1
|
Zhang Z, Jin M, Yang X, Zhu H, Li H, Yang Q. Particulate platform for pulmonary drug delivery: Recent advances of formulation and fabricating strategies. Int J Pharm 2025; 676:125601. [PMID: 40250501 DOI: 10.1016/j.ijpharm.2025.125601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Pulmonary drug delivery for managing respiratory diseases has attained a significant maturity level and holds substantial potential for applications in treating systemic diseases. Advancements in pulmonary delivery techniques have driven the innovative development of dry powder inhalers (DPIs), specifically engineered to optimize the efficacy of pulmonary drug delivery. This review examines recent progress in formulation and manufacturing strategies of inhalable dry powder, focusing on prescription design and fabrication approaches for advanced particulate systems. These include the integration of cutting-edge excipients into conventional formulations, nano-based delivery system, composite particles, and a blend of traditional and next-generation processing techniques, all contributing to enhanced drug delivery efficiency and bioavailability. Additionally, this review discusses the latest advancements in DPI devices. This review aims to provide a clear perspective on emerging inhalable dry powder formulation and processing trends for pulmonary delivery, highlighting the critical role of novel particulate platform in advancing pulmonary drug delivery systems.
Collapse
Affiliation(s)
- Zijia Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengya Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xinyu Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Heng Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huijie Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
2
|
Qin Q, Wu W, Che L, Zhou X, Wu D, Li X, Yang Y, Lou J. Computer-Aided Construction and Evaluation of Poly-L-Lysine/Hyodeoxycholic Acid Nanoparticles for Hemorrhage and Infection Therapy. Pharmaceutics 2024; 17:7. [PMID: 39861658 PMCID: PMC11768166 DOI: 10.3390/pharmaceutics17010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Background: Traumatic hemorrhage and infection are major causes of mortality in wounds caused by battlefield injuries, hospital procedures, and traffic accidents. Developing a multifunctional nano-drug capable of simultaneously controlling bleeding, preventing infection, and promoting wound healing is critical. This study aimed to design and evaluate a nanoparticle-based solution to address these challenges effectively. Methods: Using a one-pot assembly approach, we prepared a series of nanoparticles composed of poly-L-lysine and hyodeoxycholic acid (PLL-HDCA NPs). Theoretical simulations and experimental studies were combined to optimize their structure and functionality. In vitro platelet aggregation, antibacterial assays, cytotoxicity tests, and hemolysis evaluations were performed. In vivo efficacy was assessed in various hemorrhage models, a full-thickness skin defect model, and a skin irritation test. Results: PLL-HDCA NPs demonstrated effective induction of platelet aggregation and significantly reduced bleeding time and blood loss in mouse models, including tail vein, femoral vein, artery, and liver bleeding. Antibacterial assays revealed strong activity against E. coli and S. aureus. Wound healing studies showed that PLL-HDCA NPs promoted tissue repair in a full-thickness skin defect model. Cytotoxicity and hemolysis tests indicated minimal impact on human cells and significantly reduced hemolysis rates compared to PLL alone. Skin irritation tests confirmed the safety of PLL-HDCA NPs for external application. Conclusions: PLL-HDCA NPs represent a safe, efficient, and multifunctional nano-drug suitable for topical applications to control bleeding, combat infection, and facilitate wound healing, making them promising candidates for use in battlefield and hospital settings.
Collapse
Affiliation(s)
- Qin Qin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (Q.Q.); (D.W.)
| | - Wenxing Wu
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing 400038, China; (W.W.); (X.L.)
| | - Ling Che
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, China;
| | - Xing Zhou
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, China;
| | - Diedie Wu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (Q.Q.); (D.W.)
| | - Xiaohui Li
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing 400038, China; (W.W.); (X.L.)
| | - Yumin Yang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, China;
| | - Jie Lou
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China; (Q.Q.); (D.W.)
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing 400038, China; (W.W.); (X.L.)
| |
Collapse
|
3
|
Du S, Wen Z, Yu J, Meng Y, Liu Y, Xia X. Breath and Beyond: Advances in Nanomedicine for Oral and Intranasal Aerosol Drug Delivery. Pharmaceuticals (Basel) 2024; 17:1742. [PMID: 39770584 PMCID: PMC11677467 DOI: 10.3390/ph17121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Designing and standardizing drug formulations are crucial for ensuring the safety and efficacy of medications. Nanomedicine utilizes nano drug delivery systems and advanced nanodevices to address numerous critical medical challenges. Currently, oral and intranasal aerosol drug delivery (OIADD) is the primary method for treating respiratory diseases worldwide. With advancements in disease understanding and the development of aerosolized nano drug delivery systems, the application of OIADD has exceeded its traditional boundaries, demonstrating significant potential in the treatment of non-respiratory conditions as well. This study provides a comprehensive overview of the applications of oral and intranasal aerosol formulations in disease treatment. It examines the key challenges limiting the development of nanomedicines in drug delivery systems, formulation processes, and aerosol devices and explores the latest advancements in these areas. This review aims to offer valuable insights to researchers involved in the development of aerosol delivery platforms.
Collapse
Affiliation(s)
- Simeng Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhiyang Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinghan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yingying Meng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; (S.D.); (Z.W.); (J.Y.); (Y.M.); (Y.L.)
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Shukla D, Kaur S, Singh A, Narang RK, Singh C. Enhanced antichemobrain activity of amino acid assisted ferulic acid solid dispersion in adult zebrafish (Danio rerio). Drug Deliv Transl Res 2024; 14:3422-3437. [PMID: 38573496 DOI: 10.1007/s13346-024-01546-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 04/05/2024]
Abstract
Chemotherapy-induced cognitive impairment (CICI), also known as "chemobrain," is a common side effect of breast cancer therapy which causes oxidative stress and generation of reactive oxygen species (ROS). Ferulic acid (FA), a natural polyphenol, belongs to BCS class II is confirmed to have nootropic, neuroprotective and antioxidant effects. Here, we have developed FA solid dispersion (SD) in order to enhance its therapeutic potential against chemobrain. An amorphous ferulic acid loaded leucin solid dispersion (FA-Leu SD) was prepared by utilizing amino acid through spray-drying technique. The solid-state characterization was carried out via Fourier-transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and field emission scanning electron microscopy (FE-SEM). Additionally, in-vitro release studies and antioxidant assay were also performed along with in-vivo locomotor, biochemical and histopathological analysis. The physical properties showed that FA-Leu SD so formed exhibited spherical, irregular surface hollow cavity of along with broad melting endotherm as observed from FE-SEM and DSC results. The XRD spectra demonstrated absence of sharp and intense peaks in FA-Leu SD which evidenced for complete encapsulation of drug into carrier. Moreover, in-vitro drug release studies over a period of 5 h in PBS (pH 7.4) displayed a significant enhanced release in the first hr (68. 49 ± 5.39%) and in-vitro DPPH assay displayed greater antioxidant potential of FA in FA-Leu SD. Furthermore, the in-vivo behavioral findings of FA-Leu SD (equivalent to 150 mg/kg of free FA) exhibited positive results accompanied by in-vivo biochemical and molecular TNF-α showed a significant difference (p < 0.001) vis-à-vis DOX treated group upon DOX + FA-Leu SD. Additionally, histopathological analysis revealed neuroprotective effects of FA-Leu SD together with declined oxidative stress due to antioxidant potential of FA which was induced by anticancer drug doxorubicin (DOX). Overall, the above findings concluded that spray-dried FA-Leu SD could be useful for the treatment of chemotherapy induced cognitive impairment.
Collapse
Affiliation(s)
- Deeksha Shukla
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India
| | - Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India.
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India.
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 142001, India.
- Department of Pharmaceutical Sciences, School of Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, 246174, India.
| |
Collapse
|
5
|
Ding L, Wang G, Wang J, Peng Y, Cai S, Khan SU, Cui Z, Zhang X, Wu C, Smyth H. Targeted treatment for biofilm-based infections using PEGylated tobramycin. J Control Release 2024; 372:43-58. [PMID: 38866243 DOI: 10.1016/j.jconrel.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Chronic infections often involve biofilm-based bacteria, in which the biofilm results in significant resistance against antimicrobial agents and prevents eradication of the infection. The physicochemical barrier presented by the biofilm matrix is a major impediment to the delivery of many antibiotics. Previously, PEGylation has been shown to improve antibiotic penetration into biofilms in vitro. In these studies, PEGylating tobramycin was investigated both in vitro and in vivo. Two distinct PEGylated tobramycin molecules were synthesized (mPEG-SA-Tob and mPEG-AA-Tob). Then, in a P. aeruginosa biofilm in vitro model, we found that mPEG-SA-Tob can operate as a prodrug and showed 7 times more effectiveness than tobramycin (MIC80: 14 μM vs.100 μM). This improved biofilm eradication is attributable to the fact that mPEG-SA-Tob can aid tobramycin to penetrate through the biofilm and overcome the alginate-mediated antibiotic resistance. Finally, we used an in vivo biofilm-based chronic pulmonary infection rat model to confirm the therapeutic impact of mPEG-SA-Tob on biofilm-based chronic lung infection. mPEG-SA-Tob has a better therapeutic impact than tobramycin in that it cannot only stop P. aeruginosa from multiplying in the lungs but can also reduce inflammation caused by infections and prevent a recurrence infection. Overall, our findings show that PEGylated tobramycin is an effective treatment for biofilm-based chronic lung infections.
Collapse
Affiliation(s)
- Li Ding
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China
| | - Jieliang Wang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ying Peng
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shihao Cai
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Shafi Ullah Khan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia; INSERM U1086 ANTICIPE (Interdisciplinary Research Unit for Cancers Prevention and Treatment), BioTICLA Laboratory (Precision Medicine for Ovarian Cancers), Université de Caen Normandie, Caen, France; Comprehensive Cancer Center François Baclesse, UNICANCER, Caen, France
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 511443, China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 511443, China
| | - Hugh Smyth
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
6
|
Pasero L, Susa F, Limongi T, Pisano R. A Review on Micro and Nanoengineering in Powder-Based Pulmonary Drug Delivery. Int J Pharm 2024; 659:124248. [PMID: 38782150 DOI: 10.1016/j.ijpharm.2024.124248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Pulmonary delivery of drugs has emerged as a promising approach for the treatment of both lung and systemic diseases. Compared to other drug delivery routes, inhalation offers numerous advantages including high targeting, fewer side effects, and a huge surface area for drug absorption. However, the deposition of drugs in the lungs can be limited by lung defence mechanisms such as mucociliary and macrophages' clearance. Among the delivery devices, dry powder inhalers represent the optimal choice due to their stability, ease of use, and absence of propellants. In the last decades, several bottom-up techniques have emerged over traditional milling to produce inhalable powders. Among these techniques, the most employed ones are spray drying, supercritical fluid technology, spray freeze-drying, and thin film freezing. Inhalable dry powders can be constituted by micronized drugs attached to a coarse carrier (e.g., lactose) or drugs embedded into a micro- or nanoparticle. Particulate-based formulations are commonly composed of polymeric micro- and nanoparticles, liposomes, solid lipid nanoparticles, dendrimers, nanocrystals, extracellular vesicles, and inorganic nanoparticles. Moreover, engineered formulations including large porous particles, swellable microparticles, nano-in-microparticles, and effervescent nanoparticles have been developed. Particle engineering has also a crucial role in tuning the physical-chemical properties of both carrier-based and carrier-free inhalable powders. This approach can increase powder flowability, deposition, and targeting by customising particle surface features.
Collapse
Affiliation(s)
- Lorena Pasero
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| | - Tania Limongi
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy; Department of Drug Science and Technology, University of Turin, 9 P. Giuria Street, 10125 Torino, Italy.
| | - Roberto Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, 10129 Torino, Italy.
| |
Collapse
|
7
|
Wang W, Zhong Z, Huang Z, Hiew TN, Huang Y, Wu C, Pan X. Nanomedicines for targeted pulmonary delivery: receptor-mediated strategy and alternatives. NANOSCALE 2024; 16:2820-2833. [PMID: 38289362 DOI: 10.1039/d3nr05487j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pulmonary drug delivery of nanomedicines is promising for the treatment of lung diseases; however, their lack of specificity required for targeted delivery limit their applications. Recently, a variety of pulmonary delivery targeting nanomedicines (PDTNs) has been developed for enhancing drug accumulation in lung lesions and reducing systemic side effects. Furthermore, with the increasing profound understanding of the specific microenvironment of different local lung diseases, multiple targeting strategies have been employed to promote drug delivery efficiency, which can be divided into the receptor-mediated strategy and alternatives. In this review, the current publication trend on PDTNs is analyzed and discussed, revealing that the research in this area has been attracting much attention. According to the different unique microenvironments of lung lesions, the reported PDTNs based on the receptor-mediated strategy for lung cancer, lung infection, lung inflammation and pulmonary fibrosis are listed and summarized. In addition, several other well-established strategies for the design of these PDTNs, such as charge regulation, mucus delivery enhancement, stimulus-responsive drug delivery and magnetic force-driven targeting, are introduced and discussed. Besides, bottlenecks in the development of PDTNs are discussed. Finally, we highlight the challenges and opportunities in the development of PDTNs. We hope that this review will provide an overview of the available PDTNs for guiding the treatment of lung diseases.
Collapse
Affiliation(s)
- Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| | - Ziqiao Zhong
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Tze Ning Hiew
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa 52242, USA
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, PR China.
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
8
|
Zhou Y, Huang J, Wang G, Zhai Z, Ahmed MU, Xia X, Liu C, Jin Y, Pan X, Huang Y, Wu C, Zhang X. Polymyxin B sulfate inhalable microparticles with high-lectin-affinity sugar carriers for efficient treatment of biofilm-associated pulmonary infections. Sci Bull (Beijing) 2023; 68:3225-3239. [PMID: 37973467 DOI: 10.1016/j.scib.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Pulmonary infections caused by multidrug-resistant bacteria have become a significant threat to human health. Bacterial biofilms exacerbate the persistence and recurrence of pulmonary infections, hindering the accessibility and effectiveness of antibiotics. In this study, a dry powder inhalation (DPI) consisting of polymyxin B sulfate (PMBS) inhalable microparticles and high-lectin-affinity (HLA) sugar (i.e., raffinose) carriers was developed for treating pulmonary infections and targeting bacterial lectins essential for biofilm growth. The formulated PMBS-HLA DPIs exhibited particle sizes of approximately 3 μm, and surface roughness varied according to the drug-to-carrier ratio. Formulation F5 (PMBS: raffinose = 10:90) demonstrated the highest fine particle fraction (FPF) value (64.86%), signifying its substantially enhanced aerosol performance, potentially attributable to moderate roughness and smallest mass median aerodynamic particle size. The efficacy of PMBS-HLA DPIs in inhibiting biofilm formation and eradicating mature biofilms was significantly improved with the addition of raffinose, suggesting the effectiveness of lectin-binding strategy for combating bacterial biofilm-associated infections. In rat models with acute and chronic pulmonary infections, F5 demonstrated superior bacterial killing and amelioration of inflammatory responses compared to spray-dried PMBS (F0). In conclusion, our HLA carrier-based formulation presents considerable potential for the efficient treatment of multidrug-resistant bacterial biofilm-associated pulmonary infections.
Collapse
Affiliation(s)
- Yue Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Jiayuan Huang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zizhao Zhai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Maizbha Uddin Ahmed
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette IN 47907, USA
| | - Xiao Xia
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Cenfeng Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Yuzhen Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ying Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China.
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China
| | - Xuejuan Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510006, China; College of Pharmacy, Jinan University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Zhao Z, Wang W, Wang G, Huang Z, Zhou L, Lin L, Ou Y, Huang W, Zhang X, Wu C, Tao L, Wang Q. Dual peptides-modified cationic liposomes for enhanced Lung cancer gene therapy by a gap junction regulating strategy. J Nanobiotechnology 2023; 21:473. [PMID: 38066528 PMCID: PMC10709977 DOI: 10.1186/s12951-023-02242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/03/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Gene therapy for lung cancer has emerged as a novel tumor-combating strategy for its superior tumor specificity, low systematical toxicity and huge clinical translation potential. Especially, the applications of microRNA shed led on effective tumor ablation by directly interfering with the crucial gene expression, making it one of the most promising gene therapy agents. However, for lung cancer therapy, the microRNA treatment confronted three bottlenecks, the poor tumor tissue penetration effect, the insufficient lung drug accumulation and unsatisfied gene transfection efficiency. To address these issues, an inhalable RGD-TAT dual peptides-modified cationic liposomes loaded with microRNA miR-34a and gap junction (GJ) regulation agent all-trans retinoic acid (ATRA) was proposed, which was further engineered into dry powder inhalers (DPIs). RESULTS Equipped with a rough particle surface and appropriate aerodynamic size, the proposed RGD-TAT-CLPs/ARTA@miR-34a DPIs were expected to deposit into the deep lung and reach lung tumor lesions guided by targeting peptide RGD. Assisted by cellular transmembrane peptides TAT, the RGD-TAT-CLPs/ARTA@miR-34a was proven to be effectively internalized by cancer cells, enhancing gene transfection efficiency. Then, the GJ between tumor cells was upregulated by ARTA, facilitating the intercellular transport of miR-34a and boosting the gene expression in the deep tumor. CONCLUSION Overall, the proposed RGD-TAT-CLPs/ARTA@miR-34a DPIs could enhance tumor tissue penetration, elevate lung drug accumulation and boost gene transfection efficiency, breaking the three bottlenecks to enhancing tumor elimination in vitro and in vivo. We believe that the proposed RGD-TAT-CLPs/ARTA@miR-34a DPIs could serve as a promising pulmonary gene delivery platform for multiple lung local disease treatments.
Collapse
Affiliation(s)
- Ziyu Zhao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 510632, PR China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, PR China
| | - Guanlin Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, PR China
| | - Zhengwei Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 510632, PR China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Liping Zhou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Li Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Yueling Ou
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Wanzhen Huang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China
| | - Xuejuan Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 510632, PR China.
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, PR China.
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, Guangdong, 510632, PR China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China.
- Nanchang Research Institute, Sun Yat-Sen University, Nanchang, Jiangxi, 330096, PR China.
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China.
- Nanchang Research Institute, Sun Yat-Sen University, Nanchang, Jiangxi, 330096, PR China.
| |
Collapse
|
10
|
Li Z, Peng W, Zhu L, Liu W, Yang L, Chen L, Naeem A, Zhu W, Feng Y, Ming L. Study on Improving the Performance of Traditional Medicine Extracts with High Drug Loading Based on Co-spray Drying Technology. AAPS PharmSciTech 2023; 24:247. [PMID: 38030948 DOI: 10.1208/s12249-023-02703-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
The purpose of this study is to develop modified particles with different structures to improve the flowability and compactibility of Liuwei Dihuang (LWDH) powder using co-spray drying technology, and to investigate the preparation mechanism of modified particles and their modified direct compaction (DC) properties. Moreover, tablets with high drug loading contents were also prepared. Particles were designed using polyvinylpyrrolidone (PVP K30) and hydroxypropyl methylcellulose (HPMC E3) as shell materials, and sodium bicarbonate (NaHCO3) and ammonium bicarbonate (NH4HCO3) as pore-forming agents. The porous particles (Ps), core-shell particles (CPs), and porous core-shell particles (PCPs) were prepared by co-spray drying technology. The key DC properties and texture properties of all the particles were measured and compared. The properties of co-spray drying liquid were also determined and analyzed. According to the results, Ps showed the least improvement in DC properties, followed by CPs, and PCPs showed a significant improvement. The modifier, because of its low surface tension, was wrapped in the outer layer to form a shell, and the pore-forming agent was thermally decomposed to produce pores, forming core-shell, porous, and porous core-shell composite structures. The smooth surface of the shell structure enhances fluidity, while the porous structure allows for greater compaction space, thereby improving DC properties during the compaction process.
Collapse
Affiliation(s)
- Zhe Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Wanghai Peng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Lin Zhu
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, People's Republic of China
| | - Wenjun Liu
- Jiangzhong Pharmaceutical Co. Ltd, Nanchang, 330049, People's Republic of China
| | - Lingyu Yang
- Jiangzhong Pharmaceutical Co. Ltd, Nanchang, 330049, People's Republic of China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Weifeng Zhu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Yi Feng
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Liangshan Ming
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China.
| |
Collapse
|
11
|
Celi SS, Fernández-García R, Afonso-Urich AI, Ballesteros MP, Healy AM, Serrano DR. Co-Delivery of a High Dose of Amphotericin B and Itraconazole by Means of a Dry Powder Inhaler Formulation for the Treatment of Severe Fungal Pulmonary Infections. Pharmaceutics 2023; 15:2601. [PMID: 38004579 PMCID: PMC10675812 DOI: 10.3390/pharmaceutics15112601] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Over the past few decades, there has been a considerable rise in the incidence and prevalence of pulmonary fungal infections, creating a global health problem due to a lack of antifungal therapies specifically designed for pulmonary administration. Amphotericin B (AmB) and itraconazole (ITR) are two antifungal drugs with different mechanisms of action that have been widely employed in antimycotic therapy. In this work, microparticles containing a high dose of AmB and ITR (20, 30, and 40% total antifungal drug loading) were engineered for use in dry powder inhalers (DPIs) with an aim to improve the pharmacological effect, thereby enhancing the existing off-label choices for pulmonary administration. A Design of Experiment (DoE) approach was employed to prepare DPI formulations consisting of AmB-ITR encapsulated within γ-cyclodextrin (γ-CD) alongside functional excipients, such as mannitol and leucine. In vitro deposition indicated a favourable lung deposition pattern characterised by an upper ITR distribution (mass median aerodynamic diameter (MMAD) ~ 6 µm) along with a lower AmB deposition (MMAD ~ 3 µm). This offers significant advantages for treating fungal infections, not only in the lung parenchyma but also in the upper respiratory tract, considering that Aspergillus spp. can cause upper and lower airway disorders. The in vitro deposition profile of ITR and larger MMAD was related to the higher unencapsulated crystalline fraction of the drug, which may be altered using a higher concentration of γ-CD.
Collapse
Affiliation(s)
- Salomé S. Celi
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Raquel Fernández-García
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Andreina I. Afonso-Urich
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - M. Paloma Ballesteros
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Facultad de Farmacia, Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Dolores R. Serrano
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Facultad de Farmacia, Instituto Universitario de Farmacia Industrial, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
12
|
Bao S, Zou Y, Firempong CK, Feng Y, Yu Y, Wang Y, Dai H, Mo W, Sun C, Liu H. Preparation and evaluation of sustained release pirfenidone-loaded microsphere dry powder inhalation for treatment of idiopathic pulmonary fibrosis. Eur J Pharm Sci 2023; 188:106509. [PMID: 37356463 DOI: 10.1016/j.ejps.2023.106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Pirfenidone (PFND) is a recommended oral drug used to treat idiopathic pulmonary fibrosis, but have low bioavailability and high hepatotoxicity. The study, therefore, seeks to improve the therapeutic activities of the drug via increased bioavailability and reduced associated side effects by developing a novel drug delivery system. The electrostatic spray technology was used to prepare a sustained release pirfenidone-loaded microsphere dry powder inhalation with PEG-modified chitosan (PFND-mPEG-CS-MS). The entrapment efficiency, drug loading, and in vitro cumulative drug release rate (at 24 h and with a sustained release effect) of PFND-mPEG-CS-MS were 77.35±3.01%, 11.45±0.64%, and 90.4%, respectively. The Carr's index of PFND-mPEG-CS-MS powder was 17.074±2.163% with a theoretical mass median aerodynamic diameter (MMADt) of 0.99±0.07 μm, and a moisture absorption weight gain rate (Rw) of 4.61±0.72%. The emptying rate, pulmonary deposition rate (fine particle fraction) and actual mass median aerodynamic diameter (MMADa) were 90%∼95%, 48.72±7.04% and 3.10±0.16 μm, respectively. MTT bioassay showed that mPEG-CS-MS (200 μg/mL) had good biocompatibility (RGR = 90.25%) and PFND-mPEG-CS-MS (200 μg/mL) had significant inhibitory activity (RGR = 49.82%) on fibroblast growth. The pharmacokinetic data revealed that the t1/2 (5.02 h) and MRT (10.66 h) of PFND-mPEG-CS-MS were prolonged compared with the free PFND (t1/2, 1.67 h; MRT, 2.71 h). The pharmacodynamic results also showed that the formulated-drug group had slight pathological changes, lower lung hydroxyproline content, and reduced hepatotoxicity compared with the free-drug group. The PFND-mPEG-CS-MS further significantly down-regulated TGF-β cytokines, Collagen I, and α-SMA protein expression levels compared with the free drug. The findings indicated that the PFND-mPEG-CS-MS had a good sustained release effect, enhanced bioavailability, decreased toxicity, and increased anti-fibrotic activities.
Collapse
Affiliation(s)
- Shixue Bao
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yi Zou
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Suzhou Zelgen Biopharmaceutical Co., Ltd, Kunshan, 215300, PR China
| | | | - Yingshu Feng
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang, 212028, PR China; Postdoctoral Programme of JiangSu CTQJ Pharmaceutical Co., Ltd., Huaian, 223001, PR China
| | - Yang Yu
- Jiang Sunan Pharmaceutical Industrial CO., Ltd, Zhenjiang, 212400, PR China
| | - Ying Wang
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Huiying Dai
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Weiwei Mo
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China
| | - Changshan Sun
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, Zhenjiang, 212013, PR China; Jiang Sunan Pharmaceutical Industrial CO., Ltd, Zhenjiang, 212400, PR China; Jiangmen Hongxiao Biomedical Technology Co., Ltd, Jiangmen, 529040, PR China.
| |
Collapse
|
13
|
Zhang Q, Li Y, Li L, Cheng Y, Yu F, Li R, Hou S. Impact of Solid-State Properties on the Aerosolization Performance of Spray-Dried Curcumin Powders. AAPS PharmSciTech 2023; 24:78. [PMID: 36918500 DOI: 10.1208/s12249-023-02536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
Amorphous and crystalline active pharmaceutical ingredients (APIs) are both widely studied for pulmonary delivery. The past research mainly studied the impact of solid-state properties on pharmacokinetic attributes; however, the influence of solid-state properties on aerosolization performance was much less studied. This study aimed to investigate the different aerosolization performances of amorphous and crystalline curcumin (Cur) stabilized with L-leucine. Cur was spray-dried with different concentrations of L-leucine (0, 5, 20, 35, and 50%, w/w) as both solution-based and suspension-based formulations to acquire amorphous and crystalline Cur powders. The physicochemical properties of the spray-dried powders, including particle size, morphology, and solid-state characteristics, were studied. The aerosolization performance as well as dissolution properties were evaluated. It was found that 35% (w/w) L-leucine or above led to the formation of amorphous Cur in the spray-dried powders, and the amorphous Cur powders exhibited higher FPF (70.8%, with 50% L-leucine, w/w) than the crystalline Cur formulations with an FPF at 56.3% (with 50% L-leucine, w/w). In conclusion, with a high concentration of L-leucine (35% or above) in the formulations, amorphous Cur would exhibit higher aerosolization efficiency than crystalline Cur. However, with a low concentration of L-leucine (20% or less) in the formulations, crystalline Cur would be preferred for more enhanced consideration.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yongquan Li
- Sichuan Purity Pharmaceutical Co., Ltd, Chengdu, 610041, Sichuan, China
| | - Linghui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Yushan Cheng
- Sichuan Purity Pharmaceutical Co., Ltd, Chengdu, 610041, Sichuan, China
| | - Fangkun Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Shuguang Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China. .,Sichuan Purity Pharmaceutical Co., Ltd, Chengdu, 610041, Sichuan, China.
| |
Collapse
|