1
|
Palencia-Campos A, Ruiz-Cañas L, Abal-Sanisidro M, López-Gil JC, Batres-Ramos S, Saraiva SM, Yagüe B, Navarro D, Alcalá S, Rubiolo JA, Bidan N, Sánchez L, Mura S, Hermann PC, de la Fuente M, Sainz B. Reprogramming tumor-associated macrophages with lipid nanosystems reduces PDAC tumor burden and liver metastasis. J Nanobiotechnology 2024; 22:795. [PMID: 39719597 DOI: 10.1186/s12951-024-03010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/12/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) requires innovative therapeutic strategies to counteract its progression and metastatic potential. Since the majority of patients are diagnosed with advanced metastatic disease, treatment strategies targeting not only the primary tumor but also metastatic lesions are needed. Tumor-Associated Macrophages (TAMs) have emerged as central players, significantly influencing PDAC progression and metastasis. Our objective was to validate an innovative therapeutic strategy involving the reprogramming of TAMs using lipid nanosystems to prevent the formation of a pro-metastatic microenvironment in the liver. RESULTS In vitro results demonstrate that M2-polarized macrophages lose their M2-phenotype following treatment with lipid nanoemulsions composed of vitamin E and sphingomyelin (VitE:SM), transitioning to an M0/M1 state. Specifically, VitE:SM nanoemulsion treatment decreased the expression of macrophage M2 markers such as Arg1 and Egr2, while M1 markers such as Cd86, Il-1b and Il-12b increased. Additionally, the TGF-βR1 inhibitor Galunisertib (LY2157299) was loaded into VitE:SM nanoemulsions and delivered to C57BL/6 mice orthotopically injected with KPC PDAC tumor cells. Treated mice showed diminished primary tumor growth and reduced TAM infiltration in the liver. Moreover, we observed a decrease in liver metastasis with the nanoemulsion treatment in an intrasplenic model of PDAC liver metastasis. Finally, we validated the translatability of our VitE:SM nanosystem therapy in a human cell-based 3D co-culture model in vivo, underscoring the pivotal role of macrophages in the nanosystem's therapeutic effect in the context of human PDAC metastasis. CONCLUSIONS The demonstrated effectiveness and safety of our nanosystem therapy highlights a promising therapeutic approach for PDAC, showcasing its potential in reprogramming TAMs and mitigating the occurrence of liver metastasis.
Collapse
Affiliation(s)
- Adrián Palencia-Campos
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
| | - Laura Ruiz-Cañas
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
- Biobanco Hospital Universitario Ramón y Cajal, IRYCIS, Madrid, Spain
| | - Marcelina Abal-Sanisidro
- Nano-Oncology and Translational Therapeutics Group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Spain
- University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, CIBERONC, ISCIII, Área Cáncer, Madrid, Spain
| | - Juan Carlos López-Gil
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid (UAM), 28029, Madrid, Spain
| | - Sandra Batres-Ramos
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
| | - Sofia Mendes Saraiva
- Nano-Oncology and Translational Therapeutics Group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, CIBERONC, ISCIII, Área Cáncer, Madrid, Spain
| | - Balbino Yagüe
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
| | - Diego Navarro
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
- Department of Biochemistry, Autónoma University of Madrid (UAM), 28029, Madrid, Spain
| | - Sonia Alcalá
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain
| | - Juan A Rubiolo
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela (USC), Lugo, Spain
- Laboratorio Mixto de Biotecnología Acuática, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, 2000, Rosario, Argentina
| | - Nadège Bidan
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Faculty of Veterinary, University of Santiago de Compostela (USC), Lugo, Spain
| | - Simona Mura
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela, 15706, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red, CIBERONC, ISCIII, Área Cáncer, Madrid, Spain
- DIVERSA Technologies S.L, Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain
| | - Bruno Sainz
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto de Investigaciones Biomédicas (IIBm) Sols-Morreale CSIC-UAM, 28029, Madrid, Spain.
- Biomarkers and Personalized Approach to Cancer Group (BIOPAC), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3 Cancer, 28049, Madrid, Spain.
- Centro de Investigación Biomédica en Red, CIBERONC, ISCIII, Área Cáncer, Madrid, Spain.
| |
Collapse
|
2
|
Abal-Sanisidro M, Nieto-García O, Cotelo-Costoya C, de la Fuente M. Versatile and Efficient Protein Association Through Chemically Modified Sphingomyelin Nanosystems (SNs) for Enhanced Delivery. Chembiochem 2024:e202400450. [PMID: 39255447 DOI: 10.1002/cbic.202400450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Proteins are biological macromolecules well known to regulate many cellular signaling mechanisms. For instance, they are very appealing for their application as therapeutic agents, presenting high specificity and activity. Nonetheless, they suffer from unfolding, instability and low bioavailability making their administration through systemic and other routes very tough. To overcome these drawbacks, drug delivery systems and nanotechnology have arisen to deliver biomolecules in a sustained manner while, at the same time, increasing dose availability, protecting the cargo without compromising proteins' bioactivity, and enhancing intracellular delivery. In this work, we proposed the optimization of sphingomyelin nanosystems (SNs) for the delivery of a wide collection of proteins (ranging from 10-500 kDa and pI) using diverse chemical association strategies. We have further characterized SNs by varied analytical methodologies. We have also carried out in vitro experiments to validate the potential of the developed formulations. As the final goal, we aim to obtain evidence of the potential use of SNs for the development of protein therapeutics.
Collapse
Affiliation(s)
- Marcelina Abal-Sanisidro
- Nano-Oncology and Translational Therapeutics group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706, Santiago de Compostela, Spain
- University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029, Madrid, Spain
| | - Olaia Nieto-García
- Nano-Oncology and Translational Therapeutics group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706, Santiago de Compostela, Spain
| | - Cristina Cotelo-Costoya
- Nano-Oncology and Translational Therapeutics group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706, Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics group, IDIS, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706, Santiago de Compostela, Spain
- University of Santiago de Compostela (USC), 15782, Santiago de Compostela, Spain
- Biomedical Research Networking Center on Oncology (CIBERONC), 28029, Madrid, Spain
- DIVERSA Technologies S.L., Edificio Emprendia, Campus Sur, 15782, Santiago de Compostela, Spain
| |
Collapse
|
3
|
Bidan N, Dunsmore G, Ugrinic M, Bied M, Moreira M, Deloménie C, Ginhoux F, Blériot C, de la Fuente M, Mura S. Multicellular tumor spheroid model to study the multifaceted role of tumor-associated macrophages in PDAC. Drug Deliv Transl Res 2024; 14:2085-2099. [PMID: 38062286 DOI: 10.1007/s13346-023-01479-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 06/27/2024]
Abstract
While considerable efforts have been made to develop new therapies, progress in the treatment of pancreatic cancer has so far fallen short of patients' expectations. This is due in part to the lack of predictive in vitro models capable of accounting for the heterogeneity of this tumor and its low immunogenicity. To address this point, we have established and characterized a 3D spheroid model of pancreatic cancer composed of tumor cells, cancer-associated fibroblasts, and blood-derived monocytes. The fate of the latter has been followed from their recruitment into the tumor spheroid to their polarization into a tumor-associated macrophage (TAM)-like population, providing evidence for the formation of an immunosuppressive microenvironment.This 3D model well reproduced the multiple roles of TAMs and their influence on drug sensitivity and cell migration. Furthermore, we observed that lipid-based nanosystems consisting of sphingomyelin and vitamin E could affect the phenotype of macrophages, causing a reduction of characteristic markers of TAMs. Overall, this optimized triple coculture model gives a valuable tool that could find useful application for a more comprehensive understanding of TAM plasticity as well as for more predictive drug screening. This could increase the relevance of preclinical studies and help identify effective treatments.
Collapse
Affiliation(s)
- Nadège Bidan
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | | | - Martina Ugrinic
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Mathilde Bied
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
| | - Marco Moreira
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
| | - Claudine Deloménie
- Inserm US31, CNRS UAR3679, Ingénierie Et Plateformes Au Service de L'Innovation Thérapeutique (UMS-IPSIT), Université Paris-Saclay, 91400, Orsay, France
| | | | - Camille Blériot
- Inserm U1015, Gustave Roussy, 94800, Villejuif, France
- CNRS UMR8253, Institut Necker Enfants Malades, 75015, Paris, France
| | - Maria de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela SERGAS, 15706, Santiago de Compostela, Spain
- Biomedical Research Networking Center On Oncology (CIBERONC), 28029, Madrid, Spain
- DIVERSA Technologies SL, 15782, Santiago de Compostela, Spain
| | - Simona Mura
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France.
| |
Collapse
|
4
|
Vakhshiteh F, Bagheri Z, Soleimani M, Ahvaraki A, Pournemat P, Alavi SE, Madjd Z. Heterotypic tumor spheroids: a platform for nanomedicine evaluation. J Nanobiotechnology 2023; 21:249. [PMID: 37533100 PMCID: PMC10398970 DOI: 10.1186/s12951-023-02021-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023] Open
Abstract
Nanomedicine has emerged as a promising therapeutic approach, but its translation to the clinic has been hindered by the lack of cellular models to anticipate how tumor cells will respond to therapy. Three-dimensional (3D) cell culture models are thought to more accurately recapitulate key features of primary tumors than two-dimensional (2D) cultures. Heterotypic 3D tumor spheroids, composed of multiple cell types, have become more popular than homotypic spheroids, which consist of a single cell type, as a superior model for mimicking in vivo tumor heterogeneity and physiology. The stromal interactions demonstrated in heterotypic 3D tumor spheroids can affect various aspects, including response to therapy, cancer progression, nanomedicine penetration, and drug resistance. Accordingly, to design more effective anticancer nanomedicinal therapeutics, not only tumor cells but also stromal cells (e.g., fibroblasts and immune cells) should be considered to create a more physiologically relevant in vivo microenvironment. This review aims to demonstrate current knowledge of heterotypic 3D tumor spheroids in cancer research, to illustrate current advances in utilizing these tumor models as a novel and versatile platform for in vitro evaluation of nanomedicine-based therapeutics in cancer research, and to discuss challenges, guidelines, and future directions in this field.
Collapse
Affiliation(s)
- Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Zeinab Bagheri
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | - Marziye Soleimani
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Akram Ahvaraki
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Parisa Pournemat
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran
| | - Seyed Ebrahim Alavi
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
5
|
Zhu H, Chen HJ, Wen HY, Wang ZG, Liu SL. Engineered Lipidic Nanomaterials Inspired by Sphingomyelin Metabolism for Cancer Therapy. Molecules 2023; 28:5366. [PMID: 37513239 PMCID: PMC10383197 DOI: 10.3390/molecules28145366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Sphingomyelin (SM) and its metabolites are crucial regulators of tumor cell growth, differentiation, senescence, and programmed cell death. With the rise in lipid-based nanomaterials, engineered lipidic nanomaterials inspired by SM metabolism, corresponding lipid targeting, and signaling activation have made fascinating advances in cancer therapeutic processes. In this review, we first described the specific pathways of SM metabolism and the roles of their associated bioactive molecules in mediating cell survival or death. We next summarized the advantages and specific applications of SM metabolism-based lipidic nanomaterials in specific cancer therapies. Finally, we discussed the challenges and perspectives of this emerging and promising SM metabolism-based nanomaterials research area.
Collapse
Affiliation(s)
- Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Hua-Jie Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hai-Yan Wen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
6
|
Tofani LB, Luiz MT, Paes Dutra JA, Abriata JP, Chorilli M. Three-dimensional culture models: emerging platforms for screening the antitumoral efficacy of nanomedicines. Nanomedicine (Lond) 2023; 18:633-647. [PMID: 37183804 DOI: 10.2217/nnm-2022-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
Nanomedicines have been investigated for delivering drugs to tumors due to their ability to accumulate in the tumor tissues. 2D in vitro cell culture has been used to investigate the antitumoral potential of nanomedicines. However, a 2D model cannot adequately mimic the in vivo tissue conditions because of the lack of cell-cell interaction, a gradient of nutrients and the expression of genes. To overcome this limitation, 3D cell culture models have emerged as promising platforms that better replicate the complexity of native tumors. For this purpose, different techniques can be used to produce 3D models, including scaffold-free, scaffold-based and microfluidic-based models. This review addresses the principles, advantages and limitations of these culture methods for evaluating the antitumoral efficacy of nanomedicines.
Collapse
Affiliation(s)
- Larissa Bueno Tofani
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marcela Tavares Luiz
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Jessyca Aparecida Paes Dutra
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| | - Juliana Palma Abriata
- School of Pharmaceutical Science of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, Sao Paulo, 14040-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Science of Sao Paulo State University (UNESP), Araraquara, Sao Paulo, 14800-903, Brazil
| |
Collapse
|
7
|
Lores S, Gámez-Chiachio M, Cascallar M, Ramos-Nebot C, Hurtado P, Alijas S, López López R, Piñeiro R, Moreno-Bueno G, de la Fuente M. Effectiveness of a novel gene nanotherapy based on putrescine for cancer treatment. Biomater Sci 2023. [PMID: 36790445 DOI: 10.1039/d2bm01456d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Gene therapy has long been proposed for cancer treatment. However, the use of therapeutic nucleic acids presents several limitations such as enzymatic degradation, rapid clearance, and poor cellular uptake and efficiency. In this work we propose the use of putrescine, a precursor for higher polyamine biosynthesis for the preparation of cationic nanosystems for cancer gene therapy. We have formulated and characterized putrescine-sphingomyelin nanosystems (PSN) and studied their endocytic pathway and intracellular trafficking in cancer cells. After loading a plasmid DNA (pDNA) encoding the apoptotic Fas Ligand (FasL), we proved their therapeutic activity by measuring the cell death rate after treatment of MDA-MB-231 cells. We have also used xenografted zebrafish embryos as a first in vivo approach to demonstrate the efficacy of the proposed PSN-pDNA formulation in a more complex model. Finally, intratumoral and intraperitoneal administration to mice-bearing MDA-MB-231 xenografts resulted in a significant decrease in tumour cell growth, highlighting the potential of the developed gene therapy nanoformulation for the treatment of triple negative breast cancer.
Collapse
Affiliation(s)
- Saínza Lores
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain
| | - Manuel Gámez-Chiachio
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - María Cascallar
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - Carmen Ramos-Nebot
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain
| | - Pablo Hurtado
- Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Sandra Alijas
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Rafael López López
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Roberto Piñeiro
- Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,Roche-CHUS Join Unit. Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain.
| | - Gema Moreno-Bueno
- Translational Cancer Research Laboratory, Department of Biochemistry, Autonomous University of Madrid, School of Medicine, "Alberto Sols" Biomedical Research Institute CSIC-UAM, IdiPaz, Arturo Duperier 4, 28029, Madrid, Spain. .,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,MD Anderson International Foundation, Gómez Hemans s/n, 28033 Madrid, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Unit, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela, 15706, A Coruña, Spain. .,Universidade de Santiago de Compostela (USC), Praza do Obradoiro, s/n, Santiago de Compostela, 15782, A Coruña, Spain.,Biomedical Cancer Research Network (CIBERONC), 28029 Madrid, Spain.,DIVERSA Technologies SL, Edificio Emprendia, Universidade de Santiago de Compostela, Campus Vida s/n, 15782 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Cascallar M, Hurtado P, Lores S, Pensado-López A, Quelle-Regaldie A, Sánchez L, Piñeiro R, de la Fuente M. Zebrafish as a platform to evaluate the potential of lipidic nanoemulsions for gene therapy in cancer. Front Pharmacol 2022; 13:1007018. [PMID: 36386231 PMCID: PMC9659613 DOI: 10.3389/fphar.2022.1007018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/14/2022] [Indexed: 09/08/2024] Open
Abstract
Gene therapy is a promising therapeutic approach that has experienced significant groth in recent decades, with gene nanomedicines reaching the clinics. However, it is still necessary to continue developing novel vectors able to carry, protect, and release the nucleic acids into the target cells, to respond to the widespread demand for new gene therapies to address current unmet clinical needs. We propose here the use of zebrafish embryos as an in vivo platform to evaluate the potential of newly developed nanosystems for gene therapy applications in cancer treatment. Zebrafish embryos have several advantages such as low maintenance costs, transparency, robustness, and a high homology with the human genome. In this work, a new type of putrescine-sphingomyelin nanosystems (PSN), specifically designed for cancer gene therapy applications, was successfully characterized and demonstrated its potential for delivery of plasmid DNA (pDNA) and miRNA (miR). On one hand, we were able to validate a regulatory effect of the PSN/miR on gene expression after injection in embryos of 0 hpf. Additionally, experiments proved the potential of the model to study the transport of the associated nucleic acids (pDNA and miR) upon incubation in zebrafish water. The biodistribution of PSN/pDNA and PSN/miR in vivo was also assessed after microinjection into the zebrafish vasculature, demonstrating that the nucleic acids remained associated with the PSN in an in vivo environment, and could successfully reach disseminated cancer cells in zebrafish xenografts. Altogether, these results demonstrate the potential of zebrafish as an in vivo model to evaluate nanotechnology-based gene therapies for cancer treatment, as well as the capacity of the developed versatile PSN formulation for gene therapy applications.
Collapse
Affiliation(s)
- María Cascallar
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Pablo Hurtado
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - Saínza Lores
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Alba Pensado-López
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, Lugo, Spain
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Campus Vida, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Quelle-Regaldie
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, Lugo, Spain
| | - Laura Sánchez
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Campus de Lugo, Lugo, Spain
- Preclinical Animal Models Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Roberto Piñeiro
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Roche-Chus Joint Unit, Translational Medical Oncology Group, Oncomet, Health Research Institute of Santiago de Compostela, Santiago de Compostela, Spain
| | - María de la Fuente
- Nano-Oncology and Translational Therapeutics Group, Health Research Institute of Santiago de Compostela (IDIS), SERGAS, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
- Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain
- DIVERSA Technologies S.L, Santiago de Compostela, Spain
| |
Collapse
|