroporous Shear-Thinning 3D Printable Inks. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12445-12456. [PMID: 32142257 DOI: 10.1021/acsami.9b21282] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Amphiphilic block copolymers that undergo (reversible) physical gelation in aqueous media are of great interest in different areas including drug delivery, tissue engineering, regenerative medicine, and biofabrication. We investigated a small library of ABA-type triblock copolymers comprising poly(2-methyl-2-oxazoline) as the hydrophilic shell A and different aromatic poly(2-oxazoline)s and poly(2-oxazine)s cores B in an aqueous solution at different concentrations and temperatures. Interestingly, aqueous solutions of poly(2-methyl-2-oxazoline)-block-poly(2-phenyl-2-oxazine)-block-poly(2-methyl-2-oxazoline) (PMeOx-b-PPheOzi-b-PMeOx) undergo inverse thermogelation below a critical temperature by forming a reversible nanoscale wormlike network. The viscoelastic properties of the resulting gel can be conveniently tailored by the concentration and the polymer composition. Storage moduli of up to 110 kPa could be obtained while the material retains shear-thinning and rapid self-healing properties. We demonstrate three-dimensional (3D) printing of excellently defined and shape-persistent 24-layered scaffolds at different aqueous concentrations to highlight its application potential, e.g., in the research area of biofabrication. A macroporous microstructure, which is stable throughout the printing process, could be confirmed via cryo-scanning electron microscopy (SEM) analysis. The absence of cytotoxicity even at very high concentrations opens a wide range of different applications for this first-in-class material in the field of biomaterials.
Collapse
Affiliation(s)
- Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Matthias Maier
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Philipp Stahlhut
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Matthias Beudert
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Vanessa Flegler
- Cryo-Electron Microscopy, Biocenter and Rudolf Virchow Center, Julius-Maximilians-University Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Stefan Forster
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Alexander Altmann
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Fabian Töppke
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Karl Fischer
- Physical Chemistry of Polymers, Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Sebastian Seiffert
- Physical Chemistry of Polymers, Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Bettina Böttcher
- Cryo-Electron Microscopy, Biocenter and Rudolf Virchow Center, Julius-Maximilians-University Würzburg, Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Department of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
- Soft Matter Chemistry, Department of Chemistry, Helsinki University, 00014 Helsinki, Finland
| |
Collapse
|