1
|
Das S, Behera A, Habibullah S, Pattnaik G, Mohanty B. Moxifloxacin-loaded PVA-chitosan composite films as potential ocular drug delivery systems: A comprehensive characterization and efficacy assessment. Int J Biol Macromol 2025; 296:139726. [PMID: 39800015 DOI: 10.1016/j.ijbiomac.2025.139726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
To overcome the barriers often met by traditional ophthalmic formulations, polymeric films can be utilized as an alternative to enhance drug retention duration while managing medication release. In the current investigation, polymeric films made of poly (vinyl) alcohol (PVA) and chitosan (CS) loaded with Moxifloxacin Hydrochloride (M-HCl) and plasticized with Glutaraldehyde were formulated as potential ophthalmic delivery for the treatment of conjunctivitis. The thickness, surface pH, opacity, folding endurance, and % hemolysis were measured, followed by the transparency, microscopy, electrical conductivity, mechanical strength, swelling index, and invitro drug release studies. FTIR spectroscopy further accessed the interactions between the polymers and drug molecules. The thermal behaviour and diffraction pattern of the films were evaluated using DSC and XRD studies. Lastly, the antimicrobial effectiveness of the M-HCl-loaded films was studied against P. aeruginosa and S. aureus. The rabbit eye irritation study conducted in vivo confirmed that the film was comfortable for use in ocular applications. Upon integrating the findings, it was determined that the optimal film formulation was PC3 (PVA: CS = 7:3), exhibiting superior transparency, heightened intermolecular hydrogen bonding, elevated mechanical strength, increased crystallinity, larger crystal size, optimal swelling index, a high percentage of controlled drug release (%CPDR), and the highest antimicrobial activity.
Collapse
Affiliation(s)
- Swagatika Das
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Amulyaratna Behera
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India.
| | - Sk Habibullah
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O'Anusandhan (deemed to be) University, BBSR, Odisha 751003, India
| | - Gurudutta Pattnaik
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Odisha, India
| | - Biswaranjan Mohanty
- Department of Pharmaceutics, School of Pharmacy, DRIEMS University, Tangi, Cuttack, Odisha, India.
| |
Collapse
|
2
|
Pham DT, Chomchalao P, Bunneramit K, Kladcharoen P, Khotcharrat R, Tiyaboonchai W. Development of sustained-release extemporaneous moxifloxacin loaded commercial soft hydrogel contact lenses. Heliyon 2025; 11:e42436. [PMID: 39991249 PMCID: PMC11847108 DOI: 10.1016/j.heliyon.2025.e42436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/25/2025] Open
Abstract
Eye infections such as Acanthamoeba keratitis and bacterial keratitis are serious diseases that could lead to severe, sight-threatening complications. Although moxifloxacin eye drops (0.5 % w/v) is accepted for clinical treatments of these infections, the frequent administration is challenging to achieve the adequate dose due to the limitations of low ocular bioavailability and short retention time. To circumvent these issues, this study developed the extemporaneous moxifloxacin loaded commercial soft hydrogel contact lenses with sustained-release property. The simple soaking method was employed on five common available contact lenses of Acuvue, Biomedics, Maxim, Soflens, and Biotrue, which were immersed in the standard moxifloxacin eye drops solutions. Amongst them, three contact lenses (Acuvue, Biomedics, and Maxim) showed high drug loading of ∼2 mg and adequate controllable drug release for 24 h with Maxim possessing the highest release rate, and maintained the effective drug therapeutic level for at least 12 h. Kinetically, both the moxifloxacin loading and releasing processes followed the Higuchi model, with the diffusion mechanism governing the drug behaviors. Isothermally, the moxifloxacin molecules were adsorbed onto the contact lenses surfaces via physical adsorptions by weak interactions of van der Waals forces, ionic bonding, and hydrophobic interactions. Furthermore, both the eye drops brands (Moximac and Zomoxin), the loading pH (6.7 and 6.0), and the loading time (24 h and 2 h) had no significant effects on the loading and release of moxifloxacin, indicating the system versatility. Conclusively, the extemporaneous moxifloxacin loaded contact lenses, with a duration of action of at least 12 h, could be further explored to become a potential treatment for eye infections.
Collapse
Affiliation(s)
- Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho, 900000, Viet Nam
| | - Pratthana Chomchalao
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kunasin Bunneramit
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | | | | | - Waree Tiyaboonchai
- Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
3
|
Kailasam V, Hiremath MS, Sudharsan P, Nagarjuna V, Garg P, Nirmal J. Stability enhancement of Amphotericin B using 3D printed biomimetic polymeric corneal patch to treat fungal infections. Int J Pharm 2025; 670:125149. [PMID: 39736279 DOI: 10.1016/j.ijpharm.2024.125149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025]
Abstract
Amphotericin B eye drops (reconstituted from lyophilized Amphotericin B formulation indicated for intravenous use) is used off-label for fungal keratitis. However, the reconstituted formulation is stable only for a week, even after refrigeration. Moreover, a high dosing frequency makes it an inconvenient treatment practice. The current study aims to develop a stable Amphotericin B-loaded biomimetic polymeric corneal patch (Ampat) using 3D printing. Hydroxypropyl methylcellulose and chitosan were used to formulate Ampat, which was then characterized for its physical and mechanical properties. The stability studies were performed at different conditions, protected from light. Further, the therapeutic efficacy of Ampat was evaluated against Candida albicans-induced fungal keratitis using ex vivo and in vivo efficacy models. Amphotericin B in Ampat was found to be stable at room temperature (25 °C) and refrigerated conditions for at least two months. Computer simulations showed that the hydrolysis was a major degradation mechanism of Amphotericin B and was reduced when loaded in the polymeric corneal patch. The ex vivo and in vivo studies show that Ampat was as efficacious as the marketed Amphotericin B formulation but with a reduced administration frequency (1 vs 12 times per day). The present study demonstrated Ampat as a potential alternative to reconstituted lipid-bound eye drops to treat fungal keratitis.
Collapse
Affiliation(s)
- Velmurugan Kailasam
- Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Manthan S Hiremath
- Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | | | - Vasagiri Nagarjuna
- Shantilal Shanghvi Cornea Institute, KAR Campus, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Prashant Garg
- Shantilal Shanghvi Cornea Institute, KAR Campus, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Jayabalan Nirmal
- Translational Pharmaceutics Research Laboratory (TPRL), Department of Pharmacy, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India.
| |
Collapse
|
4
|
Subhash NE, Nair S, Srinivas SP, Theruveethi N, Bhandary SV, Guru B. Development of a biodegradable polymer-based implant to release dual drugs for post-operative management of cataract surgery. Drug Deliv Transl Res 2025; 15:508-522. [PMID: 38696092 PMCID: PMC11683021 DOI: 10.1007/s13346-024-01604-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 01/01/2025]
Abstract
Cataract surgery is followed by post-operative eye drops for a duration of 4-6 weeks. The multitude of ocular barriers, coupled with the discomfort experienced by both the patient and their relatives in frequently administering eye drops, significantly undermines patient compliance, ultimately impeding the recovery of the patient. This study aimed to design and develop an ocular drug delivery system as an effort to achieve a drop-free post-operative care after cataract surgery. An implant was prepared containing a biodegradable polymer Poly-lactic-co-glycolic acid (PLGA), Dexamethasone (DEX) as an anti-inflammatory drug, and Moxifloxacin(MOX) as an antibiotic. Implant characterization and drug loading analysis were conducted. In vitro drug release profile showed that the release of the two drugs are correlated with the clinical prescription for post operative eye drops. In vivo study was conducted on New Zealand albino rabbits where one eye underwent cataract surgery, and the drug delivery implant was inserted into the capsular bag after placement of the synthetic intraocular lens (IOL). Borderline increase in the intraocular pressure (IOP) was noted in the test sample group. Slit-lamp observations revealed no significant anterior chamber reaction in all study groups. Histopathology study of the operated eye revealed no significant pathology in the test samples. This work aims at developing the intra ocular drug delivery implant which will replace the post-operative eye drops and help the patient with the post-operative hassle of eye drops.
Collapse
Affiliation(s)
- Nayana E- Subhash
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Soumya Nair
- Department of Ophthalmology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Srilatha Parampalli Srinivas
- Department of Pathology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Nagarajan Theruveethi
- Department of Optometry, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sulatha V- Bhandary
- Department of Ophthalmology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - BharathRaja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
5
|
Bao Q, Zhang X, Hao Z, Li Q, Wu F, Wang K, Li Y, Li W, Gao H. Advances in Polysaccharide-Based Microneedle Systems for the Treatment of Ocular Diseases. NANO-MICRO LETTERS 2024; 16:268. [PMID: 39136800 PMCID: PMC11322514 DOI: 10.1007/s40820-024-01477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/06/2024] [Indexed: 08/16/2024]
Abstract
The eye, a complex organ isolated from the systemic circulation, presents significant drug delivery challenges owing to its protective mechanisms, such as the blood-retinal barrier and corneal impermeability. Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance. Polysaccharide-based microneedles (PSMNs) have emerged as a transformative solution for ophthalmic drug delivery. However, a comprehensive review of PSMNs in ophthalmology has not been published to date. In this review, we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery. We provide a thorough analysis of PSMNs, summarizing the design principles, fabrication processes, and challenges addressed during fabrication, including improving patient comfort and compliance. We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios. Finally, we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.
Collapse
Affiliation(s)
- Qingdong Bao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Xiaoting Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Zhankun Hao
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Qinghua Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Fan Wu
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Kaiyuan Wang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| | - Wenlong Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| |
Collapse
|
6
|
Wang TJ, Rethi L, Ku MY, Nguyen HT, Chuang AEY. A review on revolutionizing ophthalmic therapy: Unveiling the potential of chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer in eye disease treatments. Int J Biol Macromol 2024; 273:132700. [PMID: 38879998 DOI: 10.1016/j.ijbiomac.2024.132700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Ocular disorders, encompassing both common ailments like dry eye syndrome and more severe situations for instance age-related macular degeneration, present significant challenges to effective treatment due to the intricate architecture and physiological barriers of the eye. Polysaccharides are emerging as potential solutions for drug delivery to the eyes due to their compatibility with living organisms, natural biodegradability, and adhesive properties. In this review, we explore not only the recent advancements in polysaccharide-based technologies and their transformative potential in treating ocular illnesses, offering renewed optimism for both patients and professionals but also anatomy of the eye and the significant obstacles hindering drug transportation, followed by an investigation into various drug administration methods and their ability to overcome ocular-specific challenges. Our focus lies on biological adhesive polymers, including chitosan, hyaluronic acid, cellulose, cyclodextrin, and poloxamer, known for their adhesive characteristics enhancing drug retention on ocular surfaces and increasing bioavailability. A detailed analysis of material designs used in ophthalmic formulations, such as gels, lenses, eye drops, nanofibers, microneedles, microspheres, and nanoparticles, their advantages and limitations, the potential of formulations in improving therapeutic outcomes for various eye conditions. Moreover, we underscore the discovery of novel polysaccharides and their potential uses in ocular drug delivery.
Collapse
Affiliation(s)
- Tsung-Jen Wang
- Department of Ophthalmology, Taipei Medical University Hospital, Taipei 11031, Taiwan; Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Min-Yi Ku
- School of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan.
| |
Collapse
|
7
|
Gao D, Yan C, Wang Y, Yang H, Liu M, Wang Y, Li C, Li C, Cheng G, Zhang L. Drug-eluting contact lenses: Progress, challenges, and prospects. Biointerphases 2024; 19:040801. [PMID: 38984804 DOI: 10.1116/6.0003612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024] Open
Abstract
Topical ophthalmic solutions (eye drops) are becoming increasingly popular in treating and preventing ocular diseases for their safety, noninvasiveness, and ease of handling. However, the static and dynamic barriers of eyes cause the extremely low bioavailability (<5%) of eye drops, making ocular therapy challenging. Thus, drug-eluting corneal contact lenses (DECLs) have been intensively investigated as a drug delivery device for their attractive properties, such as sustained drug release and improved bioavailability. In order to promote the clinical application of DECLs, multiple aspects, i.e., drug release and penetration, safety, and biocompatibility, of these drug delivery systems were thoroughly examined. In this review, we systematically discussed advances in DECLs, including types of preparation materials, drug-loading strategies, drug release mechanisms, strategies for penetrating ocular barriers, in vitro and in vivo drug delivery and penetration detection, safety, and biocompatibility validation methods, as well as challenges and future perspectives.
Collapse
Affiliation(s)
- Dongdong Gao
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Chunxiao Yan
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yong Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Heqing Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Mengxin Liu
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yi Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| |
Collapse
|
8
|
Ch S, Mishra P, Padaga SG, Ghosh B, Roy S, Biswas S. 3D-Printed Inherently Antibacterial Contact Lens-Like Patches Carrying Antimicrobial Peptide Payload for Treating Bacterial Keratitis. Macromol Biosci 2024; 24:e2300418. [PMID: 38258356 DOI: 10.1002/mabi.202300418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/12/2024] [Indexed: 01/24/2024]
Abstract
Delivery of therapeutic agents through contact lenses-like patches is a promising strategy to achieve significant bioavailability with negligible eye drainage. The present study investigates the preparation and 3D printing of mucoadhesive gelatin methacryloyl (GelMA)/chitosan methacryloyl (ChiMA) hydrogels to fabricate them as contact lens-like patches (CLP) loaded with antimicrobial peptide, S100A12 (AMP) for treating bacterial keratitis (BK). Extrusion technology is used to print the patches layer by layer to form a hemispherical scaffold suitable for eyewear, and 3D-printed CLP is crosslinked using Irgacure 2959 under UV light. The results from the in vivo experiment conducted on Pseudomonas aeruginosa-infected BK rabbit model after the treatment with AMP-loaded CLP have shown a significant decrease in bacterial load when plated for CFU. The newly developed delivery system containing AMP has great potential to overcome the treatment challenges of multidrug resistance (MDR) in bacteria and eliminate the frequent dosing associated with eye drops. The presence of chitosan in the formulation provides a synergetic effect on the AMP in disrupting bacterial biofilms. The ease of using 3D printing will open new avenues for optimizing the dosage depending on the severity of the BK in the patients, which can be used as personalized medicine.
Collapse
Affiliation(s)
- Sanjay Ch
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India
| | - Priyasha Mishra
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, 500034, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Sri Ganga Padaga
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India
| | - Balaram Ghosh
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India
| | - Sanhita Roy
- Prof. Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, 500034, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Medchal, Hyderabad, Telangana, 500078, India
| |
Collapse
|
9
|
Toffoletto N, Salema-Oom M, Nicoli S, Pescina S, González-Fernández FM, Pinto CA, Saraiva JA, Alves de Matos AP, Vivero-Lopez M, Huete-Toral F, Carracedo G, Saramago B, Serro AP. Dexamethasone phosphate and penetratin co-eluting contact lenses: a strategy to enhance ocular drug permeability. Int J Pharm 2024; 650:123685. [PMID: 38072146 DOI: 10.1016/j.ijpharm.2023.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
Contact lenses (CLs) have been suggested as drug delivery platforms capable of increasing the drug residence time on the cornea and therefore its bioavailability. However, when targeting the posterior segment of the eye, the drug released from CLs still encounters the barrier effect of the ocular tissues, which considerably reduces the efficacy of administration. This work aims at the development of CLs able to simultaneously deliver an anti-inflammatory drug (dexamethasone sodium phosphate) and a cell-penetrating peptide (penetratin), the latter acting as a drug carrier across the tissues. Hydroxyethyl methacrylate (HEMA)-based hydrogels were functionalized with acrylic acid (AAc) and/or aminopropyl methacrylamide (APMA) to serve as CL materials with increased affinity for the drug and peptide. APMA-functionalized hydrogels sustained the dual release for 8 h, which is compatible with the wearing time of daily CLs. Hydrogels demonstrated suitable light transmittance, swelling capacity and in vitro biocompatibility. The anti-inflammatory activity of the drug was not compromised by the presence of the peptide nor by sterilization. The ocular distribution of the drug after 6 h of CL wearing was evaluated in vivo in rabbits and revealed that the amount of drug in the cornea and aqueous humor significantly increased when the drug was co-delivered with penetratin.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| | - Madalena Salema-Oom
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| | - Sara Nicoli
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy.
| | - Silvia Pescina
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy.
| | - Felipe M González-Fernández
- ADDRes Lab, Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/a, 43124 Parma, Italy.
| | - Carlos A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Jorge A Saraiva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - António P Alves de Matos
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| | - Maria Vivero-Lopez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS) and Health Research Insititute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Fernando Huete-Toral
- Ocupharm Research Group, Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain.
| | - Gonzalo Carracedo
- Ocupharm Research Group, Department of Optometry and Vision, Faculty of Optics and Optometry, Complutense University of Madrid, C/Arcos de Jalón 118, 28037 Madrid, Spain.
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Egas Moniz School of Health & Science, Campus Universitario, 2829-511 Caparica, Portugal.
| |
Collapse
|
10
|
Sanjanwala D, Londhe V, Trivedi R, Bonde S, Sawarkar S, Kale V, Patravale V. Polysaccharide-based hydrogels for medical devices, implants and tissue engineering: A review. Int J Biol Macromol 2024; 256:128488. [PMID: 38043653 DOI: 10.1016/j.ijbiomac.2023.128488] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Hydrogels are highly biocompatible biomaterials composed of crosslinked three-dimensional networks of hydrophilic polymers. Owing to their natural origin, polysaccharide-based hydrogels (PBHs) possess low toxicity, high biocompatibility and demonstrate in vivo biodegradability, making them great candidates for use in various biomedical devices, implants, and tissue engineering. In addition, many polysaccharides also show additional biological activities such as antimicrobial, anticoagulant, antioxidant, immunomodulatory, hemostatic, and anti-inflammatory, which can provide additional therapeutic benefits. The porous nature of PBHs allows for the immobilization of antibodies, aptamers, enzymes and other molecules on their surface, or within their matrix, potentiating their use in biosensor devices. Specific polysaccharides can be used to produce transparent hydrogels, which have been used widely to fabricate ocular implants. The ability of PBHs to encapsulate drugs and other actives has been utilized for making neural implants and coatings for cardiovascular devices (stents, pacemakers and venous catheters) and urinary catheters. Their high water-absorption capacity has been exploited to make superabsorbent diapers and sanitary napkins. The barrier property and mechanical strength of PBHs has been used to develop gels and films as anti-adhesive formulations for the prevention of post-operative adhesion. Finally, by virtue of their ability to mimic various body tissues, they have been explored as scaffolds and bio-inks for tissue engineering of a wide variety of organs. These applications have been described in detail, in this review.
Collapse
Affiliation(s)
- Dhruv Sanjanwala
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy, 428 Church Street, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Vaishali Londhe
- SVKM's NMIMS, Shobhaben Pratapbhai College of Pharmacy and Technology Management, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Rashmi Trivedi
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur 441002, Maharashtra, India
| | - Smita Bonde
- SVKM's NMIMS, School of Pharmacy and Technology Management, Shirpur Campus, Maharashtra, India
| | - Sujata Sawarkar
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai 400056, Maharashtra, India
| | - Vinita Kale
- Department of Pharmaceutics, Gurunanak College of Pharmacy, Kamptee Road, Nagpur 440026, Maharashtra, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (E), Mumbai 400019, Maharashtra, India.
| |
Collapse
|
11
|
Xeroudaki M, Rafat M, Moustardas P, Mukwaya A, Tabe S, Bellisario M, Peebo B, Lagali N. A double-crosslinked nanocellulose-reinforced dexamethasone-loaded collagen hydrogel for corneal application and sustained anti-inflammatory activity. Acta Biomater 2023; 172:234-248. [PMID: 37866722 DOI: 10.1016/j.actbio.2023.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
In cases of blinding disease or trauma, hydrogels have been proposed as scaffolds for corneal regeneration and vehicles for ocular drug delivery. Restoration of corneal transparency, augmenting a thin cornea and postoperative drug delivery are particularly challenging in resource-limited regions where drug availability and patient compliance may be suboptimal. Here, we report a bioengineered hydrogel based on porcine skin collagen as an alternative to human donor corneal tissue for applications where long-term stability of the hydrogel is required. The hydrogel is reinforced with cellulose nanofibers extracted from the Ciona intestinalis sea invertebrate followed by double chemical and photochemical crosslinking. The hydrogel is additionally loaded with dexamethasone to provide sustained anti-inflammatory activity. The reinforced double-crosslinked hydrogel after drug loading maintained high optical transparency with significantly improved mechanical characteristics compared to non-reinforced hydrogels, while supporting a gradual sustained drug release for 60 days in vitro. Dexamethasone, after exposure to crosslinking and sterilization procedures used in hydrogel production, inhibited tube formation and cell migration of TNFα-stimulated vascular endothelial cells. The drug-loaded hydrogels suppressed key pro-inflammatory cytokines CCL2 and CXCL5 in TNFα-stimulated human corneal epithelial cells. Eight weeks after intra-stromal implantation in the cornea of 12 New-Zealand white rabbits subjected to an inflammatory suture stimulus, the dexamethasone-releasing hydrogels suppressed TNFα, MMP-9, and leukocyte and fibroblast cell invasion, resulting in reduced corneal haze, sustained corneal thickness and stromal morphology, and reduced overall vessel invasion. This collagen-nanocellulose double-crosslinked hydrogel can be implanted to treat corneal stromal disease while suppressing inflammation and maintaining transparency after corneal transplantation. STATEMENT OF SIGNIFICANCE: To treat blinding diseases, hydrogel scaffolds have been proposed to facilitate corneal restoration and ocular drug delivery. Here, we improve on a clinically tested collagen-based scaffold to improve mechanical robustness and enzymatic resistance by incorporating sustainably sourced nanocellulose and dual chemical-photochemical crosslinking to reinforce the scaffold, while simultaneously achieving sustained release of an incorporated anti-inflammatory drug, dexamethasone. Evaluated in the context of a corneal disease model with inflammation, the drug-releasing nanocellulose-reinforced collagen scaffold maintained the cornea's transparency and resisted degradation while suppressing inflammation postoperatively. This biomaterial could therefore potentially be applied in a wider range of sight-threatening diseases, overcoming suboptimal administration of postoperative medications to maintain hydrogel integrity and good vision.
Collapse
Affiliation(s)
- Maria Xeroudaki
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mehrdad Rafat
- NaturaLens AB, Linköping, Sweden; LinkoCare Life Sciences AB, Linköping, Sweden; Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anthony Mukwaya
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Shideh Tabe
- NaturaLens AB, Linköping, Sweden; LinkoCare Life Sciences AB, Linköping, Sweden
| | - Marco Bellisario
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Beatrice Peebo
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Memira Eye Center Scandinavia, Solna, Sweden
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Ophthalmology, Sørlandet Hospital Arendal, Arendal, Norway.
| |
Collapse
|
12
|
Zhu Q, Zhang Q, Fu DY, Su G. Polysaccharides in contact lenses: From additives to bulk materials. Carbohydr Polym 2023; 316:121003. [PMID: 37321708 DOI: 10.1016/j.carbpol.2023.121003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 05/07/2023] [Indexed: 06/17/2023]
Abstract
As the number of applications has increased, so has the demand for contact lenses comfort. Adding polysaccharides to lenses is a popular way to enhance comfort for wearers. However, this may also compromise some lens properties. It is still unclear how to balance the variation of individual lens parameters in the design of contact lenses containing polysaccharides. This review provides a comprehensive overview of how polysaccharide addition impacts lens wear parameters, such as water content, oxygen permeability, surface wettability, protein deposition, and light transmittance. It also examines how various factors, such as polysaccharide type, molecular weight, amount, and mode of incorporation into lenses modulate these effects. Polysaccharide addition can improve some wear parameters while reducing others depending on the specific conditions. The optimal method, type, and amount of added polysaccharides depend on the trade-off between various lens parameters and wear requirements. Simultaneously, polysaccharide-based contact lenses may be a promising option for biodegradable contact lenses as concerns regarding environmental risks associated with contact lens degradation continue to increase. It is hoped that this review will shed light on the rational use of polysaccharides in contact lenses to make personalized lenses more accessible.
Collapse
Affiliation(s)
- Qiang Zhu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Qiao Zhang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ding-Yi Fu
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Gaoxing Su
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
13
|
Toffoletto N, Saramago B, Serro AP, Chauhan A. A Physiology-Based Mathematical Model to Understand Drug Delivery from Contact Lenses to the Back of the Eye. Pharm Res 2023; 40:1939-1951. [PMID: 37498499 PMCID: PMC10447275 DOI: 10.1007/s11095-023-03560-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE Therapeutic contact lenses, able to store drug and deliver it to the eye surface in a sustained fashion, gained interest as an effective and patient-friendly alternative to eye drops. Recent animal studies also demonstrated the presence of therapeutic drug levels in the back of the eye after wearing drug-loaded contact lenses, thus opening the possibility of treating the posterior segment without need of invasive intraocular injections. The drug pathways from contact lenses to the back of the eye require further investigation. METHODS A mechanistic mathematical model was developed to evaluate the drug concentration over time in the tears, sclera and choroid, retina, aqueous humor and vitreous humor after the application of a therapeutic contact lens. The main drug transport mechanisms of the eye and the barrier properties of the different tissues were included in the model. Validation was performed by comparison with experimental data in literature. RESULTS The model predictions of drug concentration over time reflected the experimental data both in the anterior and posterior segment of the eye. The model can differentiate between contributions to transport from different pathways. CONCLUSIONS The model constitutes a first step towards the possibility of predicting the ocular drug distribution and the treatment efficacy in the early stage of contact lens development, and it may help reduce both the need for in vivo tests (with ethical and economic advantages) and the gap between the lens design and clinical application. It also allows for an improved understanding of drug transport in the eye.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511, Caparica, Portugal.
| | - Benilde Saramago
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Ana Paula Serro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511, Caparica, Portugal
| | - Anuj Chauhan
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO, 80401, USA
| |
Collapse
|
14
|
Gabai A, Zeppieri M, Finocchio L, Salati C. Innovative Strategies for Drug Delivery to the Ocular Posterior Segment. Pharmaceutics 2023; 15:1862. [PMID: 37514050 PMCID: PMC10385847 DOI: 10.3390/pharmaceutics15071862] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/17/2023] Open
Abstract
Innovative and new drug delivery systems (DDSs) have recently been developed to vehicle treatments and drugs to the ocular posterior segment and the retina. New formulations and technological developments, such as nanotechnology, novel matrices, and non-traditional treatment strategies, open new perspectives in this field. The aim of this mini-review is to highlight promising strategies reported in the current literature based on innovative routes to overcome the anatomical and physiological barriers of the vitreoretinal structures. The paper also describes the challenges in finding appropriate and pertinent treatments that provide safety and efficacy and the problems related to patient compliance, acceptability, effectiveness, and sustained drug delivery. The clinical application of these experimental approaches can help pave the way for standardizing the use of DDSs in developing enhanced treatment strategies and personalized therapeutic options for ocular pathologies.
Collapse
Affiliation(s)
- Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| | - Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
- Department of Ophthalmology, Nuovo Ospedale Santo Stefano, 59100 Prato, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
15
|
Kudryavtseva V, Otero M, Zhang J, Bukatin A, Gould D, Sukhorukov GB. Drug-Eluting Sandwich Hydrogel Lenses Based on Microchamber Film Drug Encapsulation. ACS NANOSCIENCE AU 2023; 3:256-265. [PMID: 37360846 PMCID: PMC10288497 DOI: 10.1021/acsnanoscienceau.2c00066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/28/2023]
Abstract
Corticosteroids are widely used as an anti-inflammatory treatment for eye inflammation, but the current methods used in clinical practice for delivery are in the form of eye drops which is usually complicated for patients or ineffective. This results in an increase in the risk of detrimental side effects. In this study, we demonstrated proof-of-concept research for the development of a contact lens-based delivery system. The sandwich hydrogel contact lens consists of a polymer microchamber film made via soft lithography with an encapsulated corticosteroid, in this case, dexamethasone, located inside the contact lens. The developed delivery system showed sustained and controlled release of the drug. The central visual part of the lenses was cleared from the polylactic acid microchamber in order to maintain a clean central aperture similar to the cosmetic-colored hydrogel contact lenses.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
- National
Research Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian
Federation
| | - Mariana Otero
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
| | - Jiaxin Zhang
- Biochemical
Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Anton Bukatin
- Alferov
Saint Petersburg National Research Academic University of the Russian
Academy of Sciences, 8/3A Khlopina str., Saint Petersburg 194021, Russian
Federation
- Institute
for Analytical Instrumentation of the Russian Academy of Sciences, 31-33 A, Ivana Chernykh str., Saint Petersburg 198095, Russia
| | - David Gould
- Biochemical
Pharmacology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, U.K.
| | - Gleb B. Sukhorukov
- School
of Engineering and Materials Science, Queen
Mary University of London, London E1 4NS, U.K.
- Skolkovo
Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow 121205, Russian
Federation
- Siberian
State Medical University, Moskovskiy Trakt, 2, Tomsk 634050, Russian Federation
| |
Collapse
|
16
|
Tang X, Liu J, Yan R, Peng Q. Carbohydrate polymer-based bioadhesive formulations and their potentials for the treatment of ocular diseases: A review. Int J Biol Macromol 2023; 242:124902. [PMID: 37210054 DOI: 10.1016/j.ijbiomac.2023.124902] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
Eyes are directly exposed to the outer environment and susceptible to infections, leading to various ocular disorders. Local medication is preferred to treat eye diseases due to its convenience and compliance. However, the rapid clearance of the local formulations highly limits the therapeutic efficacy. In the past decades, several carbohydrate bioadhesive polymers (CBPs), such as chitosan and hyaluronic acid, have been used in ophthalmology for sustained ocular drug delivery. These CBP-based delivery systems have improved the treatment of ocular diseases to a large extent but also caused some undesired effects. Herein, we aim to summarize the applications of some typical CBPs (including chitosan, hyaluronic acid, cellulose, cyclodextrin, alginate and pectin) in treating ocular diseases from the general view of ocular physiology, pathophysiology and drug delivery, and to provide a comprehensive understanding of the design of the CBP-based formulations for ocular use. The patents and clinical trials of CBPs for ocular management are also discussed. In addition, a discussion on the concerns of CBPs in clinical use and the possible solutions is presented.
Collapse
Affiliation(s)
- Xuelin Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jianhong Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruijiao Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
17
|
Ghezzi M, Ferraboschi I, Fantini A, Pescina S, Padula C, Santi P, Sissa C, Nicoli S. Hyaluronic acid - PVA films for the simultaneous delivery of dexamethasone and levofloxacin to ocular tissues. Int J Pharm 2023; 638:122911. [PMID: 37028574 DOI: 10.1016/j.ijpharm.2023.122911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Ocular drug delivery is challenging due to the poor drug penetration across ocular barriers and short retention time of the formulation at the application site. Films, applied as inserts or implants, can be used to increase residence time while controlling drug release. In this work, hydrophilic films made of hyaluronic acid and two kinds of PVA were loaded with dexamethasone (included as hydroxypropylcyclodextrin complex) and levofloxacin. This association represents one of the main treatments for the post cataract surgery management, and it is also promising for eye infections whith pain and inflammation. Films were characterized in terms of swelling and drug release and were then applied to porcine eye bulbs and isolated ocular tissues. Film swelling leads to the formation of either a gel (3D swelling) or a larger film (2D swelling) depending on the type of PVA used. Films, prepared in an easy and scalable method, demonstrated high loading capacity, controlled drug release and the capability to deliver dexamethasone and levofloxacin to the cornea and across the sclera, to potentially target also the posterior eye segment. Overall, this device can be considered a multipurpose delivery platform intended for the concomitant release of lipophilic and hydrophilic drugs.
Collapse
|
18
|
Abdi B, Mofidfar M, Hassanpour F, Kirbas Cilingir E, Kalajahi SK, Milani PH, Ghanbarzadeh M, Fadel D, Barnett M, Ta CN, Leblanc RM, Chauhan A, Abbasi F. Therapeutic contact lenses for the treatment of corneal and ocular surface diseases: advances in extended and targeted drug delivery. Int J Pharm 2023; 638:122740. [PMID: 36804524 DOI: 10.1016/j.ijpharm.2023.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
The eye is one of the most important organs in the human body providing critical information on the environment. Many corneal diseases can lead to vision loss affecting the lives of people around the world. Ophthalmic drug delivery has always been a major challenge in the medical sciences. Since traditional methods are less efficient (∼ 5%) at delivering drugs to ocular tissues, contact lenses have generated growing interest in ocular drug delivery due to their potential to enhance drug bioavailability in ocular tissues. The main techniques used to achieve sustained release are discussed in this review, including soaking in drug solutions, incorporating drug into multilayered contact lenses, use of vitamin E barriers, molecular imprinting, nanoparticles, micelles and liposomes. The most clinically relevant results on different eye pathologies are presented. In addition, this review summarizes the benefits of contact lenses over eye drops, strategies for incorporating drugs into lenses to achieve sustained release, results of in vitro and in vivo studies, and the recent advances in the commercialization of therapeutic contact lenses for allergic conjunctivitis.
Collapse
Affiliation(s)
- Behnam Abdi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, CA, USA; School of Medicine, Stanford University, Stanford, CA, USA
| | - Fatemeh Hassanpour
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | | | - Sepideh K Kalajahi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Paria H Milani
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Mahsa Ghanbarzadeh
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Daddi Fadel
- Center for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Melissa Barnett
- University of California, Davis Eye Center, Sacramento, CA, USA
| | - Christopher N Ta
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL, USA.
| | - Anuj Chauhan
- Chemical and Biological Engineering Department, Colorado School of Mines, CO, USA.
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran.
| |
Collapse
|
19
|
Innovation in the Development of Synthetic and Natural Ocular Drug Delivery Systems for Eye Diseases Treatment: Focusing on Drug-Loaded Ocular Inserts, Contacts, and Intraocular Lenses. Pharmaceutics 2023; 15:pharmaceutics15020625. [PMID: 36839947 PMCID: PMC9961328 DOI: 10.3390/pharmaceutics15020625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Nowadays, ocular drug delivery still remains a challenge, since the conventional dosage forms used for anterior and posterior ocular disease treatments, such as topical, systemic, and intraocular administration methods, present important limitations mainly related to the anatomical complexity of the eye. In particular, the blood-ocular barrier along with the corneal barrier, ocular surface, and lacrimal fluid secretion reduce the availability of the administered active compounds and their efficacy. These limitations have increased the need to develop safe and effective ocular delivery systems able to sustain the drug release in the interested ocular segment over time. In the last few years, thanks to the innovations in the materials and technologies employed, different ocular drug delivery systems have been developed. Therefore, this review aims to summarize the synthetic and natural drug-loaded ocular inserts, contacts, and intraocular lenses that have been recently developed, emphasizing the characteristics that make them promising for future ocular clinical applications.
Collapse
|
20
|
Kazmi I, Shaikh MAJ, Afzal O, Alfawaz Altamimi AS, Almalki WH, Alzarea SI, Al-Abbasi FA, Pandey M, Dureja H, Singh SK, Dua K, Gupta G. Chitosan-based nano drug delivery system for lung cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
21
|
Janardhanam LSL, Deokar AS, Bollareddy SR, Venuganti VVK. Colon-Targeted Layer-by-Layer Self-assembled Film: Pharmacokinetic Analysis of BCS Class I and Class III Model Drugs. AAPS PharmSciTech 2022; 23:299. [DOI: 10.1208/s12249-022-02450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 11/16/2022] Open
|
22
|
Liu L, Rambarran T, Sheardown H. Phenylboronic acid modified hydrogel materials and their potential for use in contact lens based drug delivery. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1924-1938. [PMID: 35695022 DOI: 10.1080/09205063.2022.2088531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
The use of hydrogel-based contact lens materials holds promise for ophthalmic drug delivery by increasing drug residence time, improving drug bioavailability, reducing administration frequency, and enhancing special site targeting. Issues such as ease of manufacturing, lens comfort and appropriate release kinetics must be considered. Furthermore, the high water content of hydrogel materials can result in rapid and poorly controlled release kinetics. Herein, we modified common hydrogels used in contact lens manufacturing with phenylboronic acid (PBA). PBA addresses these material design issues since boronate esters are easily formed when boron acid and diols interact, opening up a pathway for simple modification of the model lens materials with saccharide based wetting agents. The wetting agents have the potential to improve lens comfort. Furthermore, the hydrophobicity of PBA and the presence of diols can be useful to help control drug release kinetics. In this work, polymerizable 3-(acrylamido)phenylboronic acid (APBA) was synthesized and incorporated into various hydrogels used in contact lens applications, including poly(2-hydroxyethylmethacrylate) (PHEMA), polyvinylpyrrolidone (PVP) and poly(N,N-dimethyl acrylamide) (PDMA) using UV induced free radical polymerization. The APBA structure and its incorporation into the hydrogel materials were confirmed by NMR and FTIR. The materials were shown to interact with and bind wetting agents such as hyaluronan (HA) and hydroxypropyl guar (HPG) by simple soaking in an aqueous solution. The equilibrium water content of the modified materials was characterized, demonstrating that most materials are still in the appropriate range after the introduction of the hydrophobic PBA. The release of three model ophthalmic drugs with varying hydrophilicity, atropine, atropine sulfate and dexamethasone, was examined. The presence of PBA in the materials was found to promote sustained drug release due to its hydrophobic nature. The results suggest that the modification of the materials with PBA was able to not only provide a mucoadhesive property that enhanced wetting agent interactions with the materials, but had the potential to alter drug release. Thus, the modification of contact lens materials with mucoadhesive functionality may be useful in the design of hydrogel contact lenses for ophthalmic drug release and wetting agent binding.
Collapse
Affiliation(s)
- Lina Liu
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Talena Rambarran
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Heather Sheardown
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
23
|
Chiang MC, Chern E. More than Antibiotics: Latest Therapeutics in the Treatment and Prevention of Ocular Surface Infections. J Clin Med 2022; 11:4195. [PMID: 35887958 PMCID: PMC9323953 DOI: 10.3390/jcm11144195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/10/2022] Open
Abstract
Ocular surface infections have been common issues for ophthalmologists for decades. Traditional strategies for infection include antibiotics, antiviral agents, and steroids. However, multiple drug-resistant bacteria have become more common with the prevalence of antibiotic use. Furthermore, an ideal treatment for an infectious disease should not only emphasize eliminating the microorganism but also maintaining clear and satisfying visual acuity. Immunogenetic inflammation, tissue fibrosis, and corneal scarring pose serious threats to vision, and they are not attenuated or prevented by traditional antimicrobial therapeutics. Herein, we collected information about current management techniques including stem-cell therapy, probiotics, and gene therapy as well as preventive strategies related to Toll-like receptors. Finally, we will introduce the latest research findings in ocular drug-delivery systems, which may enhance the bioavailability and efficiency of ocular therapeutics. The clinical application of improved delivery systems and novel therapeutics may support people suffering from ocular surface infections.
Collapse
Affiliation(s)
- Ming-Cheng Chiang
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
| | - Edward Chern
- niChe Lab for Stem Cell and Regenerative Medicine, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan;
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
24
|
Antibacterial Activity of Antibiotic-Releasing Polydopamine-Coated Nephrite Composites for Application in Drug-Eluting Contact Lens. MATERIALS 2022; 15:ma15144823. [PMID: 35888290 PMCID: PMC9315558 DOI: 10.3390/ma15144823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
The aim of this study is to prepare ciprofloxacin (CIP) or levofloxacin (LEVO)-incorporated and polydopamine (PDA)-coated nephrite composites for application in drug-eluting contact lenses. PDA was coated onto the surface of nephrite to improve antibacterial activity and to payload antibiotics. CIP or LEVO was incorporated into the PDA layer on the surface of nephrite. Furthermore, CIP-incorporated/PDA-coated nephrite composites were embedded into the contact lenses. PDA-coated nephrite composites showed dull and smooth surfaces according to the dopamine concentration while nephrite itself has sharp surface morphology. CIP- or LEVO-loaded/PDA-coated nephrite composites also have dull and smooth surface properties. Nano and/or sub-micron clusters were observed in field emission-scanning electron microscopy (FE-SEM) observation, indicating that PDA nanoparticles were accumulated and coated onto the surface of nephrite. Furthermore, CIP- or LEVO-incorporated/PDA-coated nephrite composites showed the sustained release of CIP or LEVO in vitro and these properties contributed to the enhanced antibacterial activity of composites compared to nephrite or PDA-coated nephrite composites. CIP-incorporated/PDA-coated nephrite composites were embedded in the contact lenses and then, in an antibacterial study, they showed higher bactericidal effect against Staphylococcus aureus (S. aureus) compared to nephrite itself or PDA-coated nephrite composites. We suggest that CIP- or LEVO-loaded/PDA-coated nephrite composite-embedded contact lenses are a promising candidate for therapeutic application.
Collapse
|
25
|
Jeang L, Tuli SS. Therapy for contact lens-related ulcers. Curr Opin Ophthalmol 2022; 33:282-289. [PMID: 35779052 DOI: 10.1097/icu.0000000000000861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The current review covers the current literature and practice patterns of antimicrobial therapy for contact lens-related microbial keratitis (CLMK). Although the majority of corneal ulcers are bacterial, fungus and acanthamoeba are substantial contributors in CLMK and are harder to treat due to the lack of commercially available topical medications and low efficacy of available topical therapy. RECENT FINDINGS Topical antimicrobials remain the mainstay of therapy for corneal ulcers. Fluoroquinolones may be used as monotherapy for small, peripheral bacterial ulcers. Antibiotic resistance is a persistent problem. Fungal ulcers are less responsive to topical medications and adjunct oral or intrastromal antifungal medications may be helpful. Acanthamoeba keratitis continues to remain a therapeutic challenge but newer antifungal and antiparasitic agents may be helpful adjuncts. Other novel and innovative therapies are being studied currently and show promise. SUMMARY Contact lens-associated microbial keratitis is a significant health issue that can cause vision loss. Treatment remains a challenge but many promising diagnostics and procedures are in the pipeline and offer hope.
Collapse
Affiliation(s)
- Lauren Jeang
- Department of Ophthalmology, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
26
|
Polat HK, Kurt N, Aytekin E, Bozdağ Pehlivan S, Çalış S. Novel Drug Delivery Systems to Improve the Treatment of Keratitis. J Ocul Pharmacol Ther 2022; 38:376-395. [PMID: 35763406 DOI: 10.1089/jop.2021.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Keratitis is a disease characterized by inflammation of the cornea caused by different pathogens. It can cause serious visual morbidity if not treated quickly. Depending on the pathogen causing keratitis, eye drops containing antibacterial, antifungal, or antiviral agents such as besiloxacin, moxifloxacin, ofloxacin, voriconazol, econazole, fluconazole, and acyclovir are used, and these drops need to be applied frequently due to their low bioavailability. Studies are carried out on formulations with extended residence time in the cornea and increased permeability. These formulations include various new drug delivery systems such as inserts, nanoparticles, liposomes, niosomes, cubosomes, microemulsions, in situ gels, contact lenses, nanostructured lipid carriers, carbon quantum dots, and microneedles. Ex vivo and in vivo studies with these formulations have shown that the residence time of the active substances in the cornea is prolonged, and their ocular bioavailability is increased. In addition, in vivo studies have shown that these formulations successfully treat keratitis. However, it has been observed that fluoroquinolones are used in most of the studies; similar drug delivery systems are generally preferred for antifungal drugs, and studies for viral and acanthameba keratitis are limited. There is a need for new studies on different types of keratitis and different drug active substances. At the same time, proving the efficacy of drug delivery systems, which give promising results in in vivo animal models, with clinical studies is of great importance for progress in the treatment of keratitis.
Collapse
Affiliation(s)
- Heybet Kerem Polat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Nihat Kurt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Eren Aytekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sibel Bozdağ Pehlivan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
27
|
Polymeric Drug Delivery Devices: Role in Cornea and External Disease. Eye Contact Lens 2022; 48:119-126. [PMID: 35192566 DOI: 10.1097/icl.0000000000000874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT The field of ophthalmic drug delivery is undergoing rapid changes not only in the evolution of pharmacologic agents but also in the novel drug delivery vehicles. The ocular surface has limitations to drug penetration because of the presence of tight junctions between basal epithelial cells, which limits the amount of drug that can be absorbed after topical instillation. In addition, nasolacrimal drainage reduces the precorneal residence time significantly. Contact lenses (CLs) have been considered as possible carriers for topical medications because they reside on the ocular surface for a sufficient length of time, and pharmacologic agents may be copolymerized with hydrogels allowing controlled drug diffusion. This strategy reduces the frequency of dosage while improving compliance. Modification of drug delivery vehicles is essential to allow sustained release of the drug from a polymeric complex, facilitate stability and residence time of the drug on the precorneal tear film, and improve penetration into biologic membranes. This review focuses on updates in CL-based and non-CL-based strategies in ophthalmic drug delivery.
Collapse
|
28
|
Akhter MH, Ahmad I, Alshahrani MY, Al-Harbi AI, Khalilullah H, Afzal O, Altamimi ASA, Najib Ullah SNM, Ojha A, Karim S. Drug Delivery Challenges and Current Progress in Nanocarrier-Based Ocular Therapeutic System. Gels 2022; 8:82. [PMID: 35200463 PMCID: PMC8871777 DOI: 10.3390/gels8020082] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 02/01/2023] Open
Abstract
Drug instillation via a topical route is preferred since it is desirable and convenient due to the noninvasive and easy drug access to different segments of the eye for the treatment of ocular ailments. The low dose, rapid onset of action, low or no toxicity to the local tissues, and constrained systemic outreach are more prevalent in this route. The majority of ophthalmic preparations in the market are available as conventional eye drops, which rendered <5% of a drug instilled in the eye. The poor drug availability in ocular tissue may be attributed to the physiological barriers associated with the cornea, conjunctiva, lachrymal drainage, tear turnover, blood-retinal barrier, enzymatic drug degradation, and reflex action, thus impeding deeper drug penetration in the ocular cavity, including the posterior segment. The static barriers in the eye are composed of the sclera, cornea, retina, and blood-retinal barrier, whereas the dynamic barriers, referred to as the conjunctival and choroidal blood flow, tear dilution, and lymphatic clearance, critically impact the bioavailability of drugs. To circumvent such barriers, the rational design of the ocular therapeutic system indeed required enriching the drug holding time and the deeper permeation of the drug, which overall improve the bioavailability of the drug in the ocular tissue. This review provides a brief insight into the structural components of the eye as well as the therapeutic challenges and current developments in the arena of the ocular therapeutic system, based on novel drug delivery systems such as nanomicelles, nanoparticles (NPs), nanosuspensions, liposomes, in situ gel, dendrimers, contact lenses, implants, and microneedles. These nanotechnology platforms generously evolved to overwhelm the troubles associated with the physiological barriers in the ocular route. The controlled-drug-formulation-based strategic approach has considerable potential to enrich drug concentration in a specific area of the eye.
Collapse
Affiliation(s)
- Md Habban Akhter
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia; (I.A.); (M.Y.A.)
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46477, Saudi Arabia;
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | - Abdulmalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (O.A.); (A.S.A.A.)
| | | | - Abhijeet Ojha
- Six Sigma Institute of Technology and Science, College of Pharmacy, Rudrapur 263153, India;
| | - Shahid Karim
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
29
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|