1
|
Murray JD, Bennett-Lenane H, O’Dwyer PJ, Griffin BT. Establishing a Pharmacoinformatics Repository of Approved Medicines: A Database to Support Drug Product Development. Mol Pharm 2025; 22:408-423. [PMID: 39705554 PMCID: PMC11707741 DOI: 10.1021/acs.molpharmaceut.4c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024]
Abstract
Advanced predictive modeling approaches have harnessed data to fuel important innovations at all stages of drug development. However, the need for a machine-readable drug product library which consolidates many aspects of formulation design and performance remains largely unmet. This study presents a scripted, reproducible approach to database curation and explores its potential to streamline oral medicine development. The Product Information files for all centrally authorized drug products containing a small molecule active ingredient were retrieved programmatically from the European Medicines Agency Web site. Text processing isolated relevant information, including the maximum clinical dose, dosage form, route of administration, excipients, and pharmacokinetic performance. Chemical and bioactivity data were integrated through automated linking to external curated databases. The capability of this database to inform oral medicine development was assessed in the context of drug-likeness evaluation, excipient selection, and prediction of oral fraction absorbed. Existing filters of drug-likeness, such as the Rule of Five, were found to poorly capture the chemical space of marketed oral drug products. Association rule learning identified frequent patterns in tablet formulation compositions that can be used to establish excipient combinations that have seen clinical success. Binary prediction models of oral fraction absorbed constructed exclusively from regulatory data achieved acceptable performance (balanced accuracytest = 0.725), demonstrating its modelability and potential for use during early stage molecule prioritization tasks. This study illustrates the impact of highly linked drug product data in accelerating clinical translation and underlines the ongoing need for accuracy and completeness of data reported in the regulatory datasphere.
Collapse
Affiliation(s)
- Jack D. Murray
- School of Pharmacy, University
College Cork, College Road, Cork T12
K8AF, Ireland
| | | | - Patrick J. O’Dwyer
- School of Pharmacy, University
College Cork, College Road, Cork T12
K8AF, Ireland
| | - Brendan T. Griffin
- School of Pharmacy, University
College Cork, College Road, Cork T12
K8AF, Ireland
| |
Collapse
|
2
|
Moseson DE, Li N, Rantanen J, Ueda K, Zhang GGZ. Professor Lynne S. Taylor: Scientist, educator, and adventurer. J Pharm Sci 2025; 114:2-9. [PMID: 39426563 DOI: 10.1016/j.xphs.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
This special edition of the Journal of Pharmaceutical Sciences is dedicated to Professor Lynne S. Taylor (Retter Distinguished Professor of Pharmacy, Department of Industrial and Molecular Pharmaceutics, Purdue University), to honor her distinguished career as a pharmaceutical scientist and educator. The goal of this commentary is to provide an overview of Professor Taylor's career path, summarize her key research contributions, and provide some insight into her personal and professional contributions as an educator, mentor, wife, mother, friend, and adventurer.
Collapse
Affiliation(s)
- Dana E Moseson
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States.
| | - Na Li
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Geoff G Z Zhang
- ProPhysPharm LLC, Lincolnshire, Illinois 60069, United States; Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
B S, Ghosh A. Mechanistic Insights into Amorphous Solid Dispersions: Bridging Theory and Practice in Drug Delivery. Pharm Res 2025; 42:1-23. [PMID: 39849216 DOI: 10.1007/s11095-024-03808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025]
Abstract
Improving the bioavailability of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms. This review explores recent research advancements in ASD, emphasizing dissolution mechanisms, phase separation phenomena, and the importance of drug loading and congruency limits on ASD performance. Principal occurrences such as liquid-liquid phase separation (LLPS) and supersaturation are discussed, highlighting their impact on drug solubility, absorption and subsequent bioavailability. Additionally, it addresses the role of polymers in controlling supersaturation, stabilizing drug-rich nanodroplets, and inhibiting recrystallization. Recent advancements and emerging technologies offer new avenues for ASD characterization and production and demonstrate the potential of ASDs to enhance bioavailability and reduce variability, making possible for more effective and patient-friendly pharmaceutical formulations. Future research directions are proposed, focusing on advanced computational models for predicting ASD stability, use of novel polymeric carriers, and methods for successful preparations.
Collapse
Affiliation(s)
- Srividya B
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
4
|
El Sayed M, Alhalaweh A, Kovac L, Bergström CAS. Excipient effects on supersaturation, particle size dynamics, and thermodynamic activity of multidrug amorphous formulations. Int J Pharm 2024; 666:124738. [PMID: 39307444 DOI: 10.1016/j.ijpharm.2024.124738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Multidrug formulations enhance patient compliance and extend the life cycle of pharmaceutical products. To overcome solubility challenges for multidrug combinations, amorphous formulations are commonly used. However, the excipients for creating amorphous formulations are often selected without an understanding of their effects on the bioavailability of the drugs. In this context, we investigated the impact of three types of excipients (polymers, surfactants and amino acids) on the supersaturation and thermodynamic activity of multidrug amorphous formulations. Additionally, we studied the particle size dynamics of the colloidal phase formed as a result of liquid-liquid phase separation. The amorphous solubility of two drugs, atazanavir and ritonavir, was determined in solutions containing predissolved excipients and the particle size dynamics of the colloidal particles was measured by dynamic light scattering. Dissolution experiments of atazanavir and ritonavir were conducted in predissolved sodium dodecyl sulfate (SDS), an anionic surfactant, and alanine solutions under non-sink conditions. Membrane transport of the drugs was evaluated using a MicroFLUX setup. The polymers had only minor effects on the amorphous solubility, but SDS significantly increased the solubilities of both drugs. In contrast, the other non-ionic surfactants and amino acids reduced the solubility of atazanavir but had no negative effect on ritonavir. Polymers were effective in maintaining supersaturation and preventing the coarsening of the colloidal particles. Conversely, alanine was neither able to inhibit the solution crystallization nor increase the flux of either drug. Despite the increase in the amorphous solubility of both drugs in SDS, flux was reduced. These results highlight the importance of properly selecting excipients for supersaturating amorphous formulations. The choice of excipient impacts the thermodynamic activity, the phase behaviour of the drugs and hence, the resulting absorption after oral intake.
Collapse
Affiliation(s)
- Mira El Sayed
- Department of Pharmacy, Uppsala University, Biomedical Centre, P.O. Box 580, SE-751 23 Uppsala, Sweden; Recipharm OT Chemistry AB, SE-754 50 Uppsala, Sweden
| | - Amjad Alhalaweh
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Lucia Kovac
- Recipharm OT Chemistry AB, SE-754 50 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Biomedical Centre, P.O. Box 580, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
5
|
Men S, Polli JE. Microscope-enabled disc dissolution system: Concordance between drug and polymer dissolution from an amorphous solid dispersion disc and visual disc degradation. J Pharm Sci 2024; 113:3586-3598. [PMID: 39454944 DOI: 10.1016/j.xphs.2024.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
A microscopic erosion time test was recently described to anticipate amorphous solid dispersion (ASD) drug load dispersibility limit, using 0.5 ml media volume. Studies here build upon this microscope-enabled method but focus on drug and polymer dissolution from an ASD disc, along with imaging. The objective was 1) to design and build a microscope-enabled disc dissolution system (MeDDiS) with a 900 mL dissolution volume and 2) assess the ability of MeDDiS imaging of dissolving discs to provide concordance with measured drug and polymer dissolution profiles. MeDDiS employed a digital microscope to image ASD discs and a one-liter vessel for dissolution. ASD discs containing ritonavir (5-50 % drug load) and PVPVA were fabricated and subjected to in vitro dissolution using MeDDiS, where disc diameter was quantified with time. Ritonavir and PVPVA release were also measured. Results indicate concordance between imaging and dissolution. Both found 25 % drug load to provide high drug and polymer release, but 30 % yielded low release. Quantitatively, MeDDiS images predicted drug and polymer release profiles, both above and below the drug load cliff. Overall, studies here describe a MeDDiS which has promised to anticipate drug and polymer dissolution, via imaging of dissolving discs, above and below the ASD drug load cliff.
Collapse
Affiliation(s)
- Shuaiqian Men
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA.
| |
Collapse
|
6
|
Badruddoza AZM, Moseson DE, Lee HG, Esteghamatian A, Thipsay P. Role of rheology in formulation and process design of hot melt extruded amorphous solid dispersions. Int J Pharm 2024; 664:124651. [PMID: 39218326 DOI: 10.1016/j.ijpharm.2024.124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hot melt extrusion (HME) has been widely used as a continuous and highly flexible pharmaceutical manufacturing process for the production of a variety of dosage forms. In particular, HME enables preparation of amorphous solid dispersions (ASDs) which can improve bioavailability of poorly water-soluble drugs. The rheological properties of drug-polymer mixtures can significantly influence the processability of drug formulations via HME and eventually the end-use product properties such as physical stability and drug release. The objective of this review is to provide an overview of various rheological techniques and properties that can be used to evaluate the flow behavior and processability of the drug-polymer mixtures as well as formulation characteristics such as drug-polymer interactions, miscibility/solubility, and plasticization to improve the HME processability. An overview of the thermodynamics and kinetics of ASD processing by HME is also provided, as well as aspects of scale-up and process modeling, highlighting rheological properties on formulation design and process development. Overall, this review provides valuable insights into critical rheological properties which can be used as a predictive tool to optimize the HME processing conditions.
Collapse
Affiliation(s)
- Abu Zayed Md Badruddoza
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA.
| | - Dana E Moseson
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Hong-Guann Lee
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Amir Esteghamatian
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Priyanka Thipsay
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| |
Collapse
|
7
|
Prater CB, Kansiz M, Cheng JX. A tutorial on optical photothermal infrared (O-PTIR) microscopy. APL PHOTONICS 2024; 9:091101. [PMID: 39290719 PMCID: PMC11404004 DOI: 10.1063/5.0219983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/19/2024]
Abstract
This tutorial reviews the rapidly growing field of optical photothermal infrared (O-PTIR) spectroscopy and chemical imaging. O-PTIR is an infrared super-resolution measurement technique where a shorter wavelength visible probe is used to measure and map infrared (IR) absorption with spatial resolution up to 30× better than conventional techniques such as Fourier transform infrared and direct IR laser imaging systems. This article reviews key limitations of conventional IR instruments, the O-PTIR technology breakthroughs, and their origins that have overcome the prior limitations. This article also discusses recent developments in expanding multi-modal O-PTIR approaches that enable complementary Raman spectroscopy and fluorescence microscopy imaging, including wide-field O-PTIR imaging with fluorescence-based detection of IR absorption. Various practical subjects are covered, including sample preparation techniques, optimal measurement configurations, use of IR tags/labels and techniques for data analysis, and visualization. Key O-PTIR applications are reviewed in many areas, including biological and biomedical sciences, environmental and microplastics research, (bio)pharmaceuticals, materials science, cultural heritage, forensics, photonics, and failure analysis.
Collapse
Affiliation(s)
- Craig B Prater
- Photothermal Spectroscopy Corporation, Santa Barbara, California 93111, USA
| | - Mustafa Kansiz
- Photothermal Spectroscopy Corporation, Santa Barbara, California 93111, USA
| | - Ji-Xin Cheng
- Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
8
|
Leon ASC, Waterman KC, Wang G, Wang L, Cai T, Zhang X. Accelerated stability modeling of recrystallization from amorphous solid Dispersions: A Griseofulvin/HPMC-AS case study. Int J Pharm 2024; 657:124189. [PMID: 38701906 DOI: 10.1016/j.ijpharm.2024.124189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
Amorphous solid dispersions (ASDs) represent an important approach for enhancing oral bioavailability for poorly water soluble compounds; however, assuring that these ASDs do not recrystallize to a significant extent during storage can be time-consuming. Therefore, various efforts have been undertaken to predict ASD crystallization levels with kinetic models. However, only limited success has been achieved due to limits on crystal content quantification methods and the complexity of crystallization kinetics. To increase the prediction accuracy, the accelerated stability assessment program (ASAP), employing isoconversion (time to hit a specification limit) and a modified Arrhenius approach, are employed here for predictive shelf-life modeling. In the current study, a model ASD was prepared by spray drying griseofulvin and HPMC-AS-LF. This ASD was stressed under a designed combinations of temperature, relative humidity and time with the conditions set to ensure stressing was carried out below the glass transition temperature (Tg) of the ASD. Crystal content quantification method by X-ray powder diffraction (XRPD) with sufficient sensitivity was developed and employed for stressed ASD. Crystallization modeling of the griseofulvin ASD using ASAPprime® demonstrated good agreement with long-term (40 °C/75 %RH) crystallinity levels and support the use of this type of accelerated stability studies for further improving ASD shelf-life prediction accuracy.
Collapse
Affiliation(s)
| | | | - Guanhua Wang
- Level 2, Block C3, Maple Science Park, Qixia District, Nanjing 210048 China
| | - Likun Wang
- Level 2, Block C3, Maple Science Park, Qixia District, Nanjing 210048 China.
| | - Ting Cai
- China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing 210009 China
| | - Xiaohua Zhang
- 99 HengGuang Road, Nanjing Development Zone, Nanjing 210038 China
| |
Collapse
|
9
|
Yang R, Zhang GGZ, Zemlyanov DY, Purohit HS, Taylor LS. Drug Release from Surfactant-Containing Amorphous Solid Dispersions: Mechanism and Role of Surfactant in Release Enhancement. Pharm Res 2023; 40:2817-2845. [PMID: 37052841 DOI: 10.1007/s11095-023-03502-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE To understand how surfactants affect drug release from ternary amorphous solid dispersions (ASDs), and to investigate different mechanisms of release enhancement. METHODS Ternary ASDs containing ritonavir (RTV), polyvinylpyrrolidone/vinyl acetate (PVPVA) and a surfactant (sodium dodecyl sulfate (SDS), Tween 80, Span 20 or Span 85) were prepared with rotary evaporation. Release profiles of ternary ASDs were measured with surface normalized dissolution. Phase separation morphologies of ASD compacts during hydration/dissolution were examined in real-time with a newly developed confocal fluorescence microscopy method. The water ingress rate of different formulations was measured with dynamic vapor sorption. Microscopy was employed to check for matrix crystallization during release studies. RESULTS All surfactants improved drug release at 30% DL, while only SDS and Tween 80 improved drug release at higher DLs, although SDS promoted matrix crystallization. The dissolution rate of neat polymer increased when SDS and Tween 80 were present. The water ingress rate also increased in the presence of all surfactants. Surfactant-incorporation affected both the kinetic and thermodynamics factors governing phase separation of RTV-PVPVA-water system, modifying the phase morphology during ASD dissolution. Importantly, SDS increased the miscibility of RTV-PVPVA-water system, whereas other surfactants mainly affected the phase separation kinetics/drug-rich barrier persistence. CONCLUSION Incorporation of surfactants enhanced drug release from RTV-PVPVA ASDs compared to the binary system. Increased drug-polymer-water miscibility and disruption of the drug-rich barrier at the gel-solvent interface via plasticization are highlighted as two key mechanisms underlying surfactant impacts based on direct visualization of the phase separation process upon hydration and release.
Collapse
Affiliation(s)
- Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Hitesh S Purohit
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Moseson DE, Taylor LS. Crystallinity: A Complex Critical Quality Attribute of Amorphous Solid Dispersions. Mol Pharm 2023; 20:4802-4825. [PMID: 37699354 DOI: 10.1021/acs.molpharmaceut.3c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Does the performance of an amorphous solid dispersion rely on having 100% amorphous content? What specifications are appropriate for crystalline content within an amorphous solid dispersion (ASD) drug product? In this Perspective, the origin and significance of crystallinity within amorphous solid dispersions will be considered. Crystallinity can be found within an ASD from one of two pathways: (1) incomplete amorphization, or (2) crystal creation (nucleation and crystal growth). While nucleation and crystal growth is the more commonly considered pathway, where crystals originate as a physical stability failure upon accelerated or prolonged storage, manufacturing-based origins of crystallinity are possible as well. Detecting trace levels of crystallinity is a significant analytical challenge, and orthogonal methods should be employed to develop a holistic assessment of sample properties. Probing the impact of crystallinity on release performance which may translate to meaningful clinical significance is inherently challenging, requiring optimization of dissolution test variables to address the complexity of ASD formulations, in terms of drug physicochemical properties (e.g., crystallization tendency), level of crystallinity, crystal reference material selection, and formulation characteristics. The complexity of risk presented by crystallinity to product performance will be illuminated through several case studies, highlighting that a one-size-fits-all approach cannot be used to set specification limits, as the risk of crystallinity can vary widely based on a multitude of factors. Risk assessment considerations surrounding drug physicochemical properties, formulation fundamentals, physical stability, dissolution, and crystal micromeritic properties will be discussed.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Worldwide Research and Development Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
11
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
12
|
Krummnow A, Danzer A, Voges K, Kyeremateng SO, Degenhardt M, Sadowski G. Kinetics of Water-Induced Amorphous Phase Separation in Amorphous Solid Dispersions via Raman Mapping. Pharmaceutics 2023; 15:pharmaceutics15051395. [PMID: 37242637 DOI: 10.3390/pharmaceutics15051395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The poor bioavailability of an active pharmaceutical ingredient (API) can be enhanced by dissolving it in a polymeric matrix. This formulation strategy is commonly known as amorphous solid dispersion (ASD). API crystallization and/or amorphous phase separation can be detrimental to the bioavailability. Our previous work (Pharmaceutics 2022, 14(9), 1904) provided analysis of the thermodynamics underpinning the collapse of ritonavir (RIT) release from RIT/poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) ASDs due to water-induced amorphous phase separation. This work aimed for the first time to quantify the kinetics of water-induced amorphous phase separation in ASDs and the compositions of the two evolving amorphous phases. Investigations were performed via confocal Raman spectroscopy, and spectra were evaluated using so-called Indirect Hard Modeling. The kinetics of amorphous phase separation were quantified for 20 wt% and 25 wt% drug load (DL) RIT/PVPVA ASDs at 25 °C and 94% relative humidity (RH). The in situ measured compositions of the evolving phases showed excellent agreement with the ternary phase diagram of the RIT/PVPVA/water system predicted by PC-SAFT in our previous study (Pharmaceutics 2022, 14(9), 1904).
Collapse
Affiliation(s)
- Adrian Krummnow
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 70, D-44227 Dortmund, Germany
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Andreas Danzer
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 70, D-44227 Dortmund, Germany
| | - Kristin Voges
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Samuel O Kyeremateng
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Matthias Degenhardt
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Department of Biochemical and Chemical Engineering, TU Dortmund University, Emil-Figge-Street 70, D-44227 Dortmund, Germany
| |
Collapse
|
13
|
Deac A, Qi Q, Indulkar AS, Gao Y, Zhang GGZ, Taylor LS. Dissolution Mechanisms of Amorphous Solid Dispersions: A Close Look at the Dissolution Interface. Mol Pharm 2023; 20:2217-2234. [PMID: 36926898 DOI: 10.1021/acs.molpharmaceut.3c00020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Despite the recent success of amorphous solid dispersions (ASDs) at enabling the delivery of poorly soluble small molecule drugs, ASD-based dosage forms are limited by low drug loading. This is partially due to a sharp decline in drug release from the ASD at drug loadings surpassing the 'limit of congruency' (LoC). In some cases, the LoC is as low as 5% drug loading, significantly increasing the risk of pill burden. Despite efforts to understand the mechanism responsible for the LoC, a clear picture of the molecular processes occurring at the ASD/solution interface remains elusive. In this study, the ASD/solution interface was studied for two model compounds formulated as ASDs with copovidone. The evolution of a gel layer and its phase behavior was captured in situ with fluorescence confocal microscopy, where fluorescent probes were added to label the hydrophobic and hydrophilic phases. Phase separation was detected in the gel layer for most of the ASDs. The morphology of the hydrophobic phase was found to correlate with the release behavior, where a discrete phase resulted in good release and a continuous phase formed a barrier leading to poor release. The continuous phase formed at a lower drug loading for the system with stronger drug-polymer interactions. This was due to incorporation of the polymer into the hydrophobic phase. The study highlights the complex molecular and phase behavior at the ASD/solution interface of copovidone-based ASDs and provides a thermodynamic argument for qualitatively predicting the release behavior based on drug-polymer interactions.
Collapse
Affiliation(s)
- Alexandru Deac
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Qingqing Qi
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Anura S Indulkar
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Yi Gao
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Cao Z, Harmon DM, Yang R, Razumtcev A, Li M, Carlsen MS, Geiger AC, Zemlyanov D, Sherman AM, Takanti N, Rong J, Hwang Y, Taylor LS, Simpson GJ. Periodic Photobleaching with Structured Illumination for Diffusion Imaging. Anal Chem 2023; 95:2192-2202. [PMID: 36656303 DOI: 10.1021/acs.analchem.2c02950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The use of periodically structured illumination coupled with spatial Fourier-transform fluorescence recovery after photobleaching (FT-FRAP) was shown to support diffusivity mapping within segmented domains of arbitrary shape. Periodic "comb-bleach" patterning of the excitation beam during photobleaching encoded spatial maps of diffusion onto harmonic peaks in the spatial Fourier transform. Diffusion manifests as a simple exponential decay of a given harmonic, improving the signal to noise ratio and simplifying mathematical analysis. Image segmentation prior to Fourier transformation was shown to support pooling for signal to noise enhancement for regions of arbitrary shape expected to exhibit similar diffusivity within a domain. Following proof-of-concept analyses based on simulations with known ground-truth maps, diffusion imaging by FT-FRAP was used to map spatially-resolved diffusion differences within phase-separated domains of model amorphous solid dispersion spin-cast thin films. Notably, multi-harmonic analysis by FT-FRAP was able to definitively discriminate and quantify the roles of internal diffusion and exchange to higher mobility interfacial layers in modeling the recovery kinetics within thin amorphous/amorphous phase-separated domains, with interfacial diffusion playing a critical role in recovery. These results have direct implications for the design of amorphous systems for stable storage and efficacious delivery of therapeutic molecules.
Collapse
Affiliation(s)
- Ziyi Cao
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Dustin M Harmon
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana47907, United States
| | - Aleksandr Razumtcev
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Minghe Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Mark S Carlsen
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Andreas C Geiger
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana47907, United States
| | - Alex M Sherman
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Nita Takanti
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Jiayue Rong
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Yechan Hwang
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana47907, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana47907, United States
| |
Collapse
|
15
|
Wu H, Wang Z, Zhao Y, Gao Y, Zhang H, Wang L, Wang Z, Han J. Effect of Span 20 Feeding Zone in the Twin Screw Extruder on the Properties of Amorphous Solid Dispersion of Ritonavir. Pharmaceutics 2023; 15:pharmaceutics15020441. [PMID: 36839764 PMCID: PMC9960583 DOI: 10.3390/pharmaceutics15020441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
A ternary amorphous solid dispersion (ASD) system consisting of drug/polymer/surfactant is receiving increased attention to improve the oral bioavailability of poorly water-soluble drugs. The effect of polymers has been extensively studied, while the impact of surfactants has not yet to be studied to the same extent. Challenging questions to be answered are whether the surfactants should be added with the drug or separately and the resulting differences between the two operating processes. By adjusting the liquid feeding zone for Span 20 in the hot-melt twin screw extruder equipment, we investigated the effect of Span 20 on the properties of the polyvinylpyrrolidone/vinyl acetate (PVPVA)-based ASD formulations of ritonavir. We found that with the delayed feeding positions of Span 20 in the twin screw extruder, the ability of the ternary ASDs to maintain the supersaturation of the milled extrudates was observed to be significantly enhanced. Furthermore, adding surfactant after a thorough mixing of polymer and drug could decrease the molecular mobility of ternary ASD formulations. In addition, the effects of Span 20 on the complex viscosity and structure of PVPVA were also investigated. The delayed addition of Span 20 could improve the complex viscosity of PVPVA, thus leading to the drug precipitation inhibition. In conclusion, the delayed addition of Span 20 in the twin screw extruder and prolonging the mixing time of the drug and polymer may be critical to the maintenance of supersaturation.
Collapse
Affiliation(s)
- Hengqian Wu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252000, China
| | - Zhengping Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252000, China
- Liaocheng High-Tech Biotechnology Co., Ltd., Liaocheng 252059, China
| | - Yanna Zhao
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252000, China
| | - Yan Gao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Heng Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Lili Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhe Wang
- Anhui Biochem Biopharmaceutical Co., Ltd., Hefei 230088, China
| | - Jun Han
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252000, China
- Liaocheng High-Tech Biotechnology Co., Ltd., Liaocheng 252059, China
- Correspondence: ; Tel.: +86-0635-8239136
| |
Collapse
|
16
|
Yang R, Zhang GGZ, Zemlyanov DY, Purohit HS, Taylor LS. Release Mechanisms of Amorphous Solid Dispersions: Role of Drug-Polymer Phase Separation and Morphology. J Pharm Sci 2023; 112:304-317. [PMID: 36306863 DOI: 10.1016/j.xphs.2022.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/13/2022]
Abstract
Formulating poorly soluble molecules as amorphous solid dispersions (ASDs) is an effective strategy to improve drug release. However, drug release rate and extent tend to rapidly diminish with increasing drug loading (DL). The poor release at high DLs has been postulated to be linked to the process of amorphous-amorphous phase separation (AAPS), although the exact connection between phase separation and release properties remains somewhat unclear. Herein, release profiles of ASDs formulated with ritonavir (RTV) and polyvinylpyrrolidone/vinyl acetate (PVPVA) at different DLs were determined using surface normalized dissolution. Surface morphologies of partially dissolved ASD compacts were evaluated with confocal fluorescence microscopy, using Nile red and Alexa Fluor 488 as fluorescence markers to track the hydrophobic and hydrophilic phases respectively. ASD phase behavior during hydration and release of components were also visualized in real time using a newly developed in situ confocal fluorescence microscopy method. RTV-PVPVA ASDs showed complete and rapid drug release below 30% DL, partial drug release at 30% DL and no drug release above 30% DL. It was observed that formation of discrete drug-rich droplets at lower DLs led to rapid and congruent release of both drug and polymer, whereas formation of continuous drug-rich phase at the ASD matrix-solution interface was the cause of poor release above certain DLs. Thus, the domain size and interconnectivity of phase separated drug-rich domains appear to be critical factors impacting drug release from RTV-PVPVPA ASDs.
Collapse
Affiliation(s)
- Ruochen Yang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA
| | - Geoff G Z Zhang
- Drug Product Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Hitesh S Purohit
- Drug Product Development, AbbVie Inc., North Chicago, IL, 60064, USA.
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
17
|
Hermans A, Milsmann J, Li H, Jede C, Moir A, Hens B, Morgado J, Wu T, Cohen M. Challenges and Strategies for Solubility Measurements and Dissolution Method Development for Amorphous Solid Dispersion Formulations. AAPS J 2022; 25:11. [PMID: 36513860 DOI: 10.1208/s12248-022-00760-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022] Open
Abstract
This manuscript represents the view of the Dissolution Working Group of the IQ Consortium on the challenges of and recommendations on solubility measurements and development of dissolution methods for immediate release (IR) solid oral dosage forms formulated with amorphous solid dispersions. Nowadays, numerous compounds populate the industrial pipeline as promising drug candidates yet suffer from low aqueous solubility. In the oral drug product development process, solubility along with permeability is a key determinant to assure sufficient drug absorption along the intestinal tract. Formulating the drug candidate as an amorphous solid dispersion (ASD) is one potential option to address this issue. These formulations demonstrate the rapid onset of drug dissolution and can achieve supersaturated concentrations, which poses significant challenges to appropriately characterize solubility and develop quality control dissolution methods. This review strives to categorize the different dissolution and solubility challenges for ASD associated with 3 different topics: (i) definition of solubility and sink conditions for ASD dissolution, (ii) applications and development of non-sink dissolution (according to conventional definition) for ASD formulation screening and QC method development, and (iii) the advantages and disadvantages of using dissolution in detecting crystallinity in ASD formulations. Related to these challenges, successful examples of dissolution experiments in the context of control strategies are shared and may lead as an example for scientific consensus concerning dissolution testing of ASD.
Collapse
Affiliation(s)
- Andre Hermans
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey, USA.
| | - Johanna Milsmann
- Analytical Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Hanlin Li
- Technical Operations, Vertex Pharmaceuticals, Boston, Massachusetts, USA
| | - Christian Jede
- Analytical Development, Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Str. 250, 64293, Darmstadt, Germany
| | - Andrea Moir
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, UK
| | - Bart Hens
- Drug Product Design, Pfizer UK, Sandwich, UK
| | | | - Tian Wu
- AffaMed Therapeutics Inc., Sacramento, California, USA
| | - Michael Cohen
- Global Chemistry and Manufacturing Controls, Pfizer, Groton, Connecticut, USA
| |
Collapse
|
18
|
Shi Q, Chen H, Wang Y, Wang R, Xu J, Zhang C. Amorphous Solid Dispersions: Role of the Polymer and Its Importance in Physical Stability and In Vitro Performance. Pharmaceutics 2022; 14:pharmaceutics14081747. [PMID: 36015373 PMCID: PMC9413000 DOI: 10.3390/pharmaceutics14081747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
Amorphous solid dispersions stabilized by one or more polymer(s) have been widely used for delivering amorphous drugs with poor water solubilities, and they have gained great market success. Polymer selection is important for preparing robust amorphous solid dispersions, and considerations should be given as to how the critical attributes of a polymer can enhance the physical stability, and the in vitro and in vivo performances of a drug. This article provides a comprehensive overview for recent developments in the understanding the role of polymers in amorphous solid dispersions from the aspects of nucleation, crystal growth, overall crystallization, miscibility, phase separation, dissolution, and supersaturation. The critical properties of polymers affecting the physical stability and the in vitro performance of amorphous solid dispersions are also highlighted. Moreover, a perspective regarding the current research gaps and novel research directions for better understanding the role of the polymer is provided. This review will provide guidance for the rational design of polymer-based amorphous pharmaceutical solids with desired physicochemical properties from the perspective of physical stability and in vitro performance.
Collapse
Affiliation(s)
- Qin Shi
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
- Correspondence: (Q.S.); (C.Z.)
| | - Haibiao Chen
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Yanan Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Ruoxun Wang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jia Xu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Chen Zhang
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- Correspondence: (Q.S.); (C.Z.)
| |
Collapse
|