1
|
Shen C, Shen A. 4D printing: innovative solutions and technological advances in orthopedic repair and reconstruction, personalized treatment and drug delivery. Biomed Eng Online 2025; 24:5. [PMID: 39838448 PMCID: PMC11748259 DOI: 10.1186/s12938-025-01334-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
With precise control of smart materials deformation in time dimension, doctors can customize orthopedic implants. This review focuses on the advances of 4D printing technology in orthopedics, including its applications in bone repair and reconstruction, personalized treatment, and drug delivery. 4D printing enables the creation of bionic scaffolds and fixation devices for bone repair, customized implants matching patients' conditions for personalized treatment, and specific carriers for accurate drug release and delivery, which together contribute to accelerating bone healing, providing exclusive treatments, enhancing therapeutic effects and reducing side effects, thus helping improve orthopedic medicine. It offers comprehensive reference materials for relevant medical personnel.
Collapse
Affiliation(s)
- Chenxi Shen
- Chongqing Medical University, 61 University Town Middle RoadShapingba District, Chongqing, 400000, People's Republic of China.
| | - Aiyong Shen
- The Fourth People's Hospital of Wujiang District, Suzhou, 215231, Jiangsu Province, People's Republic of China
| |
Collapse
|
2
|
Jovanović M, Petrović M, Stojanović D, Radulović N, Pantelić D, Stajčić I, Uskoković P. 3D-Printed Gelatin-Based Scaffold Crosslinked by Genipin: Evaluation of Mechanical Properties and Biological Effect. Biopolymers 2025; 116:e23639. [PMID: 39526467 DOI: 10.1002/bip.23639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
In this study, scaffolds based on natural polymer gelatin A, blended with polyvinylpyrrolidone were crosslinked by genipin (0.5 and 1 wt%), in order to investigate their mechanical performance and potential for biomedical application. Semi-solid extrusion (SSE) 3D printing technique was used, enabling in situ crosslinking of the blend during processing. Swelling test showed that the swelling ratio reduces with higher concentration of genipin due to an increased crosslinking. The FTIR analysis confirmed the crosslinking of scaffolds by genipin. DSC analysis and mechanical testing have shown improved thermal and mechanical properties. Morphological analysis of scaffolds by FESEM showed increased toughening of the material with the crosslinking. Tensile strength and microhardness showed a significant rise in scaffolds with the increase in genipin content, which was up to 93.8% and 125.3%, respectively. These findings were in accordance with morphological features present in samples. The biological effect of the scaffold matrix system was evaluated by qualitative and quantitative cytotoxicity assessment in vitro, demonstrating the absence of cytotoxicity in tested preparations in a direct test. The cytotoxicity index based on the metabolic activity of cells in an indirect test showed up to 20% reduction of viability compared with the control, confirming the absence of cytotoxicity, which was additionally verified by propidium iodine staining of the cells exposed to scaffolds. The presented gelatin-based crosslinked scaffolds obtained by 3D printing represent good candidates for biomedical application and future research that includes further in vitro and in vivo analysis.
Collapse
Affiliation(s)
- Marija Jovanović
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Miloš Petrović
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Dušica Stojanović
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| | - Nataša Radulović
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijel Pantelić
- Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stajčić
- Department of Physical Chemistry, "Vinča" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Petar Uskoković
- University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
| |
Collapse
|
3
|
Simon MC, Laios K, Nikolakakis I, Papaioannou TG. Three-Dimensional Printing Technology in Drug Design and Development: Feasibility, Challenges, and Potential Applications. J Pers Med 2024; 14:1080. [PMID: 39590572 PMCID: PMC11595649 DOI: 10.3390/jpm14111080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The present investigation evaluates the impact of 3D-printing technology on the design of pharmaceutical drugs, considering the feasibility issues and problems concerning technological, pharmaceutical, and clinical matters. This paper aims to review how 3D printing can modify the traditional manufacturing of drugs with personalized medicine-therapy outcomes being individualized and optimized, hence improving patients' compliance. METHODS The historical development of 3D printing from rapid prototyping to advanced pharmaceutical applications is discussed. A comparison is then made between traditional drug manufacturing approaches and the different techniques of 3D printing, including stereolithography, material extrusion, and binder jetting. Feasibility is assessed based on clinical trials and studies evaluating the efficacy, safety, bioavailability, and cost-effectiveness of 3D-printed drugs. RESULTS Current evidence indicates that material selection, regulatory barriers, and scalability issues are some of the major challenges to be overcome for wider acceptance. Other matters, such as ethical issues concerning patient data privacy, the misuse of 3D-printing technology, and technical complexities related to pharmaceutical 3D printing, are discussed further. Future applications also include bioprinting and in situ printing together with their implications for personalized drug delivery, which will also be discussed. CONCLUSIONS This review stresses that intersectoral collaboration and the updating of regulatory frameworks are a must to overcome the barriers that confront 3D-printing applications in drug development. can could be an opportunity for innovative licensing and manufacturing techniques in pharmaceutical product development that can change the paradigm of personalized medicine through modern printing techniques.
Collapse
Affiliation(s)
| | | | | | - Theodore G. Papaioannou
- Department of Biomedical Engineering and Department of History of Medicine and Medical Ethics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.C.S.); (K.L.); (I.N.)
| |
Collapse
|
4
|
Kennedy SM, K A, J JJB, V E, Rb JR. Transformative applications of additive manufacturing in biomedical engineering: bioprinting to surgical innovations. J Med Eng Technol 2024; 48:151-168. [PMID: 39282861 DOI: 10.1080/03091902.2024.2399017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 08/17/2024] [Accepted: 08/24/2024] [Indexed: 10/10/2024]
Abstract
This paper delves into the diverse applications and transformative impact of additive manufacturing (AM) in biomedical engineering. A detailed analysis of various AM technologies showcases their distinct capabilities and specific applications within the medical field. Special emphasis is placed on bioprinting of organs and tissues, a revolutionary area where AM has the potential to revolutionize organ transplantation and regenerative medicine by fabricating functional tissues and organs. The review further explores the customization of implants and prosthetics, demonstrating how tailored medical devices enhance patient comfort and performance. Additionally, the utility of AM in surgical planning is examined, highlighting how printed models contribute to increased surgical precision, reduced operating times, and minimized complications. The discussion extends to the 3D printing of surgical instruments, showcasing how these bespoke tools can improve surgical outcomes. Moreover, the integration of AM in drug delivery systems, including the development of innovative drug-loaded implants, underscores its potential to enhance therapeutic efficacy and reduce side effects. It also addresses personalized prosthetic implants, regulatory frameworks, biocompatibility concerns, and the future potential of AM in global health and sustainable practices.
Collapse
Affiliation(s)
- Senthil Maharaj Kennedy
- Department of Mechanical Engineering, AAA College of Engineering and Technology, Sivakasi, India
| | - Amudhan K
- Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi, India
| | - Jerold John Britto J
- Department of Mechanical Engineering, Ramco Institute of Technology, Rajapalayam, India
| | - Ezhilmaran V
- Department of Manufacturing Engineering, Anna University, Chennai, India
| | - Jeen Robert Rb
- Department of Mechanical Engineering, Sri Krishna College of Technology, Coimbatore, India
| |
Collapse
|
5
|
Li Z, Song P, Li G, Han Y, Ren X, Bai L, Su J. AI energized hydrogel design, optimization and application in biomedicine. Mater Today Bio 2024; 25:101014. [PMID: 38464497 PMCID: PMC10924066 DOI: 10.1016/j.mtbio.2024.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
Traditional hydrogel design and optimization methods usually rely on repeated experiments, which is time-consuming and expensive, resulting in a slow-moving of advanced hydrogel development. With the rapid development of artificial intelligence (AI) technology and increasing material data, AI-energized design and optimization of hydrogels for biomedical applications has emerged as a revolutionary breakthrough in materials science. This review begins by outlining the history of AI and the potential advantages of using AI in the design and optimization of hydrogels, such as prediction and optimization of properties, multi-attribute optimization, high-throughput screening, automated material discovery, optimizing experimental design, and etc. Then, we focus on the various applications of hydrogels supported by AI technology in biomedicine, including drug delivery, bio-inks for advanced manufacturing, tissue repair, and biosensors, so as to provide a clear and comprehensive understanding of researchers in this field. Finally, we discuss the future directions and prospects, and provide a new perspective for the research and development of novel hydrogel materials for biomedical applications.
Collapse
Affiliation(s)
- Zuhao Li
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Peiran Song
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Yafei Han
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Xiaoxiang Ren
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
6
|
Couți N, Porfire A, Iovanov R, Crișan AG, Iurian S, Casian T, Tomuță I. Polyvinyl Alcohol, a Versatile Excipient for Pharmaceutical 3D Printing. Polymers (Basel) 2024; 16:517. [PMID: 38399895 PMCID: PMC10893462 DOI: 10.3390/polym16040517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Three-dimensional (3D) printing in the pharmaceutical field allows rapid manufacturing of a diverse range of pharmaceutical dosage forms, including personalized items. The application of this technology in dosage form manufacturing requires the judicious selection of excipients because the selected materials must be appropriate to the working principle of each technique. Most techniques rely on the use of polymers as the main material. Among the pharmaceutically approved polymers, polyvinyl alcohol (PVA) is one of the most used, especially for fused deposition modeling (FDM) technology. This review summarizes the physical and chemical properties of pharmaceutical-grade PVA and its applications in the manufacturing of dosage forms, with a particular focus on those fabricated through FDM. The work provides evidence on the diversity of dosage forms created using this polymer, highlighting how formulation and processing difficulties may be overcome to get the dosage forms with a suitable design and release profile.
Collapse
Affiliation(s)
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (N.C.); (R.I.); (A.G.C.); (S.I.); (T.C.); (I.T.)
| | | | | | | | | | | |
Collapse
|
7
|
Kumar M, Sharma V. Shape Memory Effect of Four-Dimensional Printed Polylactic Acid-Based Scaffold with Nature-Inspired Structure. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:10-23. [PMID: 38389686 PMCID: PMC10880677 DOI: 10.1089/3dp.2022.0269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The four-dimensional (4D) printing is an evolving technology that has immense scope in various fields of science and technology owing to ever-challenging needs of human. It is an innovative upgradation of 3D printing procedure, which instills smart capabilities into materials such that they respond to external stimulus. This article aims to investigate the feasibility of 4D printing of polylactic acid (PLA)-based composite scaffolds fabricated by incorporating four different nature-inspired architectures (honeycomb, giant water lily, spiderweb, and nautilus shell). The composites were developed by adding 1, 3, and 5 wt.% of Calcium Phosphate (CaP) into PLA. Various thermomechanical tests were accomplished to evaluate the properties of developed material. Furthermore, the shape memory characteristics of these scaffolds were examined using thermally controlled conditions. The characterization tests displayed favorable outcomes in terms of thermal stability and hydrophilic nature of the PLA and PLA/CaP composite materials. It was found that the honeycomb structure showed the best shape memory and mechanical behavior among the four designs. Furthermore, the introduction of CaP was found to enhance mechanical strength and shape memory property, whereas the surface integrity was adversely affected. This study can play a vital role in developing self-fitting high-shape recovery biomedical scaffolds for bone-repair applications.
Collapse
Affiliation(s)
- Mohit Kumar
- Additive and Subtractive Manufacturing Lab, Department of Mechanical and Industrial Engineering, IIT Roorkee, Roorkee, India
| | - Varun Sharma
- Additive and Subtractive Manufacturing Lab, Department of Mechanical and Industrial Engineering, IIT Roorkee, Roorkee, India
| |
Collapse
|
8
|
Cordell GA. The contemporary nexus of medicines security and bioprospecting: a future perspective for prioritizing the patient. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:11. [PMID: 38270809 PMCID: PMC10811317 DOI: 10.1007/s13659-024-00431-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Reacting to the challenges presented by the evolving nexus of environmental change, defossilization, and diversified natural product bioprospecting is vitally important for advancing global healthcare and placing patient benefit as the most important consideration. This overview emphasizes the importance of natural and synthetic medicines security and proposes areas for global research action to enhance the quality, safety, and effectiveness of sustainable natural medicines. Following a discussion of some contemporary factors influencing natural products, a rethinking of the paradigms in natural products research is presented in the interwoven contexts of the Fourth and Fifth Industrial Revolutions and based on the optimization of the valuable assets of Earth. Following COP28, bioprospecting is necessary to seek new classes of bioactive metabolites and enzymes for chemoenzymatic synthesis. Focus is placed on those performance and practice modifications which, in a sustainable manner, establish the patient, and the maintenance of their prophylactic and treatment needs, as the priority. Forty initiatives for natural products in healthcare are offered for the patient and the practitioner promoting global action to address issues of sustainability, environmental change, defossilization, quality control, product consistency, and neglected diseases to assure that quality natural medicinal agents will be accessible for future generations.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., 1320 Ashland Avenue, Evanston, IL, 60201, USA.
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
9
|
Durga Prasad Reddy R, Sharma V. Investigations of hybrid infill pattern in additive manufactured tablets: A novel approach towards tunable drug release. J Biomed Mater Res B Appl Biomater 2023; 111:1869-1882. [PMID: 37294096 DOI: 10.1002/jbm.b.35290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/08/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
The significance of 3D printing has risen exponentially in biomedical and pharmaceutical applications. Its potential in the field of fabricating drug delivery systems, by virtue of processing biocompatible polymers, has been very lucrative. This work aims to tap the interstitial drug delivery kinetics that are often inaccessible through machine-specific infill patterns in additive manufactured tablets fabricated using PVA biopolymer as an excipient. In this regard, a myo-inositol containing tablet has been printed using Fused Deposition Modeling preceded by Hot Melt Extrusion drug loading route. Two machine-specific infill patterns were taken, namely straight and grid. Later, these two distinct patterns were juxtaposed to obtain novel hybrid infill patterns in the tablets. Then, these tablets and their filament were subjected to various thermal, mechanical, imaging and pharmaceutical characterization tests to assess the feasibility of the research attempt. Finally, dissolution tests were conducted to evaluate their dissolution behavior over a time period. The characterization tests proved the scientific viability of this attempt along with amorphous existence of drug in the polymeric filament. The dissolution results showed favorable drug release by achieving interstitial dissolution timings with surface area/volume (SA/V) ratio being found to be the principal factor.
Collapse
Affiliation(s)
- R Durga Prasad Reddy
- Department of Mechanical and Industrial Engineering, Additive and Subtractive Manufacturing (ASM) Laboratory, IIT Roorkee, Roorkee, India
| | - Varun Sharma
- Department of Mechanical and Industrial Engineering, IIT Roorkee, Roorkee, India
| |
Collapse
|
10
|
Bond G, Mahjoubnia A, Zhao W, King SD, Chen SY, Lin J. 4D printing of biocompatible, hierarchically porous shape memory polymeric structures. BIOMATERIALS ADVANCES 2023; 153:213575. [PMID: 37557033 PMCID: PMC10529366 DOI: 10.1016/j.bioadv.2023.213575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/25/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
Conventional implants tend to have significant limitations, as they are one-size-fits-all, require monitoring, and have the potential for immune rejection. However, 4D Printing presents a method to manufacture highly personalized, shape-changing, minimally invasive biomedical implants. Shape memory polymers (SMPs) with a glass transition temperature (Tg) between room and body temperature (20-38 °C) are particularly desirable for this purpose, as they can be deformed to a temporary shape before implantation, then undergo a shape change within the body. Commonly used SMPs possess either an undesirable Tg or lack the biocompatibility or mechanical properties necessary to match soft biological tissues. In this work, Poly(glycerol dodecanoate) acrylate (PGDA) with engineered pores is introduced to solve these issues. Pores are induced by porogen leaching, where microparticles are mixed with the printing ink and then are dissolved in water after 3D printing, creating a hierarchically porous texture to improve biological activity. With this method, highly complex shapes were printed, including overhanging structures, tilted structures, and a "3DBenchy". The porous SMP has a Tg of 35.6 °C and a Young's Modulus between 0.31 and 1.22 MPa, comparable to soft tissues. A one-way shape memory effect (SME) with shape fixity and recovery ratios exceeding 98 % was also demonstrated. Cultured cells had a survival rate exceeding 90 %, demonstrating cytocompatibility. This novel method creates hierarchically porous shape memory scaffolds with an optimal Tg for reducing the invasiveness of implantation and allows for precise control over elastic modulus, porosity, structure, and transition temperature.
Collapse
Affiliation(s)
- Graham Bond
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia 65211, USA
| | - Alireza Mahjoubnia
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia 65211, USA
| | - Wen Zhao
- Department of Surgery, School of Medicine, University of Missouri, Columbia 65211, USA
| | - Skylar D King
- Department of Surgery, School of Medicine, University of Missouri, Columbia 65211, USA
| | - Shi-You Chen
- Department of Surgery, School of Medicine, University of Missouri, Columbia 65211, USA
| | - Jian Lin
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia 65211, USA.
| |
Collapse
|
11
|
Mohol SS, Kumar M, Sharma V. PLA-based nature-inspired architecture for bone scaffolds: A finite element analysis. Comput Biol Med 2023; 163:107163. [PMID: 37329619 DOI: 10.1016/j.compbiomed.2023.107163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
The implantation of bio-degradable scaffolds is considered as a promising approach to address the repair of bone defects. This article aims to develop a computational approach to study the mechanical behaviour, fluid dynamic, and degradation impact on polylactic acid scaffolds with nature-inspired design structures. Scaffold design is considered to be one of the main factors for the regulation of mechanical characteristics and fluid flow dynamics. In this article, five scaffolds with different nature-inspired architectures have been designed within a specific porosity range. Based on finite element analysis, their mechanical behaviour and computational fluid dynamic study are performed to evaluate the respective properties of different scaffolds. In addition, diffusion-governed degradation analysis of the scaffolds has been performed to compute the total time required for the scaffold to degrade within a given environment. Based on the mechanical behaviour, the Spider-web architecture scaffold was found to have the least deformation, and also the lowest value of equivalent stress and strain. The Nautilus Shell architecture scaffold had the highest value of equivalent stress and strain. The permeability of all the scaffolds was found to meet the requirement of the cancellous bone. All computational fluid dynamics (CFD) results of wall shear stress are in line with the requirement for cell differentiation. It was observed that the Spider-web architecture scaffold had undergone the slowest degradation, and the Giant Water Lily architecture scaffold experienced the fastest degradation.
Collapse
Affiliation(s)
- Shubham Shankar Mohol
- Additive and Subtractive Manufacturing Lab, Department of Mechanical and Industrial Engineering, IIT Roorkee, India
| | - Mohit Kumar
- Additive and Subtractive Manufacturing Lab, Department of Mechanical and Industrial Engineering, IIT Roorkee, India
| | - Varun Sharma
- Additive and Subtractive Manufacturing Lab, Department of Mechanical and Industrial Engineering, IIT Roorkee, India; Department of Mechanical and Industrial Engineering, IIT Roorkee, India.
| |
Collapse
|
12
|
Kumar M, Sharma V. 3D printed bio-ceramic loaded PEGDA/vitreous carbon composite: Fabrication, characterization, and life cycle assessment. J Mech Behav Biomed Mater 2023; 143:105904. [PMID: 37178637 DOI: 10.1016/j.jmbbm.2023.105904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Stereolithography (SLA) is gaining vast popularity in the development of three-dimensional parts with customized materials for tissue engineering applications. Consequently, developing customized materials like bio-composites (bio-polymers and bio-ceramics) is the basic pillar that meets the application requirement. Photo-crosslinkable poly(ethylene glycol) diacrylate (PEGDA) has outstanding biocompatibility and biophysical properties for tissue engineering. But, because of its poor mechanical properties, its scope is limited to load-bearing applications. This research aims to enhance the mechanical and tribological properties of PEGDA by reinforcing Vitreous Carbon (VC) bioceramic. Therefore, 1 to 5 wt % of VC have been added in PEGDA and developed novel PEGDA/VC composite resins for SLA. The rheological and sedimentation test have been performed to check the suitability for SLA printing. Afterward, printed materials have been characterized by fourier transform infrared spectrometer, X-ray diffraction, thermogravimetric analysis, optical profilometer, and scanning electron microscope. Moreover, tensile compression, flexural, and tribological properties have been evaluated. It was found that the addition of VC in PEGDA enhanced its mechanical, thermal, and tribological properties. Besides, a life cycle assessment of materials and energy resources in SLA process has been performed to investigate the environmental impact.
Collapse
Affiliation(s)
- Mohit Kumar
- Additive and Subtractive Manufacturing Lab, Department of Mechanical and Industrial Engineering, IIT Roorkee, India
| | - Varun Sharma
- Department of Mechanical and Industrial Engineering, IIT Roorkee, India.
| |
Collapse
|
13
|
Ahmad J, Garg A, Mustafa G, Mohammed AA, Ahmad MZ. 3D Printing Technology as a Promising Tool to Design Nanomedicine-Based Solid Dosage Forms: Contemporary Research and Future Scope. Pharmaceutics 2023; 15:1448. [PMID: 37242690 PMCID: PMC10220923 DOI: 10.3390/pharmaceutics15051448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
3D printing technology in medicine is gaining great attention from researchers since the FDA approved the first 3D-printed tablet (Spritam®) on the market. This technique permits the fabrication of various types of dosage forms with different geometries and designs. Its feasibility in the design of different types of pharmaceutical dosage forms is very promising for making quick prototypes because it is flexible and does not require expensive equipment or molds. However, the development of multi-functional drug delivery systems, specifically as solid dosage forms loaded with nanopharmaceuticals, has received attention in recent years, although it is challenging for formulators to convert them into a successful solid dosage form. The combination of nanotechnology with the 3D printing technique in the field of medicine has provided a platform to overcome the challenges associated with the fabrication of nanomedicine-based solid dosage forms. Therefore, the major focus of the present manuscript is to review the recent research developments that involved the formulation design of nanomedicine-based solid dosage forms utilizing 3D printing technology. Utilization of 3D printing techniques in the field of nanopharmaceuticals achieved the successful transformation of liquid polymeric nanocapsules and liquid self-nanoemulsifying drug delivery systems (SNEDDS) to solid dosage forms such as tablets and suppositories easily with customized doses as per the needs of the individual patient (personalized medicine). Furthermore, the present review also highlights the utility of extrusion-based 3D printing techniques (Pressure-Assisted Microsyringe-PAM; Fused Deposition Modeling-FDM) to produce tablets and suppositories containing polymeric nanocapsule systems and SNEDDS for oral and rectal administration. The manuscript critically analyzes contemporary research related to the impact of various process parameters on the performance of 3D-printed solid dosage forms.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Anuj Garg
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Dawadmi Campus, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| |
Collapse
|
14
|
Arif ZU, Khalid MY, Noroozi R, Hossain M, Shi HH, Tariq A, Ramakrishna S, Umer R. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J Pharm Sci 2023; 18:100812. [PMID: 37274921 PMCID: PMC10238852 DOI: 10.1016/j.ajps.2023.100812] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/26/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Biopolymers are promising environmentally benign materials applicable in multifarious applications. They are especially favorable in implantable biomedical devices thanks to their excellent unique properties, including bioactivity, renewability, bioresorbability, biocompatibility, biodegradability and hydrophilicity. Additive manufacturing (AM) is a flexible and intricate manufacturing technology, which is widely used to fabricate biopolymer-based customized products and structures for advanced healthcare systems. Three-dimensional (3D) printing of these sustainable materials is applied in functional clinical settings including wound dressing, drug delivery systems, medical implants and tissue engineering. The present review highlights recent advancements in different types of biopolymers, such as proteins and polysaccharides, which are employed to develop different biomedical products by using extrusion, vat polymerization, laser and inkjet 3D printing techniques in addition to normal bioprinting and four-dimensional (4D) bioprinting techniques. This review also incorporates the influence of nanoparticles on the biological and mechanical performances of 3D-printed tissue scaffolds. This work also addresses current challenges as well as future developments of environmentally friendly polymeric materials manufactured through the AM techniques. Ideally, there is a need for more focused research on the adequate blending of these biodegradable biopolymers for achieving useful results in targeted biomedical areas. We envision that biopolymer-based 3D-printed composites have the potential to revolutionize the biomedical sector in the near future.
Collapse
Affiliation(s)
- Zia Ullah Arif
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Muhammad Yasir Khalid
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Reza Noroozi
- School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mokarram Hossain
- Zienkiewicz Centre for Computational Engineering (ZCCE), Faculty of Science and Engineering, Swansea University, Swansea SA1 8EN, UK
| | - HaoTian Harvey Shi
- Department of Mechanical & Materials Engineering, Western University, Ontario N6A 3K7, Canada
| | - Ali Tariq
- Department of Mechanical Engineering, University of Management & Technology Lahore, Sialkot Campus 51041, Pakistan
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, 119260, Singapore
| | - Rehan Umer
- Department of Aerospace Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
15
|
Maurizii G, Moroni S, Khorshid S, Aluigi A, Tiboni M, Casettari L. 3D-printed EVA-based patches manufactured by direct powder extrusion for personalized transdermal therapies. Int J Pharm 2023; 635:122720. [PMID: 36781085 DOI: 10.1016/j.ijpharm.2023.122720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
In recent years, 3D printing has attracted great interest in the pharmaceutical field as a promising tool for the on-demand manufacturing of patient-centered pharmaceutical forms. Among the existing 3D printing techniques, direct powder extrusion (DPE) resulted as the most practical approach thanks to the possibility to directly process excipients and drugs in a single step. The main goal of this work was to determine whether different grades of ethylene vinyl acetate (EVA) copolymer might be employed as new feedstock materials for the DPE technique to manufacture transdermal patches. By selecting two model drugs with different thermal behavior, (i.e., ibuprofen and diclofenac sodium) we also wanted to pay attention to the versatility of EVA excipient in preparing patches for customized transdermal therapies. EVA was combined with 30 % (w/w) of each model drugs. The physicochemical composition of the printed devices was investigated through Fourier-transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analyses. FT-IR spectra confirmed that the starting materials were effectively incorporated into the final formulation, and thermal analyses demonstrated that the extrusion process altered the crystalline morphology of the raw polymers inducing the formation of crystals at lower thicknesses. Lastly, the drug release and permeation profile of the printed systems was evaluated for 48 h and showed to be dependent on the VA content of the EVA grade (74.5 % of ibuprofen released from EVA 4030AC matrix and 12.6 % of diclofenac sodium released from EVA1821A matrix). Hence, this study demonstrated that EVA and direct powder extrusion technique could be promising tools for manufacturing transdermal patches. By selecting the EVA grade with the appropriate VA content, drugs with dissimilar melting points could be printed preserving their thermal stability. Moreover, the desired drug release and permeation profile of the drug can be achieved, representing an important advantage in terms of personalized medicine.
Collapse
Affiliation(s)
- Giorgia Maurizii
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Sofia Moroni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Shiva Khorshid
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Annalisa Aluigi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy.
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, PU, Italy; Prosopika Srl, Via del Trabocchetto, 1, 61034, Fossombrone, PU, Italy
| |
Collapse
|
16
|
Patel NG, Serajuddin ATM. Improving drug release rate, drug-polymer miscibility, printability and processability of FDM 3D-printed tablets by weak acid-base interaction. Int J Pharm 2023; 632:122542. [PMID: 36566823 DOI: 10.1016/j.ijpharm.2022.122542] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Slow drug release, low drug-polymer miscibility, poor printability of polymers used, and high processing temperature are major challenges in developing FDM 3D-printed tablets. These challenges were addressed in this investigation by having a model basic drug, haloperidol (mp: 151.5 °C), interact with a weak acid, malic acid (mp: 130 °C), during the melt extrusion of formulations into filaments used for 3D-printing. Malic acid was selected as it was previously reported that it did not form any crystalline salt with haloperidol but its addition to aqueous media could greatly increase the solubility of haloperidol from ∼ 1 µg/mL to > 1 g per mL of water by acid-base supersolubilization. Concentrated solutions of haloperidol-malic acid mixtures produced amorphous materials upon drying. It has been observed in the present investigation that similar interaction between haloperidol and malic acid may also occur in the absence of water. Upon heating, haloperidol-malic acid mixtures at 1:1 and 1:2 molar ratios turned amorphous starting at ∼ 50 °C, which is much below the melting point of either component. When Kollidon® VA64, a brittle and non-printable polymer, was used as the polymeric carrier, the acid-base interaction greatly reduced the melt viscosity of haloperidol-malic acid-Kollidon® VA64 ternary mixtures. Consequently, melt extrusion of filaments and printing of tablets using such mixtures could be performed at much lower temperatures than those with haloperidol-Kollidon® VA64 binary mixtures. The filaments containing 15 % and 30 % haloperidol along with malic acid and Kollidon® VA64 could be printed into tablets at relatively low temperatures of 125 and 100 °C, respectively, thus making Kollidon® VA64 not only printable but also doing so at low temperatures. Up to 50 % w/w drug load in filaments was achieved without any crystallization of haloperidol or malic acid. Drug release at pH 2 and 6.8 from printed tablets with 100 % infill was 80 % in < 30 min. Thus, the acid-base interaction can successfully resolve multiple development challenges encountered with FDM 3D-printed tablets.
Collapse
Affiliation(s)
- Nirali G Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Abu T M Serajuddin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| |
Collapse
|
17
|
Controlled delivery via hot-melt extrusion: A focus on non-biodegradable carriers for non-oral applications. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
18
|
Controlled Release of Felodipine from 3D-Printed Tablets with Constant Surface Area: Influence of Surface Geometry. Pharmaceutics 2023; 15:pharmaceutics15020467. [PMID: 36839789 PMCID: PMC9967401 DOI: 10.3390/pharmaceutics15020467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
In this study, 3D-printed tablets with a constant surface area were designed and fabricated using polylactic acid (PLA) in the outer compartment and polyvinyl alcohol and felodipine (FDP) in the inner compartment. The influences of different surface geometries of the inner compartment, namely, round, hexagon, square, and triangle, on drug release from 3D-printed tablets were also studied. The morphology and porosity of the inner compartment were determined using scanning electron microscopy and synchrotron radiation X-ray tomographic microscopy, respectively. Additionally, drug content and drug release were also evaluated. The results revealed that the round-shaped geometry seemed to have the greatest total surface area of the inner compartment, followed by square-shaped, hexagon-shaped, and triangle-shaped geometries. FDP-loaded 3D-printed tablets with triangle and hexagon surface geometries had the slowest drug release (about 80% within 24 h). In the round-shaped and square-shaped 3D-printed tablets, complete drug release was observed within 12 h. Furthermore, the drug release from triangle-shaped 3D-printed tablets with double the volume of the inner compartment was faster than that of a smaller volume. This was due to the fact that a larger tablet volume increased the surface area contacting the medium, resulting in a faster drug release. The findings indicated that the surface geometry of 3D-printed tablets with a constant surface area affected drug release. This study suggests that 3D printing technology may be used to develop oral solid dosage forms suitable for customized therapeutic treatments.
Collapse
|
19
|
Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review. Int J Pharm X 2023; 5:100159. [PMID: 36632068 PMCID: PMC9827389 DOI: 10.1016/j.ijpx.2023.100159] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023] Open
Abstract
Three-dimensional (3D) printing or Additive Manufacturing (AM) technology is an innovative tool with great potential and diverse applications in various fields. As 3D printing has been burgeoning in recent times, a tremendous transformation can be envisaged in medical care, especially the manufacturing procedures leading to personalized medicine. Stereolithography (SLA), a vat-photopolymerization technique, that uses a laser beam, is known for its ability to fabricate complex 3D structures ranging from micron-size needles to life-size organs, because of its high resolution, precision, accuracy, and speed. This review presents a glimpse of varied 3D printing techniques, mainly expounding SLA in terms of the materials used, the orientation of printing, and the working mechanisms. The previous works that focused on developing pharmaceutical dosage forms, drug-eluting devices, and tissue scaffolds are presented in this paper, followed by the challenges associated with SLA from an industrial and regulatory perspective. Due to its excellent advantages, this technology could transform the conventional "one dose fits all" concept to bring digitalized patient-centric medication into reality.
Collapse
|
20
|
Lu A, Zhang J, Jiang J, Zhang Y, Giri BR, Kulkarni VR, Aghda NH, Wang J, Maniruzzaman M. Novel 3D Printed Modular Tablets Containing Multiple Anti-Viral Drugs: a Case of High Precision Drop-on-Demand Drug Deposition. Pharm Res 2022; 39:2905-2918. [PMID: 36109460 PMCID: PMC9483370 DOI: 10.1007/s11095-022-03378-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 11/27/2022]
Abstract
3D printed drug delivery systems have gained tremendous attention in pharmaceutical research due to their inherent benefits over conventional systems, such as provisions for customized design and personalized dosing. The present study demonstrates a novel approach of drop-on-demand (DoD) droplet deposition to dispense drug solutions precisely on binder jetting-based 3D printed multi-compartment tablets containing 3 model anti-viral drugs (hydroxychloroquine sulfate - HCS, ritonavir and favipiravir). The printing pressure affected the printing quality whereas the printing speed and infill density significantly impacted the volume dispersed on the tablets. Additionally, the DoD parameters such as nozzle valve open time and cycle time affected both dispersing volume and the uniformity of the tablets. The solid-state characterization, including DSC, XRD, and PLM, revealed that all drugs remained in their crystalline forms. Advanced surface analysis conducted by microCT imaging as well as Artificial Intelligence (AI)/Deep Learning (DL) model validation showed a homogenous drug distribution in the printed tablets even at ultra-low doses. For a four-hour in vitro drug release study, the drug loaded in the outer layer was released over 90%, and the drug incorporated in the middle layer was released over 70%. In contrast, drug encapsulated in the core was only released about 40%, indicating that outer and middle layers were suitable for immediate release while the core could be applied for delayed release. Overall, this study demonstrates a great potential for tailoring drug release rates from a customized modular dosage form and developing personalized drug delivery systems coupling different 3D printing techniques.
Collapse
Affiliation(s)
- Anqi Lu
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jiaxiang Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Junhuang Jiang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yu Zhang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Bhupendra R Giri
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Vineet R Kulkarni
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Niloofar Heshmati Aghda
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jiawei Wang
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D Printing (PharmE3D) Labs, Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
21
|
Afzali Naniz M, Askari M, Zolfagharian A, Afzali Naniz M, Bodaghi M. 4D Printing: A Cutting-edge Platform for Biomedical Applications. Biomed Mater 2022; 17. [PMID: 36044881 DOI: 10.1088/1748-605x/ac8e42] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/31/2022] [Indexed: 01/10/2023]
Abstract
Nature's materials have evolved over time to be able to respond to environmental stimuli by generating complex structures that can change their functions in response to distance, time, and direction of stimuli. A number of technical efforts are currently being made to improve printing resolution, shape fidelity, and printing speed to mimic the structural design of natural materials with three-dimensional (3D) printing. Unfortunately, this technology is limited by the fact that printed objects are static and cannot be reshaped dynamically in response to stimuli. In recent years, several smart materials have been developed that can undergo dynamic morphing in response to a stimulus, thus resolving this issue. Four-dimensional (4D) printing refers to a manufacturing process involving additive manufacturing, smart materials, and specific geometries. It has become an essential technology for biomedical engineering and has the potential to create a wide range of useful biomedical products. This paper will discuss the concept of 4D bioprinting and the recent developments in smart matrials, which can be actuated by different stimuli and be exploited to develop biomimetic materials and structures, with significant implications for pharmaceutics and biomedical research, as well as prospects for the future.
Collapse
Affiliation(s)
- Moqaddaseh Afzali Naniz
- University of New South Wales, Graduate School of Biomedical Engineering, Sydney, New South Wales, 2052, AUSTRALIA
| | - Mohsen Askari
- Nottingham Trent University, Clifton Manpus, Nottingham, Nottinghamshire, NG11 8NS, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Ali Zolfagharian
- Engineering, Deakin University Faculty of Science Engineering and Built Environment, Waurn Ponds, Geelong, Victoria, 3217, AUSTRALIA
| | - Mehrdad Afzali Naniz
- Shahid Beheshti University of Medical Sciences, School of Medicine, Tehran, Tehran, 19839-63113, Iran (the Islamic Republic of)
| | - Mahdi Bodaghi
- Department of Engineering , Nottingham Trent University - Clifton Campus, Clifton Campus, Nottingham, NG11 8NS, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
22
|
Moya-Lopez C, González-Fuentes J, Bravo I, Chapron D, Bourson P, Alonso-Moreno C, Hermida-Merino D. Polylactide Perspectives in Biomedicine: From Novel Synthesis to the Application Performance. Pharmaceutics 2022; 14:1673. [PMID: 36015299 PMCID: PMC9415503 DOI: 10.3390/pharmaceutics14081673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/24/2022] Open
Abstract
The incessant developments in the pharmaceutical and biomedical fields, particularly, customised solutions for specific diseases with targeted therapeutic treatments, require the design of multicomponent materials with multifunctional capabilities. Biodegradable polymers offer a variety of tailored physicochemical properties minimising health adverse side effects at a low price and weight, which are ideal to design matrices for hybrid materials. PLAs emerge as an ideal candidate to develop novel materials as are endowed withcombined ambivalent performance parameters. The state-of-the-art of use of PLA-based materials aimed at pharmaceutical and biomedical applications is reviewed, with an emphasis on the correlation between the synthesis and the processing conditions that define the nanostructure generated, with the final performance studies typically conducted with either therapeutic agents by in vitro and/or in vivo experiments or biomedical devices.
Collapse
Affiliation(s)
- Carmen Moya-Lopez
- Laboratoire Matériaux Optiques Photonique et Systèmes (LMOPS), CentraleSupélec, Université de Lorraine, 57000 Metz, France
| | - Joaquín González-Fuentes
- Centro Regional de Investigaciones Biomédicas (CRIB), 02008 Albacete, Spain
- Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
| | - Iván Bravo
- Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Unidad NanoCRIB, Centro Regional de Investigaciones Biomédicas, 02008 Albacete, Spain
| | - David Chapron
- Laboratoire Matériaux Optiques Photonique et Systèmes (LMOPS), CentraleSupélec, Université de Lorraine, 57000 Metz, France
| | - Patrice Bourson
- Laboratoire Matériaux Optiques Photonique et Systèmes (LMOPS), CentraleSupélec, Université de Lorraine, 57000 Metz, France
| | - Carlos Alonso-Moreno
- Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain
- Unidad NanoCRIB, Centro Regional de Investigaciones Biomédicas, 02008 Albacete, Spain
| | - Daniel Hermida-Merino
- DUBBLE@ESRF BP CS40220, 38043 Grenoble, France
- Departamento de Física Aplicada, CINBIO, Lagoas-Marcosende Campus, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
23
|
Li L, Zhu X, Yang H, Liang B, Yuan L, Hu Y, Chen F, Han X. Phase-Field Model for Drug Release of Water-Swellable Filaments for Fused Filament Fabrication. Mol Pharm 2022; 19:2854-2867. [PMID: 35801946 DOI: 10.1021/acs.molpharmaceut.2c00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This paper treats the drug release process as a phase-field problem and a phase-field model capable of simulating the dynamics of multiple moving fronts, transient drug fluxes, and fractional drug release from swellable polymeric systems is proposed and validated experimentally. The model can not only capture accurately the positions and movements of the distinct fronts without tracking the locations of fronts explicitly but also predict well the release profile to the completion of the release process. The parametric study has shown that parameters including water diffusion coefficient, drug saturation solubility, drug diffusion coefficient, initial drug loading ratio, and initial porosity are critical in regulating the drug release kinetics. It has been also demonstrated that the model can be applied to the study of swellable filaments and has wide applicability for different materials. Due to explicit boundary position tracking being eliminated, the model paves the way for practical use and can be extended for dealing with geometrically complex drug delivery systems. It is a useful tool to guide the design of new controlled delivery systems fabricated by fused filament fabrication.
Collapse
Affiliation(s)
- Ling Li
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Xiaolong Zhu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Huaiyu Yang
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, Leicestershire, U.K
| | - Bangchao Liang
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Lei Yuan
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Yueqiang Hu
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Feng Chen
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| | - Xiaoxiao Han
- National Research Center for High-Efficiency Grinding, College of Mechanical and Vehicle Engineering, Hunan University, No. 2 Lushan South Road, Changsha 410082, China.,State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, No. 2 Lushan South Road, Changsha 410082, China
| |
Collapse
|
24
|
Indirect Additive Manufacturing: A Valid Approach to Modulate Sorption/Release Profile of Molecules from Chitosan Hydrogels. Polymers (Basel) 2022; 14:polym14132530. [PMID: 35808575 PMCID: PMC9269287 DOI: 10.3390/polym14132530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
This work studied the influence of hydrogel’s physical properties (geometry and hierarchical roughness) on the in vitro sorption/release profiles of molecules. To achieve this goal, chitosan (CS) solutions were cast in 3D-printed (3DP) molds presenting intricate shapes (cubic and half-spherical with/without macro surface roughness) and further immersed in alkaline solutions of NaOH and NaCl. The resulting physically crosslinked hydrogels were mechanically stable in aqueous environments and successfully presented the shapes and geometries imparted by the 3DP molds. Sorption and release profiles were evaluated using methyl orange (MO) and paracetamol (PMOL) as model molecules, respectively. Results revealed that distinct MO sorption/PMOL release profiles were obtained according to the sample’s shape and presence/absence of hierarchical roughness. MO sorption capacity of CS samples presented both dependencies of hierarchical surface and geometry parameters. Hence, cubic samples without a hierarchical surface presented the highest (up to 1.2 × greater) dye removal capacity. Moreover, PMOL release measurements were more dependent on the surface area of hydrogels, where semi-spherical samples with hierarchical roughness presented the fastest (~1.13 × faster) drug delivery profiles. This work demonstrates that indirect 3DP (via fused filament fabrication (FFF) technology) could be a simple strategy to obtain hydrogels with distinct sorption/release profiles.
Collapse
|
25
|
Fabrication and evaluation of customized implantable drug delivery system for orthopedic therapy based on 3D printing technologies. Int J Pharm 2022; 618:121679. [PMID: 35314275 DOI: 10.1016/j.ijpharm.2022.121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/18/2022] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
A customized implantable drug delivery system with the dual functions of playing a supporting role and providing continuous bacteriostasis is of great importance during the treatment of bone defect diseases. The main objective of this study was to explore the potential of using three-dimensional (3D) printing technologies to fabricate customized implants. Ciprofloxacin hydrochloride (Cipro) was chosen as the model drug, and two printing technologies, semisolid extrusion (SSE) and fused deposition modeling (FDM) were introduced. Six kinds of implants with customized irregular shapes were printed via FDM technology. Two kinds of implants with customized dosages were constructed via SSE technology. In addition, three kinds of implants with customized internal structures were produced via FDM and SSE technologies. The data for morphology, dimensions and mechanical properties demonstrated satisfactory printability and good printing accuracy when applying SSE and FDM technologies to produce the customized implants. The dissolution curves indicated that the desired customized drug release could be achieved by designing the specific internal structures. The biocompatibility examination showed that the printed implants possessed outstanding biocompatibility. In conclusion, all results suggested that 3D printing technologies provide a feasible method and novel strategy to fabricate customized implantable drug delivery systems.
Collapse
|
26
|
Development and Validation of a Novel Tool for Assessing the Environmental Impact of 3D Printing Technologies: A Pharmaceutical Perspective. Pharmaceutics 2022; 14:pharmaceutics14050933. [PMID: 35631519 PMCID: PMC9146618 DOI: 10.3390/pharmaceutics14050933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/12/2022] Open
Abstract
Technological advancements have created infinite opportunities and rendered our life easier at several fronts. Nonetheless, the environment has suffered the aftermaths of modernization. Ironically, the pharmaceutical industry was found to be a significant contributor to environmental deterioration. To tackle this issue, continuous eco-evaluation of newly introduced technologies is crucial. Three-dimensional printing (3DP) is rapidly establishing its routes in different industries. Interestingly, 3DP is revolutionising the production of pharmaceuticals and is regarded as a promising approach for the fabrication of patient-centric formulations. Despite the increasing applications in the pharmaceutical field, tools that evaluate the environmental impacts of 3DP are lacking. Energy and solvent consumption, waste generation, and disposal are the main associated factors that present major concerns. For the first time, we are proposing a quantitative tool, the index of Greenness Assessment of Printed Pharmaceuticals (iGAPP), that evaluates the greenness of the different 3DP technologies used in the pharmaceutical industry. The tool provides a colour-coded pictogram and a numerical score indicating the overall greenness of the employed printing method. Validation was performed by constructing the greenness profile of selected formulations produced using the different 3DP techniques. This tool is simple to use and indicates the greenness level of the procedures involved, thereby creating an opportunity to modify the processes for more sustainable practices.
Collapse
|
27
|
Zamboulis A, Michailidou G, Koumentakou I, Bikiaris DN. Polysaccharide 3D Printing for Drug Delivery Applications. Pharmaceutics 2022; 14:145. [PMID: 35057041 PMCID: PMC8778081 DOI: 10.3390/pharmaceutics14010145] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/19/2021] [Accepted: 12/24/2021] [Indexed: 12/27/2022] Open
Abstract
3D printing, or additive manufacturing, has gained considerable interest due to its versatility regarding design as well as in the large choice of materials. It is a powerful tool in the field of personalized pharmaceutical treatment, particularly crucial for pediatric and geriatric patients. Polysaccharides are abundant and inexpensive natural polymers, that are already widely used in the food industry and as excipients in pharmaceutical and cosmetic formulations. Due to their intrinsic properties, such as biocompatibility, biodegradability, non-immunogenicity, etc., polysaccharides are largely investigated as matrices for drug delivery. Although an increasing number of interesting reviews on additive manufacturing and drug delivery are being published, there is a gap concerning the printing of polysaccharides. In this article, we will review recent advances in the 3D printing of polysaccharides focused on drug delivery applications. Among the large family of polysaccharides, the present review will particularly focus on cellulose and cellulose derivatives, chitosan and sodium alginate, printed by fused deposition modeling and extrusion-based printing.
Collapse
Affiliation(s)
- Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (G.M.); (I.K.)
| | | | | | - Dimitrios N. Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (G.M.); (I.K.)
| |
Collapse
|
28
|
Fakhoury Y, Ellabban A, Attia U, Sallam A, Elsherbiny S. Three-dimensional printing in ophthalmology and eye care: current applications and future developments. Ther Adv Ophthalmol 2022; 14:25158414221106682. [PMID: 35782482 PMCID: PMC9247992 DOI: 10.1177/25158414221106682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Three-dimensional (3D) printing uses a process of adding material in a layer-by-layer fashion to form the end product. This technology is advancing rapidly and is being increasingly utilized in the medical field as it becomes more accessible and cost-effective. It has an increasingly important role in ophthalmology and eyecare as its current and potential applications are extensive and slowly evolving. Three-dimensional printing represents an important method of manufacturing customized products such as orbital implants, ocular prostheses, ophthalmic models, surgical instruments, spectacles and other gadgets. Surgical planning, simulation, training and teaching have all benefitted from this technology. Advances in bioprinting seem to be the future direction of 3D printing with possibilities of printing out viable ocular tissues such as corneas and retinas in the future. It is expected that more ophthalmologists and other clinicians will use this technology in the near future.
Collapse
Affiliation(s)
- Yazan Fakhoury
- Medical Doctor, St James’s University Hospital,
Beckett St, Harehills, Leeds, LS9 7TF, UK
| | - Abdallah Ellabban
- Hull University Teaching Hospitals NHS Trust,
Kingston upon Hull, UK
- Suez Canal University, Ismailia, Egypt
| | - Usama Attia
- Manufacturing Technology Centre (MTC),
Coventry, UK
| | - Ahmed Sallam
- Jones Eye Institute, University of Arkansas for
Medical Sciences, Little Rock, AR, USA
| | - Samer Elsherbiny
- Machen Eye Unit, Warwick Hospital, South
Warwickshire NHS Foundation Trust, Warwick, UK
- Warwick Medical School, University of Warwick,
Coventry, UK
| |
Collapse
|
29
|
Jovanović M, Petrović M, Stojanović D, Ibrić S, Uskoković P. Preparation and characterization of 3D printed bone scaffold for ibuprofen delivery. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-40262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In this work, a blend of gelatin A (GA) and polyvinylpyrrolidone (PVP K30) was used for semi-solid 3D printing of bone scaffold for ibuprofen (IBU) delivery. The cross-linking of the obtained scaffold was performed with a 1% glutaraldehyde (GTA) solution, followed by lyophilization. The thermal and mechanical properties, as well as drug release profiles, and drug kinetics of prepared scaffolds were investigated. The cross-linked and lyophilized scaffold has shown good thermal stability, mechanical properties, and prolonged release of IBU following the Fickian diffusion process.
Collapse
|
30
|
3D Printed Buccal Films for Prolonged-Release of Propranolol Hydrochloride: Development, Characterization and Bioavailability Prediction. Pharmaceutics 2021; 13:pharmaceutics13122143. [PMID: 34959423 PMCID: PMC8708498 DOI: 10.3390/pharmaceutics13122143] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
Gelatin-polyvinylpyrrolidone (PVP) and gelatin-poly(vinyl alcohol) (PVA) mucoadhesive buccal films loaded with propranolol hydrochloride (PRH) were prepared by semi-solid extrusion 3D printing. The aim of this study was to evaluate the effects of the synthetic polymers PVP and PVA on thermal and mechanical properties and drug release profiles of gelatin-based films. The Fourier-transform infrared spectroscopy showed that hydrogen bonding between gelatin and PVP formed during printing. In the other blend, neither the esterification of PVA nor gelatin occurred. Differential scanning calorimetry revealed the presence of partial helical structures. In line with these results, the mechanical properties and drug release profiles were different for each blend. Formulation with gelatin-PVP and PRH showed higher tensile strength, hardness, and adhesive strength but slower drug release than formulation with gelatin-PVA and PRH. The in silico population simulations indicated increased drug bioavailability and decreased inter-individual variations in the resulting pharmacokinetic profiles compared to immediate-release tablets. Moreover, the simulation results suggested that reduced PRH daily dosing can be achieved with prolonged-release buccal films, which improves patient compliance.
Collapse
|
31
|
Spoerk M, Arbeiter F, Koutsamanis I, Cajner H, Katschnig M, Eder S. Personalised urethra pessaries prepared by material extrusion-based additive manufacturing. Int J Pharm 2021; 608:121112. [PMID: 34547391 DOI: 10.1016/j.ijpharm.2021.121112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 01/01/2023]
Abstract
Material extrusion-based additive manufacturing, commonly referred to as 3D-printing, is regarded as the key technology to pave the way for personalised medical treatment. This study explores the technique's potential in customising vaginal inserts with complex structures, so-called urethra pessaries. A novel, flawlessly 3D-printable and biocompatible polyester-based thermoplastic elastomer serves as the feedstock. Next to the smart selection of the 3D-printing parameters cross-sectional diameter and infill to tailor the pessary's mechanical properties, we elaborate test methods accounting for its application-specific requirements for the first time. The key property, i.e. the force the pessary exerts on the urethra to relief symptoms of urinary incontinence, is reliably adjusted within a broad range, including that of the commercial injection-moulded silicone product. The pessaries do not change upon long-term exposure to vaginal fluid simulant and compression (in-vivo conditions), satisfying the needs of repeated pessary use. Importantly, the vast majority of the 3D-printed pessaries allows for self-insertion and self-removal without any induced pessary rupture. Summarising, 3D-printed pessaries are not only a reasonable alternative to the commercial products, but build the basis to effectively treat inhomogeneous patient groups. They make the simple but very effective pessary therapy finally accessible to every woman.
Collapse
Affiliation(s)
- Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.
| | - Florian Arbeiter
- Materials Science and Testing of Polymers, Montanuniversitaet Leoben, Otto Gloeckel-Straße 2, 8700 Leoben, Austria
| | - Ioannis Koutsamanis
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Hrvoje Cajner
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 10002 Zagreb, Croatia
| | | | - Simone Eder
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
32
|
Hydrophilic Excipient-Independent Drug Release from SLA-Printed Pellets. Pharmaceutics 2021; 13:pharmaceutics13101717. [PMID: 34684010 PMCID: PMC8541594 DOI: 10.3390/pharmaceutics13101717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) printing technology, specifically stereolithography (SLA) technology, has recently created exciting possibilities for the design and fabrication of sophisticated dosages for oral administration, paving a practical way to precisely manufacture customized pharmaceutical dosages with both personalized properties and sustained drug release behavior. However, the sustained drug release achieved in prior studies largely relies on the presence of hydrophilic excipients in the printing formulation, which unfortunately impedes the printability and formability of the corresponding printing formulations. The current study developed and prepared mini-sized oral pellets using the SLA technique and successfully accomplished a hydrophilic excipient-independent drug release behavior. With ibuprofen as the model drug, the customized photopolymerizable printing formulation included polyethylene glycol diacrylate (PEGDA) as a monomer and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator. The produced mini-sized pellets were thoroughly investigated for various factors, including their printability, physical properties, microscopic features, drug content, and drug-release profiles. The drug release profiles from the printed pellets that were larger size (3 mm and 6 mm) followed the Ritger–Peppas model, demonstrating that the release was influenced by both the diffusion of the dissolved drug and by the erosion of the hydrophilic excipients (PEG400). The profiles from the smaller printed pellets (1 mm and 2 mm) followed first release kinetics, not only illustrating that the release was impacted only by drug diffusion, but also indicating that there is a size boundary between the dependent and independent hydrophilic excipients. These results could create practical benefits to the pharmaceutical industry in terms of the design and development personalized dosages using the SLA printing technique with controllable drug release by manipulating size alone.
Collapse
|
33
|
Parhi R, Jena GK. An updated review on application of 3D printing in fabricating pharmaceutical dosage forms. Drug Deliv Transl Res 2021; 12:2428-2462. [PMID: 34613595 DOI: 10.1007/s13346-021-01074-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 01/22/2023]
Abstract
The concept of "one size fits all" followed by the conventional healthcare system has drawbacks in providing precise pharmacotherapy due to variation in the pharmacokinetics of different patients leading to serious consequences such as side effects. In this regard, digital-based three-dimensional printing (3DP), which refers to fabricating 3D printed pharmaceutical dosage forms with variable geometry in a layer-by-layer fashion, has become one of the most powerful and innovative tools in fabricating "personalized medicine" to cater to the need of therapeutic benefits for patients to the maximum extent. This is achieved due to the tremendous potential of 3DP in tailoring various drug delivery systems (DDS) in terms of size, shape, drug loading, and drug release. In addition, 3DP has a huge impact on special populations including pediatrics, geriatrics, and pregnant women with unique or frequently changing medical needs. The areas covered in the present article are as follows: (i) the difference between traditional and 3DP manufacturing tool, (ii) the basic processing steps involved in 3DP, (iii) common 3DP methods with their pros and cons, (iv) various DDS fabricated by 3DP till date with discussing few research studies in each class of DDS, (v) the drug loading principles into 3D printed dosage forms, and (vi) regulatory compliance.
Collapse
Affiliation(s)
- Rabinarayan Parhi
- Department of Pharmaceutical Sciences, Susruta School of Medical and Paramedical Sciences, Assam University (A Central University), Silchar-788011, Assam, India.
| | - Goutam Kumar Jena
- Roland Institute of Pharmaceutical Sciences, Berhampur-7600010, Odisha, India
| |
Collapse
|
34
|
3D Printing of Thermo-Sensitive Drugs. Pharmaceutics 2021; 13:pharmaceutics13091524. [PMID: 34575600 PMCID: PMC8468559 DOI: 10.3390/pharmaceutics13091524] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Three-dimensional (3D) printing is among the rapidly evolving technologies with applications in many sectors. The pharmaceutical industry is no exception, and the approval of the first 3D-printed tablet (Spiratam®) marked a revolution in the field. Several studies reported the fabrication of different dosage forms using a range of 3D printing techniques. Thermosensitive drugs compose a considerable segment of available medications in the market requiring strict temperature control during processing to ensure their efficacy and safety. Heating involved in some of the 3D printing technologies raises concerns regarding the feasibility of the techniques for printing thermolabile drugs. Studies reported that semi-solid extrusion (SSE) is the commonly used printing technique to fabricate thermosensitive drugs. Digital light processing (DLP), binder jetting (BJ), and stereolithography (SLA) can also be used for the fabrication of thermosensitive drugs as they do not involve heating elements. Nonetheless, degradation of some drugs by light source used in the techniques was reported. Interestingly, fused deposition modelling (FDM) coupled with filling techniques offered protection against thermal degradation. Concepts such as selection of low melting point polymers, adjustment of printing parameters, and coupling of more than one printing technique were exploited in printing thermosensitive drugs. This systematic review presents challenges, 3DP procedures, and future directions of 3D printing of thermo-sensitive formulations.
Collapse
|
35
|
Opportunities and challenges of three-dimensional printing technology in pharmaceutical formulation development. Acta Pharm Sin B 2021; 11:2488-2504. [PMID: 34567958 PMCID: PMC8447232 DOI: 10.1016/j.apsb.2021.03.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Three-dimensional printing is a technology that prints the products layer-by-layer, in which materials are deposited according to the digital model designed by computer aided design (CAD) software. This technology has competitive advantages regarding product design complexity, product personalization, and on-demand manufacturing. The emergence of 3D technology provides innovative strategies and new ways to develop novel drug delivery systems. This review summarizes the application of 3D printing technologies in the pharmaceutical field, with an emphasis on the advantages of 3D printing technologies for achieving rapid drug delivery, personalized drug delivery, compound drug delivery and customized drug delivery. In addition, this article illustrates the limitations and challenges of 3D printing technologies in the field of pharmaceutical formulation development.
Collapse
|
36
|
A review of three-dimensional printing for pharmaceutical applications: Quality control, risk assessment and future perspectives. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv Drug Deliv Rev 2021; 175:113805. [PMID: 34019957 DOI: 10.1016/j.addr.2021.05.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/02/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Artificial intelligence (AI) is redefining how we exist in the world. In almost every sector of society, AI is performing tasks with super-human speed and intellect; from the prediction of stock market trends to driverless vehicles, diagnosis of disease, and robotic surgery. Despite this growing success, the pharmaceutical field is yet to truly harness AI. Development and manufacture of medicines remains largely in a 'one size fits all' paradigm, in which mass-produced, identical formulations are expected to meet individual patient needs. Recently, 3D printing (3DP) has illuminated a path for on-demand production of fully customisable medicines. Due to its flexibility, pharmaceutical 3DP presents innumerable options during formulation development that generally require expert navigation. Leveraging AI within pharmaceutical 3DP removes the need for human expertise, as optimal process parameters can be accurately predicted by machine learning. AI can also be incorporated into a pharmaceutical 3DP 'Internet of Things', moving the personalised production of medicines into an intelligent, streamlined, and autonomous pipeline. Supportive infrastructure, such as The Cloud and blockchain, will also play a vital role. Crucially, these technologies will expedite the use of pharmaceutical 3DP in clinical settings and drive the global movement towards personalised medicine and Industry 4.0.
Collapse
|
38
|
|
39
|
Rahman J, Quodbach J. Versatility on demand - The case for semi-solid micro-extrusion in pharmaceutics. Adv Drug Deliv Rev 2021; 172:104-126. [PMID: 33705878 DOI: 10.1016/j.addr.2021.02.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
Since additive manufacturing of pharmaceuticals has been introduced as viable method to produce individualized drug delivery systems with complex geometries and release profiles, semi-solid micro-extrusion has shown to be uniquely beneficial. Easy incorporation of actives, room-temperature processability and avoidance of cross-contamination by using disposables are some of the advantages that led many researchers to focus their work on this technology in the last few years. First acceptability and in-vivo studies have brought it closer towards implementation in decentralized settings. This review covers recently established process models in light of viscosity and printability discussions to help develop high quality printed medicines. Quality defining formulation and process parameters to characterize the various developed dosage forms are presented before critically discussing the role of semi-solid micro-extrusion in the future of personalized drug delivery systems. Remaining challenges regarding regulatory guidance and quality assurance that pose the last hurdle for large scale and commercial manufacturing are addressed.
Collapse
|
40
|
Ilyas R, Sapuan S, Harussani M, Hakimi M, Haziq M, Atikah M, Asyraf M, Ishak M, Razman M, Nurazzi N, Norrrahim M, Abral H, Asrofi M. Polylactic Acid (PLA) Biocomposite: Processing, Additive Manufacturing and Advanced Applications. Polymers (Basel) 2021; 13:1326. [PMID: 33919530 PMCID: PMC8072904 DOI: 10.3390/polym13081326] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022] Open
Abstract
Over recent years, enthusiasm towards the manufacturing of biopolymers has attracted considerable attention due to the rising concern about depleting resources and worsening pollution. Among the biopolymers available in the world, polylactic acid (PLA) is one of the highest biopolymers produced globally and thus, making it suitable for product commercialisation. Therefore, the effectiveness of natural fibre reinforced PLA composite as an alternative material to substitute the non-renewable petroleum-based materials has been examined by researchers. The type of fibre used in fibre/matrix adhesion is very important because it influences the biocomposites' mechanical properties. Besides that, an outline of the present circumstance of natural fibre-reinforced PLA 3D printing, as well as its functions in 4D printing for applications of stimuli-responsive polymers were also discussed. This research paper aims to present the development and conducted studies on PLA-based natural fibre bio-composites over the last decade. This work reviews recent PLA-derived bio-composite research related to PLA synthesis and biodegradation, its properties, processes, challenges and prospects.
Collapse
Affiliation(s)
- R.A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, UTM Johor Bahru 81310, Johor, Malaysia
| | - S.M. Sapuan
- Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Advanced Engineering Materials and Composites (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.M.H.); (M.Y.A.Y.H.); (M.Z.M.H.)
| | - M.M. Harussani
- Advanced Engineering Materials and Composites (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.M.H.); (M.Y.A.Y.H.); (M.Z.M.H.)
| | - M.Y.A.Y. Hakimi
- Advanced Engineering Materials and Composites (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.M.H.); (M.Y.A.Y.H.); (M.Z.M.H.)
| | - M.Z.M. Haziq
- Advanced Engineering Materials and Composites (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.M.H.); (M.Y.A.Y.H.); (M.Z.M.H.)
| | - M.S.N. Atikah
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - M.R.M. Asyraf
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.R.M.A.); (M.R.I.)
| | - M.R. Ishak
- Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (M.R.M.A.); (M.R.I.)
| | - M.R. Razman
- Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
| | - N.M. Nurazzi
- Centre for Defence Foundation Studies, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi 57000, Kuala Lumpur, Malaysia;
| | - M.N.F. Norrrahim
- Research Center for Chemical Defence, Universiti Pertahanan Nasional Malaysia (UPNM), Kem Perdana Sungai Besi 57000, Kuala Lumpur, Malaysia;
| | - Hairul Abral
- Department of Mechanical Engineering, Andalas University, Padang 25163, Sumatera Barat, Indonesia;
| | - Mochamad Asrofi
- Department of Mechanical Engineering, University of Jember, Kampus Tegalboto, Jember 68121, East Java, Indonesia;
| |
Collapse
|
41
|
Rezvani Ghomi E, Khosravi F, Neisiany RE, Singh S, Ramakrishna S. Future of additive manufacturing in healthcare. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2020.100255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
Eleftheriadis GK, Kantarelis E, Monou PK, Andriotis EG, Bouropoulos N, Tzimtzimis EK, Tzetzis D, Rantanen J, Fatouros DG. Automated digital design for 3D-printed individualized therapies. Int J Pharm 2021; 599:120437. [PMID: 33662466 DOI: 10.1016/j.ijpharm.2021.120437] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Customization of pharmaceutical products is a central requirement for personalized medicines. However, the existing processing and supply chain solutions do not support such manufacturing-on-demand approaches. In order to solve this challenge, three-dimensional (3D) printing has been applied for customization of not only the dose and release characteristics, but also appearance of the product (e.g., size and shape). A solution for customization can be realized via non-expert-guided processing of digital designs and drug dose. This study presents a proof-of-concept computational algorithm which calculates the optimal dimensions of grid-like orodispersible films (ODFs), considering the recommended dose. Further, the algorithm exports a digital design file which contains the required ODF configuration. Cannabidiol (CBD) was incorporated in the ODFs, considering the simple correspondence between the recommended dose and the patient's weight. The ODFs were 3D-printed and characterized for their physicochemical, mechanical, disintegration and drug release properties. The algorithm was evaluated for its accuracy on dose estimation, highlighting the reproducibility of individualized ODFs. The in vitro performance was principally affected by the thickness and volume of the grid-like structures. The concept provides an alternative approach that promotes automation in the manufacturing of personalized medications in distributed points of care, such as hospitals and local pharmacies.
Collapse
Affiliation(s)
- Georgios K Eleftheriadis
- Division of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Efthymios Kantarelis
- KTH Royal Institute of Technology, Department of Chemical Engineering, SE100 44 Stockholm, Sweden
| | - Paraskevi Kyriaki Monou
- Division of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleftherios G Andriotis
- Division of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Rio, Patras, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras, Greece
| | - Emmanouil K Tzimtzimis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thermi, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, 57001 Thermi, Greece
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Dimitrios G Fatouros
- Division of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
43
|
Saleh Alghamdi S, John S, Roy Choudhury N, Dutta NK. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers (Basel) 2021; 13:753. [PMID: 33670934 PMCID: PMC7957542 DOI: 10.3390/polym13050753] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
The use of additive manufacturing (AM) has moved well beyond prototyping and has been established as a highly versatile manufacturing method with demonstrated potential to completely transform traditional manufacturing in the future. In this paper, a comprehensive review and critical analyses of the recent advances and achievements in the field of different AM processes for polymers, their composites and nanocomposites, elastomers and multi materials, shape memory polymers and thermo-responsive materials are presented. Moreover, their applications in different fields such as bio-medical, electronics, textiles, and aerospace industries are also discussed. We conclude the article with an account of further research needs and future perspectives of AM process with polymeric materials.
Collapse
Affiliation(s)
- Saad Saleh Alghamdi
- School of Engineering, Chemical and Environmental Engineering, RMIT University, Melbourne 3000, Australia
| | - Sabu John
- School of Engineering, Manufacturing, Materials and Mechatronics, RMIT University, Bundoora 3083, Australia
| | - Namita Roy Choudhury
- School of Engineering, Chemical and Environmental Engineering, RMIT University, Melbourne 3000, Australia
| | - Naba K Dutta
- School of Engineering, Chemical and Environmental Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
44
|
Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. J Control Release 2021; 332:367-389. [PMID: 33652114 DOI: 10.1016/j.jconrel.2021.02.027] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) printing is an innovative additive manufacturing technology, capable of fabricating unique structures in a layer-by-layer manner. Semi-solid extrusion (SSE) is a subset of material extrusion 3D printing, and through the sequential deposition of layers of gel or paste creates objects of any desired size and shape. In comparison to other extrusion-based technologies, SSE 3D printing employs low printing temperatures which makes it suitable for drug delivery and biomedical applications, and the use of disposable syringes provides benefits in meeting critical quality requirements for pharmaceutical use. Besides pharmaceutical manufacturing, SSE 3D printing has attracted increasing attention in the field of bioelectronics, particularly in the manufacture of biosensors capable of measuring physiological parameters or as a means to trigger drug release from medical devices. This review begins by highlighting the major printing process parameters and material properties that influence the feasibility of transforming a 3D design into a 3D object, and follows with a discussion on the current SSE 3D printing developments and their applications in the fields of pharmaceutics, bioprinting and bioelectronics. Finally, the advantages and limitations of this technology are explored, before focusing on its potential clinical applications and suitability for preparing personalised medicines.
Collapse
Affiliation(s)
- Iria Seoane-Viaño
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Paraquasil Group, Faculty of Pharmacy, University of Santiago de Compostela (USC), and Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela 15782, Spain
| | - Patricija Januskaite
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Universidade de Santiago de Compostela, 15782, Spain
| | - Abdul W Basit
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| | - Alvaro Goyanes
- Department of Pharmaceutics, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group (GI-1645), Universidade de Santiago de Compostela, 15782, Spain; FabRx Ltd., 3 Romney Road, Ashford, Kent TN24 0RW, UK.
| |
Collapse
|
45
|
3D screen printing – An innovative technology for large-scale manufacturing of pharmaceutical dosage forms. Int J Pharm 2021; 592:120096. [DOI: 10.1016/j.ijpharm.2020.120096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022]
|
46
|
McCoubrey LE, Elbadawi M, Orlu M, Gaisford S, Basit AW. Harnessing machine learning for development of microbiome therapeutics. Gut Microbes 2021; 13:1-20. [PMID: 33522391 PMCID: PMC7872042 DOI: 10.1080/19490976.2021.1872323] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
The last twenty years of seminal microbiome research has uncovered microbiota's intrinsic relationship with human health. Studies elucidating the relationship between an unbalanced microbiome and disease are currently published daily. As such, microbiome big data have become a reality that provide a mine of information for the development of new therapeutics. Machine learning (ML), a branch of artificial intelligence, offers powerful techniques for big data analysis and prediction-making, that are out of reach of human intellect alone. This review will explore how ML can be applied for the development of microbiome-targeted therapeutics. A background on ML will be given, followed by a guide on where to find reliable microbiome big data. Existing applications and opportunities will be discussed, including the use of ML to discover, design, and characterize microbiome therapeutics. The use of ML to optimize advanced processes, such as 3D printing and in silico prediction of drug-microbiome interactions, will also be highlighted. Finally, barriers to adoption of ML in academic and industrial settings will be examined, concluded by a future outlook for the field.
Collapse
Affiliation(s)
| | - Moe Elbadawi
- UCL School of Pharmacy, University College London, London, UK
| | - Mine Orlu
- UCL School of Pharmacy, University College London, London, UK
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, London, UK
- FabRx Ltd., Ashford, Kent, UK
| | - Abdul W. Basit
- UCL School of Pharmacy, University College London, London, UK
| |
Collapse
|