1
|
Chen B, Zhang F, Dhupia J, Morgenstern MP, Costello M, Boyce H, Sun WJ, Raofi S, Tian L, Xu W. A Chewing Study of Abuse-Deterrent Tablets Containing Polyethylene Oxide Using a Robotic Simulator. AAPS PharmSciTech 2023; 24:245. [PMID: 38030835 DOI: 10.1208/s12249-023-02706-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Abuse-deterrent formulations (ADFs) refer to formulation technologies aiming to deter the abuse of prescription drugs by making the dosage forms difficult to manipulate or extract the opioids. Assessments are required to evaluate the performance of the drugs through different routes including injection, ingestion, and insufflation and also when the drugs are manipulated. Chewing is the easiest and most convenient way to manipulate the drugs and deserves investigation. Chewing is one of the most complex bioprocesses, where the ingested materials are subject to periodic tooth crushing, mixed through the tongue, and lubricated and softened by the saliva. Inter- and intra-subject variations in chewing patterns may result in different chewing performances. The purpose of this study is to use a chewing simulator to assess the deterrent properties of tablets made of polyethylene oxide (PEO). The simulator can mimic human molar grinding with variable chewing parameters including molar trajectory, chewing frequency, and saliva flow rate. To investigate the effects of these parameters, the sizes of the chewed tablet particles and the chewing force were measured to evaluate the chewing performance. Thirty-four out of forty tablets were broken into pieces. The results suggested that the simulator can chew the tablets into smaller particles and that the molar trajectory and saliva flow rate had significant effect on reducing the size of the particles by analysis of variance (ANOVA) while the effect of chewing frequency was not clear. Additionally, chewing force can work as an indicator of the chewing performance.
Collapse
Affiliation(s)
- Bangxiang Chen
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, 5 Grafton Rd, Auckland, 1010, New Zealand.
| | - Feng Zhang
- College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, Texas, 78712, USA
| | - Jaspreet Dhupia
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, 5 Grafton Rd, Auckland, 1010, New Zealand
| | - Marco P Morgenstern
- Food Materials & Structures, Plant & Food Research Ltd, 74 Gerald Street, Lincoln, 7608, New Zealand
| | - Mark Costello
- College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton St., Austin, Texas, 78712, USA
| | - Heather Boyce
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Wei-Jhe Sun
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Saeid Raofi
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Li Tian
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, 20705, USA
| | - Weiliang Xu
- Department of Mechanical and Mechatronics Engineering, The University of Auckland, 5 Grafton Rd, Auckland, 1010, New Zealand
| |
Collapse
|
2
|
Babanejad N, Mfoafo K, Thumma A, Omidi Y, Omidian H. Advances in cryostructures and their applications in biomedical and pharmaceutical products. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
3
|
Palekar S, Kumar Nukala P, Patel K. Aversion liquid-filled drug releasing capsule (3D-RECAL): A novel technology for the development of immediate release abuse deterrent formulations using a fused deposition modelling (FDM) 3D printer. Int J Pharm 2022; 621:121804. [DOI: 10.1016/j.ijpharm.2022.121804] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 12/18/2022]
|
5
|
Sohn JS, Choi JS. Development and evaluation of pseudoephedrine hydrochloride abuse-deterrent formulations using thermal modified rice starch. Int J Biol Macromol 2021; 182:1248-1258. [PMID: 33992650 DOI: 10.1016/j.ijbiomac.2021.05.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022]
Abstract
There is a continued global effort to prevent the spread of prescription drug abuse. In particular, chemical structure of pseudoephedrine hydrochloride (PSE), an over-the-counter medication, is very similar to that of methamphetamine (MET). The aim of this study was to develop abuse-deterrent formulations (ADF) of PSE by using thermal modified starch (TMR). PSE is a water-soluble drug, but it is intended to inhibit extraction from the extraction medium in excess tablets. Starch-based formulations were successfully developed using cross-linking agent and lipid. The extraction (%) of PSE from TMR7-L5 formulation (equivalent to 5 tablets) were 75.3% in DW, 2.7% in ethyl alcohol, and 63.0% in 40% ethyl alcohol (v/v) at 60 °C for 30 min. Moreover, TMR7-L5 formulation delayed drug release compared to the commercial product in in vitro release. In conclusion, the development of ADFs using a starch-based formulation shows novelty and has potential to prevent drug abuse.
Collapse
Affiliation(s)
- Jeong Sun Sohn
- College of General Education, Chosun University, Gwangju 61452, Republic of Korea
| | - Jin-Seok Choi
- Department of Health Care and Medical Administration, 380 Muan-ro, Muan-eup, Muan-gun, Jeollanam-do 58530, Republic of Korea.
| |
Collapse
|
6
|
Babanejad N, Kandalam U, Ahmad R, Omidi Y, Omidian H. Abuse-deterrent properties and cytotoxicity of poly(ethylene oxide) after thermal tampering. Int J Pharm 2021; 600:120481. [PMID: 33766634 DOI: 10.1016/j.ijpharm.2021.120481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 12/18/2022]
Abstract
Poly(ethylene oxide) (PEO) is the most common deterring agent used in the abuse-deterrent formulations (ADFs). In this study, we investigated the PEO's abuse-deterrent properties and its potential cytotoxicity after being heated at high temperatures (80 °C and 180 °C). The results indicated a significant loss in both crush and extraction resistance features of the polymer, which is primarily associated with the polymer degradation at the higher temperatures. The heat-treated PEO at the high temperature was also found to lose its controlled-release feature, upon which over 80% of the drug was released after one hour in the simulated gastric fluid. The cytotoxicity of the PEO was further assessed to evaluate the safety of the polymer following the thermal treatment. Our findings revealed a substantial loss in the viability of the cells exposed to the PEO treated at higher temperatures. Taken all, heating PEO at high temperatures can lead to a significant loss in both the crush/extraction resistance characteristics and the safety of the polymer. These findings reemphasize the fact that more appropriate and stricter test and regulations will be needed to assure that the abuse deterrent formulations are safe and effective under severe conditions of abuse.
Collapse
Affiliation(s)
- Niloofar Babanejad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Umadevi Kandalam
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Rand Ahmad
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Hamid Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
7
|
Elgaied-Lamouchi D, Descamps N, Lefevre P, Rambur I, Pierquin JY, Siepmann F, Siepmann J, Muschert S. Starch-based controlled release matrix tablets: Impact of the type of starch. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Barakh Ali SF, Dharani S, Afrooz H, Mohamed EM, Cook P, Khan MA, Rahman Z. Development of Abuse-Deterrent Formulations Using Sucrose Acetate Isobutyrate. AAPS PharmSciTech 2020; 21:99. [PMID: 32133549 DOI: 10.1208/s12249-020-01646-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/21/2020] [Indexed: 01/17/2023] Open
Abstract
The objective of the present investigation was to understand the effect of sucrose acetate isobutyrate (SAIB) on abuse-deterrent properties (ADPs) of abuse-deterrent formulations (ADFs) based on Polyox™. SAIB would enhance ADPs of Polyox™-based formulations due to its glassy liquid and hydrophobic properties. Formulations were prepared by granulation followed by compression and heat curing at 90°C. The formulations were evaluated for surface morphology, hardness, manipulation in coffee grinder, particle size distribution, drug (pseudoephedrine hydrochloride) extraction in water, alcohol, 0.1 N HCl, 0.1 N NaOH at room temperature and elevated temperature using microwave and oven, syringeability and injectability, and dissolution. The heat curing of formulations significantly increased the hardness (> 490 N). Addition of SAIB imparted elasticity to formulations and decreased brittleness as indicated by lower values of work done and gradient compared to control formulations. After grinding, about 7.7-25.6% of the powder remained on the sieve (1 mm pore opening), D90 was 53.1-136.7 μm more, and Q (fraction < 500 μm) was 17.8-40.7% less in SAIB-based formulations compared to control formulations. Drug extraction between control and test intact formulations was similar. However, drug extraction was 23.9-42.5% (water), 20.6-26.1% (0.1 N HCl), and 37.4-50.6% (0.1 N NaOH) less in SAIB-based powder cured and uncured formulations compared to control formulations. Dissolution varied from 65.6 ± 4.2 to 97.6 ± 4.0% in 9 h from the formulations. In conclusion, addition of SAIB to Polyox™-based ADFs has synergistic effect on ADPs. This would further decrease potential of drug abuse/misuse by various routes.
Collapse
|