1
|
Papakyriakopoulou P, Valsami G. The nasal route for nose-to-brain drug delivery: advanced nasal formulations for CNS disorders. Expert Opin Drug Deliv 2025:1-17. [PMID: 40189901 DOI: 10.1080/17425247.2025.2489553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/02/2025] [Indexed: 04/09/2025]
Abstract
INTRODUCTION The nasal route offers a feasible alternative to oral and/or parenteral administration, providing a noninvasive route to achieve nose-to-brain drug delivery involving the olfactory and trigeminal nerves, and facilitating local or systemic drug action. Conventional liquid nasal dosage forms have not managed to bridge the gaps of precise dosing and targeted central nervous system (CNS) delivery, while more sophisticated formulation approaches are being explored for brain targeting, aiming to enhance bioavailability and therapeutic efficacy. AREAS COVERED This review focuses on preclinical and clinical evaluation of microemulsions, in-situ gels, nasal powders, and nanocarrier-based formulations. Key pharmacokinetic and pharmacodynamic findings are discussed to evaluate their potential and limitations in improving drug bioavailability and CNS targeting. The existing regulatory framework for approval of products for nose-to-brain drug delivery is also addressed and relative hurdles are discussed. EXPERT OPINION While nasal drug delivery holds great promise for CNS therapeutics, key challenges remain, including formulation stability, mucosal permeability, patient adherence. Future research should prioritize improving targeting efficiency, overcoming mucociliary clearance, developing user-friendly pharmaceutical products. Personalized medicine and smart delivery systems could further enhance drug targeting and minimize side effects. Continued research and regulatory advancements are essential to fully realize nasal delivery's perspective in CNS therapeutics.
Collapse
Affiliation(s)
- Paraskevi Papakyriakopoulou
- Laboratory of Biopharmaceutics and Pharmacokinetics, Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| | - Georgia Valsami
- Laboratory of Biopharmaceutics and Pharmacokinetics, Department of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece
| |
Collapse
|
2
|
Papakyriakopoulou P, Balafas E, Kostomitsopoulos N, Rekkas DM, Dev KK, Valsami G. Pharmacokinetic Study of Fingolimod Nasal Films Administered via Nose-to-Brain Route in C57BL/6 J Mice as Potential Treatment for Multiple Sclerosis. Pharm Res 2024; 41:1951-1963. [PMID: 39470941 DOI: 10.1007/s11095-024-03745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/09/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Fingolimod hydrochloride (FH) has emerged as a vital medication for managing Multiple Sclerosis (MS). Despite its high oral bioavailability of 93%, it is plagued by slow oral absorption (Tmax = 8-12 h) and extensive hepatic metabolism. Intranasal administration has emerged as an alternative to address these limitations, ensuring efficient central nervous system delivery and minimizing peripheral exposure and first-pass metabolism. OBJECTIVE This study aims to develop and evaluate FH nasal films for enhanced drug delivery. METHODS A Design of Experiments approach was employed to formulate FH nasal films, utilizing HPMC E50 as a film-forming polymer, PEG 400 as a plasticizer, and Me-β-CD as a permeation enhancer. Two formulations with superior in vitro and ex vivo performance were selected for in vivo evaluation. A comparative pharmacokinetic study was conducted in C57BL/6 J mice in the brain and serum after administration of nasal films and oral FH solution, respectively. Sparse sampling and non-compartmental analysis were used. RESULTS FH nasal films efficiently delivered the drug to both serum (Cmax(F3) = 0.35 ± 0.021, Cmax(F4) = 0.38 ± 0.029 μg/mL) and brain (Cmax(F3) = 0.39 ± 0.05, Cmax(F4) = 0.44 ± 0.048 μg/mL), achieving higher levels than oral delivery. Brain relative bioavailability (% Frel (0-6 h)) was 519% and 534%, while serum % Frel (0-6 h) was 295% and 343%. CONCLUSIONS The rapid nose-to-brain delivery within 30 min, in contrast to 10-h Tmax of the oral solution, indicates the potential of a combined IN and oral treatment regimen. This approach could expedite the attainment of steady-state concentrations, offering a promising method for managing multiple sclerosis (MS).
Collapse
Affiliation(s)
- Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences Sector of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Evangelos Balafas
- Laboratory Animal Facility, Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Dimitrios M Rekkas
- Department of Pharmacy, School of Health Sciences Sector of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, 15784, Greece
| | - Kumlesh K Dev
- Department of Physiology, Drug Development Research Group, School of Medicine, Trinity College Dublin, Dublin, D18 DH50, Ireland.
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences Sector of Pharmaceutical Technology, National and Kapodistrian University of Athens, Athens, 15784, Greece.
| |
Collapse
|
3
|
Lu M. Is aromatic plants environmental health engineering (APEHE) a leverage point of the earth system? Heliyon 2024; 10:e30322. [PMID: 38756557 PMCID: PMC11096952 DOI: 10.1016/j.heliyon.2024.e30322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/30/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024] Open
Abstract
It is important to note that every ecological niche in an ecosystem is significant. This study aims to assess the importance of medicinal and aromatic plants (MAPs) in the ecosystem from multiple perspectives. A primary model of Aromatic Plants Environmental Health Engineering (APEHE) has been designed and constructed. The APEHE system was used to collect aerosol compounds, and it was experimentally verified that these compounds have the potential to impact human health by binding to AKT1 as the primary target, and MMP9 and TLR4 as secondary targets. These compounds may indirectly affect human immunity by reversing drug resistance in drug-resistant bacteria in the nasal cavity. This is mainly achieved through combined mutations in sdhA, scrA, and PEP. Our findings are based on Network pharmacology and molecular binding, drug-resistance rescue experiments, as well as combined transcriptomics and metabolomics experiments. It is suggested that APEHE may have direct or indirect effects on human health. We demonstrate APEHE's numerous potential benefits, such as attenuation and elimination of airborne microorganisms in the environment, enhancing carbon and nitrogen storage in terrestrial ecosystems, promoting the formation of low-level clouds and strengthening the virtuous cycle of Earth's ecosystems. APEHE also supports the development of transdisciplinary technologies, including terpene energy production. It facilitates the creation of a sustainable circular economy and provides additional economic advantages through urban optimisation, as well as fresh insights into areas such as the habitability of other planets. APEHE has the potential to serve as a leverage point for the Earth system. We have created a new research direction.
Collapse
Affiliation(s)
- MengYu Lu
- HEFEI XIAODOUKOU HEALTH TECH CO LTD, China
| |
Collapse
|
4
|
Manta K, Papakyriakopoulou P, Nikolidaki A, Balafas E, Kostomitsopoulos N, Banella S, Colombo G, Valsami G. Comparative Serum and Brain Pharmacokinetics of Quercetin after Oral and Nasal Administration to Rats as Lyophilized Complexes with β-Cyclodextrin Derivatives and Their Blends with Mannitol/Lecithin Microparticles. Pharmaceutics 2023; 15:2036. [PMID: 37631250 PMCID: PMC10459069 DOI: 10.3390/pharmaceutics15082036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Quercetin (Que) is one of the most studied flavonoids with strong antioxidant properties ascribed to its ability to bind free radicals and inactivate them. However, the low solubility of the compound along with its inadequate absorption after oral administration limit its beneficial effects. Que's complexation with two different cyclodextrin (CD) derivatives (hydroxypropyl-β-CD and methyl-β-CD) via the neutralization/lyophilization method has been found to improve its physicochemical properties. Moreover, blends of the lyophilized powders with mannitol/lecithin microparticles (MLMPs) have been proposed as candidates for intranasal (IN) administration after in vitro and ex vivo evaluations. In this context, a comparative pharmacokinetic (PK) study of the IN vs oral administration of Que lyophilized powders and their blends with MLMPs (75:25 w/w) was performed on Wistar rats. The PK parameters estimated by a non-compartmental analysis using the sparse data methodology in Phoenix® 8.3 (Certara, Princeton, NJ, USA) illustrated the effectiveness of IN administration either in brain targeting or in reaching the bloodstream. Significant levels of the compound were achieved at both sites, compared to those after oral delivery which were negligible. These results favor the potential application of the prepared Que nasal powders for systemic and nose-to-brain delivery for the prevention and/or treatment of neuroinflammatory degenerative conditions, such as Parkinson's and Alzheimer's disease.
Collapse
Affiliation(s)
- Konstantina Manta
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.M.); (P.P.); (A.N.)
| | - Paraskevi Papakyriakopoulou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.M.); (P.P.); (A.N.)
| | - Anna Nikolidaki
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.M.); (P.P.); (A.N.)
| | - Evangelos Balafas
- Laboratory Animal Facility, Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (E.B.); (N.K.)
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Centre of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; (E.B.); (N.K.)
| | - Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.)
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (S.B.); (G.C.)
| | - Georgia Valsami
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece; (K.M.); (P.P.); (A.N.)
| |
Collapse
|
5
|
Li L, Tan L, Zhang Q, Cheng Y, Liu Y, Li R, Hou S. Nose-to-brain delivery of self-assembled curcumin-lactoferrin nanoparticles: Characterization, neuroprotective effect and in vivo pharmacokinetic study. Front Bioeng Biotechnol 2023; 11:1168408. [PMID: 37051277 PMCID: PMC10084992 DOI: 10.3389/fbioe.2023.1168408] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Curcumin (CUR) is a natural polyphenol extract with significant antioxidant and anti-inflammatory effects, which indicates its great potential for neuroprotection. Lactoferrin (LF), a commonly used oral carrier and targeting ligand, has not been reported as a multifunctional nanocarrier for nose-to-brain delivery. This study aims to develop a nose-to-brain delivery system of curcumin-lactoferrin nanoparticles (CUR-LF NPs) and to further evaluate the neuroprotective effects in vitro and brain accumulation in vivo. Herein, CUR-LF NPs were prepared by the desolvation method with a particle size of 84.8 ± 6.5 nm and a zeta potential of +22.8 ± 4.3 mV. The permeability coefficient of CUR-LF NPs (4.36 ± 0.79 × 10−6 cm/s) was 50 times higher than that of CUR suspension (0.09 ± 0.04 × 10−6 cm/s) on MDCK monolayer, indicating that the nanoparticles could improve the absorption efficiency of CUR in the nasal cavity. Moreover, CUR-LF NPs showed excellent protection against Aβ25-35-induced nerve damage in PC12 cells. In vivo pharmacokinetic studies showed that the brain-targeting efficiency of CUR-LF NPs via IN administration was 248.1%, and the nose-to-brain direct transport percentage was 59.7%. Collectively, nose-to-brain delivery of CUR-LF NPs is capable of achieving superior brain enrichment and potential neuroprotective effects.
Collapse
Affiliation(s)
- Linghui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Liwei Tan
- Sichuan Purity Pharmaceutical Co. Ltd., Chengdu, Sichuan, China
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yushan Cheng
- Sichuan Purity Pharmaceutical Co. Ltd., Chengdu, Sichuan, China
| | - Yayuan Liu
- Sichuan Purity Pharmaceutical Co. Ltd., Chengdu, Sichuan, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Shuguang Hou, ; Rui Li,
| | - Shuguang Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- *Correspondence: Shuguang Hou, ; Rui Li,
| |
Collapse
|
6
|
Balafas EG, Papakyriakopoulou PI, Kostomitsopoulos NG, Valsami GN. Intranasal Administration of a Polymeric Biodegradable Film to C57BL/6 Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:179-184. [PMID: 36898691 PMCID: PMC10078934 DOI: 10.30802/aalas-jaalas-22-000091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/28/2022] [Accepted: 12/09/2022] [Indexed: 03/12/2023]
Abstract
Nasal drug delivery in rodents is a challenging procedure, especially for brain targeting, as the position of the material in the nasal cavity determines the success of the administration method. The objective of this study was to assess a novel intranasal administration technique for nose-to-brain delivery of biodegradable nasal films. The method was performed in C57BL/6 (n = 10; age, 8 wk) under inhaled sevoflurane. Twenty-four gauge catheters were used for the procedure. Hydroxypropyl methyl-cellulosebased film was formed in the lumen of the catheter and then delivered into the mouse nostril by pushing it out of the lumen using a trimmed and polished needle. Methylene blue was incorporated in the film-forming gel to indicate the delivery area in which the films were deposited. After administration, all mice recovered from anesthesia without incident. None of the mice showed any signs of injury, discomfort, or nose bleeding, thus allowing us to characterize the administration method as noninvasive. Furthermore, postmortem evaluation revealed olfactory-centered placement of the polymeric films, confirming the accuracy and repeatability of the method. In conclusion, this study documented the use of, a novel, noninvasive, intranasal administration technique for nose-to-brain drug delivery in biodegradable films for use in mice.
Collapse
Affiliation(s)
- Evangelos G Balafas
- Laboratory Animal Facility, Centre of Clinical and Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Paraskevi I Papakyriakopoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece;,
| | - Nikolaos G Kostomitsopoulos
- Laboratory Animal Facility, Centre of Clinical and Experimental Surgery and Translational Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Georgia N Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens, Greece
| |
Collapse
|
7
|
Preparation of Protein Aerogel Particles for the Development of Innovative Drug Delivery Systems. Gels 2022; 8:gels8120765. [PMID: 36547289 PMCID: PMC9777701 DOI: 10.3390/gels8120765] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The research was oriented towards the preparation of aerogel particles based on egg white and whey protein isolate using various dispersion methods: dripping, spraying, and homogenization. Based on the results of analytical studies, the most appropriate samples were selected to obtain aerogels loaded with the drug. The results of the experimental research were used to study methods for obtaining nasal drug delivery systems based on aerogels. Protein aerogels were obtained by thermal gelation followed by supercritical drying. The obtained particles of protein aerogels have a specific surface area of up to 350 m2/g with a pore volume of up to 2.9 cm3/g, as well as a porosity of up to 95%. The results of experimental studies have shown that changing the dispersion method makes it possible to control the structural characteristics of protein aerogel particles. The results of the studies were applied to obtain innovative nasal drug delivery systems for the treatment of socially significant diseases. Analytical studies were conducted to determine the amount and state of adsorbed drugs in protein aerogel particles, as well as in vivo experiments on the distribution of clomipramine in blood plasma and brain tissue of rats to study the pharmacokinetics and bioavailability of the resulting drug-loaded protein aerogel.
Collapse
|
8
|
Correia AC, Monteiro AR, Silva R, Moreira JN, Sousa Lobo JM, Silva AC. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood-brain barrier (BBB) to manage neurological disorders. Adv Drug Deliv Rev 2022; 189:114485. [PMID: 35970274 DOI: 10.1016/j.addr.2022.114485] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
The main limitation to the success of central nervous system (CNS) therapies lies in the difficulty for drugs to cross the blood-brain barrier (BBB) and reach the brain. Regarding its structure and enzymatic complexity, crossing the BBB is a challenge, although several alternatives have been identified. For instance, the use of drugs encapsulated in lipid nanoparticles has been described as one of the most efficient approaches to bypass the BBB, as they allow the passage of drugs through this barrier, improving brain bioavailability. In particular, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been a focus of research related to drug delivery to the brain. These systems provide protection of lipophilic drugs, improved delivery and bioavailability, having a major impact on treatments outcomes. In addition, the use of lipid nanoparticles administered via routes that transport drugs directly into the brain seems a promising solution to avoid the difficulties in crossing the BBB. For instance, the nose-to-brain route has gained considerable interest, as it has shown efficacy in 3D human nasal models and in animal models. This review addresses the state of the art on the use of lipid nanoparticles to modify the pharmacokinetics of drugs employed in the management of neurological disorders. A description of the structural components of the BBB, the role of the neurovascular unit and limitations for drugs to entry into the CNS is first addressed, along with the developments to increase drug delivery to the brain, with a special focus on lipid nanoparticles. In addition, the obstacle of BBB complexity in the creation of new effective drugs for the treatment of the most prevalent neurological disorders is also addressed. Finally, the proposed strategies for lipid nanoparticles to reach the CNS, crossing or circumventing the BBB, are described. Although promising results have been reported, especially with the nose-to-brain route, they are still ongoing to assess its real efficacy in vivo in the management of neurological disorders.
Collapse
Affiliation(s)
- A C Correia
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A R Monteiro
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - R Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal.
| | - J N Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Pólo I), Coimbra, Portugal; Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - J M Sousa Lobo
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A C Silva
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal; FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249 004 Porto, Portugal.
| |
Collapse
|
9
|
Chavda VP, Jogi G, Shah N, Athalye MN, Bamaniya N, K Vora L, Cláudia Paiva-Santos A. Advanced particulate carrier-mediated technologies for nasal drug delivery. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
10
|
Micro- and Nanosized Carriers for Nose-to-Brain Drug Delivery in Neurodegenerative Disorders. Biomedicines 2022; 10:biomedicines10071706. [PMID: 35885011 PMCID: PMC9313014 DOI: 10.3390/biomedicines10071706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders (NDs) have become a serious health problem worldwide due to the rapid increase in the number of people that are affected and the constantly aging population. Among all NDs, Alzheimer’s and Parkinson’s disease are the most common, and many efforts have been made in the development of effective and reliable therapeutic strategies. The intranasal route of drug administration offers numerous advantages, such as bypassing the blood–brain barrier and providing a direct entrance to the brain through the olfactory and trigeminal neurons. The present review summarizes the available information on recent advances in micro- and nanoscale nose-to-brain drug-delivery systems as a novel strategy for the treatment of Alzheimer’s and Parkinson’s disease. Specifically, polymer- and lipid-base micro- and nanoparticles have been studied as a feasible approach to increase the brain bioavailability of certain drugs. Furthermore, nanocomposites are discussed as a suitable formulation for administration into the nasal cavity.
Collapse
|