1
|
Reppas C, Chorianopoulou C, Karkaletsi I, Dietrich S, Bakolia A, Vertzoni M. Simulation of Antral Conditions for Estimating Drug Apparent Equilibrium Solubility after a High-Calorie, High-Fat Meal. Mol Pharm 2025; 22:871-881. [PMID: 39811984 PMCID: PMC11795529 DOI: 10.1021/acs.molpharmaceut.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
The simulation of antral conditions for estimating drug apparent equilibrium solubility after a high-calorie, high-fat meal is challenging. In this study, (1) we measured the apparent equilibrium solubility of two model lipophilic drugs, ketoconazole and danazol, in antral aspirates collected at various time points after a minced high-calorie, high-fat meal and a glass of water 30 min after initiation of meal administration, and we designated one point estimate for ketoconazole and one point estimate for danazol; (2) we evaluated the usefulness of FeSSGF-V2 and FEDGAS pH = 3 in reproducing the two point estimates; (3) we evaluated potential compositions of FeSSGF-V3 that simulate the pH, the buffer capacity toward both less acidic and more acidic values, and the antral lipid and protein contents with easily accessible, commercially available products, and (4) we identified the most useful composition of FeSSGF-V3 for reproducing the two point estimates. For both model drugs, apparent solubility in FeSSGF-V2 and in FEDGAS pH 3 deviated substantially from the corresponding point estimate. For FeSSGF-V3, hydrochloric acid, acetates, and FEDGASbuffer pH 3 were evaluated for regulating the pH and buffer capacity, FEDGASgel was used for simulating the lipid content, and Régilait skimmed milk powder was used for simulating the protein content. Level III FeSSGF-V3 prepared with hydrochloric acid, 6.1% (w/v) Régilait, and 2.83% (w/v) FEDGASgel, i.e., one-sixth of FEDGASgel concentration in FEDGAS pH 3, was comparatively the most useful medium for point estimating ketoconazole and danazol apparent solubility in antral contents after water administration in the fed state, induced as requested by regulatory authorities in oral drug bioavailability studies. Level III FeSSGF-V3 prepared by using hydrochloric acid as the principal pH controlling species could be useful in the evaluation of food effects on drug absorption with in silico physiologically based biopharmaceutics modeling approaches and, also, with biorelevant in vitro methodologies.
Collapse
Affiliation(s)
- Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | | | - Ioanna Karkaletsi
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Shirin Dietrich
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Andriani Bakolia
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Zografou 15771, Greece
| |
Collapse
|
2
|
B S, Ghosh A. Mechanistic Insights into Amorphous Solid Dispersions: Bridging Theory and Practice in Drug Delivery. Pharm Res 2025; 42:1-23. [PMID: 39849216 DOI: 10.1007/s11095-024-03808-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/12/2024] [Indexed: 01/25/2025]
Abstract
Improving the bioavailability of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms. This review explores recent research advancements in ASD, emphasizing dissolution mechanisms, phase separation phenomena, and the importance of drug loading and congruency limits on ASD performance. Principal occurrences such as liquid-liquid phase separation (LLPS) and supersaturation are discussed, highlighting their impact on drug solubility, absorption and subsequent bioavailability. Additionally, it addresses the role of polymers in controlling supersaturation, stabilizing drug-rich nanodroplets, and inhibiting recrystallization. Recent advancements and emerging technologies offer new avenues for ASD characterization and production and demonstrate the potential of ASDs to enhance bioavailability and reduce variability, making possible for more effective and patient-friendly pharmaceutical formulations. Future research directions are proposed, focusing on advanced computational models for predicting ASD stability, use of novel polymeric carriers, and methods for successful preparations.
Collapse
Affiliation(s)
- Srividya B
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India
| | - Animesh Ghosh
- Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.
| |
Collapse
|
3
|
Xu P, Nguyen HT, Huang S, Tran H. Development of 3D-Printed Two-Compartment Capsular Devices for Pulsatile Release of Peptide and Permeation Enhancer. Pharm Res 2024; 41:2259-2270. [PMID: 39487384 DOI: 10.1007/s11095-024-03785-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
OBJECTIVE The oral absorption of a peptide is driven by a high local concentration of a permeation enhancer (PE) in the gastrointestinal tract. We hypothesized that a controlled release of both PE and peptide from a solid formulation, capable of maintaining an effective co-localized concentration of PE and peptide could enhance oral peptide absorption. In this study, we aimed to develop a 3D-printed two-compartment capsular device with controlled pulsatile release of peptide and sodium caprate (C10). METHODS 3D-printed two-compartment capsular device was fabricated using a fused deposition modeling method. This device was then filled with LY peptide and C10. The release profile was modulated by changing the thickness and polymer type of the capsular device. USP apparatus II dissolution test was used to evaluate the impacts of device thickness and polymer selection on release profile in vitro. An optimal device was then enteric coated with HPMCAS. RESULTS A strong linear relationship between the thickness of capsular devices and the delay in the release onset time was observed. An increase in the device thickness or the use of PLA decreased the release rate. The capsular device with compartment 1, compartment 2 and fence thickness of 0.4; 0.95 and 0.5 mm, respectively, and the use of PVA achieved desired pulsatile release profiles of both peptide and C10. Furthermore, enteric-coated capsular devices with HPMCAS had similar pulsatile release profiles compared to non-enteric coated devices. CONCLUSION These findings suggest potential application of 3D-printing techniques in the formulation development for complex modified drug release products.
Collapse
Affiliation(s)
- Pengchong Xu
- Eli Lilly and Company, Lilly Research Laboratories, Lilly Corporate Center, Biotechnology Discovery Research, Indianapolis, IN, 46285, USA
- Eli Lilly and Company, Lilly Research Laboratories, Lilly Corporate Center, Synthetic Molecule Design and Development, Indianapolis, IN, 46285, USA
| | - Hanh Thuy Nguyen
- Eli Lilly and Company, Lilly Research Laboratories, Lilly Corporate Center, Biotechnology Discovery Research, Indianapolis, IN, 46285, USA
| | - Siyuan Huang
- Eli Lilly and Company, Lilly Research Laboratories, Lilly Corporate Center, Synthetic Molecule Design and Development, Indianapolis, IN, 46285, USA.
| | - Huyen Tran
- Eli Lilly and Company, Lilly Research Laboratories, Lilly Corporate Center, Biotechnology Discovery Research, Indianapolis, IN, 46285, USA.
| |
Collapse
|
4
|
Felicijan T, Rakoše I, Prislan M, Locatelli I, Bogataj M, Trontelj J. Application of a Novel Dissolution Medium with Lipids for In Vitro Simulation of the Postprandial Gastric Content. Pharmaceutics 2024; 16:1040. [PMID: 39204385 PMCID: PMC11359312 DOI: 10.3390/pharmaceutics16081040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Food can change various physiological parameters along the gastrointestinal tract, potentially impacting postprandial drug absorption. It is thus important to consider different in vivo conditions during in vitro studies. Therefore, a novel dissolution medium simulating variable postprandial pH values and lipid concentrations was developed and used in this study. Additionally, by establishing and validating a suitable analytical method, the effects of these parameters on the dissolution of a model drug, cinnarizine, and on its distribution between the lipid and aqueous phases of the medium were studied. Both parameters, pH value and lipid concentration, were shown to influence cinnarizine behavior in the in vitro dissolution studies. The amount of dissolved drug decreased with increasing pH due to cinnarizine's decreasing solubility. At pH values 5 and 7, the higher concentration of lipids in the medium increased drug dissolution, and most of the dissolved drug was distributed in the lipid phase. In all media with a lower pH of 3, dissolution was fast and complete, with a significant amount of drug distributed in the lipid phase. These results are in accordance with the in vivo observed positive food effect on cinnarizine bioavailability described in the literature. The developed medium, with its ability to easily adjust the pH level and lipid concentration, thus offers a promising tool for assessing the effect of co-ingested food on the dissolution kinetics of poorly soluble drugs.
Collapse
Affiliation(s)
| | | | | | | | - Marija Bogataj
- Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; (T.F.); (I.R.); (M.P.); (I.L.); (J.T.)
| | | |
Collapse
|
5
|
Danielak D, Gajda M, Bołtromiuk T, Sulikowska K, Kubiak B, Romański M. Drug dissolution and transit in a heterogenous gastric chyme after fed administration: Semi-mechanistic modeling and simulations for an immediate-release and orodispersible tablets containing a poorly soluble drug. Eur J Pharm Biopharm 2024; 200:114341. [PMID: 38795785 DOI: 10.1016/j.ejpb.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Mathematical models that treat the fed stomach content as a uniform entity emptied with a constant rate may not suffice to explain pharmacokinetic profiles recorded in clinical trials. In reality, phenomena such as the Magenstrasse or chyme areas of different pH and viscosity, play an important role in the intragastric drug dissolution and its transfer to the intestine. In this study, we investigated the data gathered in the bioequivalence trial between an immediate-release tablet (Reference) and an orally dispersible tablet (Test) with a poorly soluble weak base drug administered with or without water after a high-fat high-calorie breakfast. Maximum concentrations (Cmax) were significantly greater after administering the Reference product than the Test tablets, despite similar in vitro dissolution profiles. To explain this difference, we constructed a novel semi-mechanistic IVIVP model including a heterogeneous gastric chyme. The drug dissolution in vivo was modeled from the in vitro experiments in biorelevant media simulating gastric and intestinal fluids in the fed state (FEDGAS and FeSSIF). The key novelty of the model was separating the stomach contents into two compartments: isolated chyme (the viscous food content) that carries the drug slowly, and aq_chyme open for rapid Magenstrasse-like routes of drug transit. Drug distribution between these two compartments was both formulation- and administration-dependent, and recognized the respective drug fractions from the clinical pharmacokinetic data. The model's assumption about the nonuniform mixing of the API with the chyme, influencing differential drug dissolution and transit kinetics, led to simulating plasma concentration profiles that reflected well the variability observed in the clinical trial. The model indicated that, after administration, the Reference product mixes to a greater extent with aq_chyme, where the released drug dissolves better and transfers faster to the intestine. In conclusion, this novel approach underlines that diverse gastric emptying of different oral dosage forms may significantly impact pharmacokinetics and affect the outcomes of bioequivalence trials.
Collapse
Affiliation(s)
- Dorota Danielak
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3 St, 60-806, Poznań, Poland.
| | - Maciej Gajda
- Adamed Pharma S.A., Pieńków, Mariana Adamkiewicza 6A, 05-152 Czosnów, Poland.
| | - Tomasz Bołtromiuk
- Adamed Pharma S.A., Pieńków, Mariana Adamkiewicza 6A, 05-152 Czosnów, Poland.
| | | | - Bartłomiej Kubiak
- Adamed Pharma S.A., Pieńków, Mariana Adamkiewicza 6A, 05-152 Czosnów, Poland.
| | - Michał Romański
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, Rokietnicka 3 St, 60-806, Poznań, Poland.
| |
Collapse
|
6
|
Shaqour B, Natsheh H, Kittana N, Jaradat N, Abualhasan M, Eid AM, Moqady R, AbuHijleh A, Abu Alsaleem S, Ratrout S, De Wever L, Vervaet C, Vanhoorne V. Modified Release 3D-Printed Capsules Containing a Ketoprofen Self-Nanoemulsifying System for Personalized Medical Application. ACS Biomater Sci Eng 2024; 10:3833-3841. [PMID: 38747490 DOI: 10.1021/acsbiomaterials.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
This study explores the realm of personalized medicine by investigating the utilization of 3D-printed dosage forms, specifically focusing on patient-specific enteric capsules designed for the modified release of ketoprofen, serving as a model drug. The research investigates two distinct scenarios: the modification of drug release from 3D-printed capsules crafted from hydroxypropyl methylcellulose phthalate:polyethylene glycol (HPMCP:PEG) and poly(vinyl alcohol) (PVA), tailored for pH sensitivity and delayed release modes, respectively. Additionally, a novel ketoprofen-loaded self-nanoemulsifying drug delivery system (SNEDDS) based on pomegranate seed oil (PSO) was developed, characterized, and employed as a fill material for the capsules. Through the preparation and characterization of the HPMCP:PEG based filament via the hot-melt extrusion method, the study thoroughly investigated its thermal and mechanical properties. Notably, the in vitro drug release analysis unveiled the intricate interplay between ketoprofen release, polymer type, and capsule thickness. Furthermore, the incorporation of ketoprofen into the SNEDDS exhibited an enhancement in its in vitro cylooxygenase-2 (COX-2) inhibitory activity. These findings collectively underscore the potential of 3D printing in shaping tailored drug delivery systems, thereby contributing significantly to the advancement of personalized medicine.
Collapse
Affiliation(s)
- Bahaa Shaqour
- Mechanical and Mechatronics Engineering Department, Faculty of Engineering and Information Technology, An-Najah National University, P.O. Box 7, Nablus P4110257, Palestine
- Medical and Health Sciences Research Center, An-Najah National University, P.O. Box 7, Nablus P4110257, Palestine
| | - Hiba Natsheh
- Medical and Health Sciences Research Center, An-Najah National University, P.O. Box 7, Nablus P4110257, Palestine
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus P4110257, Palestine
| | - Naim Kittana
- Medical and Health Sciences Research Center, An-Najah National University, P.O. Box 7, Nablus P4110257, Palestine
- Department of Biomedical Sciences, An-Najah National University, P.O. Box 7, Nablus P4110257, Palestine
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus P4110257, Palestine
| | - Murad Abualhasan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus P4110257, Palestine
| | - Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus P4110257, Palestine
| | - Ruaa Moqady
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus P4110257, Palestine
| | - Aya AbuHijleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus P4110257, Palestine
| | - Saja Abu Alsaleem
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus P4110257, Palestine
| | - Shahd Ratrout
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus P4110257, Palestine
| | - Lotte De Wever
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Chris Vervaet
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Valérie Vanhoorne
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| |
Collapse
|
7
|
Helmy AM, Lu A, Duggal I, Rodrigues KP, Maniruzzaman M. Electromagnetic drop-on-demand (DoD) technology as an innovative platform for amorphous solid dispersion production. Int J Pharm 2024; 658:124185. [PMID: 38703932 DOI: 10.1016/j.ijpharm.2024.124185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Production of amorphous solid dispersions (ASDs) is an effective strategy to promote the solubility and bioavailability of poorly water soluble medicinal substances. In general, ASD is manufactured using a variety of classic and modern techniques, most of which rely on either melting or solvent evaporation. This proof-of-concept study is the first ever to introduce electromagnetic drop-on-demand (DoD) technique as an alternative solvent evaporation-based method for producing ASDs. Herein 3D printing of ASDs for three drug-polymer combinations (efavirenz-Eudragit L100-55, lumefantrine-hydroxypropyl methylcellulose acetate succinate, and favipiravir-polyacrylic acid) was investigated to ascertain the reliability of this technique. Polarized light microscopy, differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Fourier Transform Infrared (FTIR) spectroscopy results supported the formation of ASDs for the three drugs by means of DoD 3D printing, which significantly increases the equilibrium solubility of efavirenz from 0.03 ± 0.04 µg/ml to 21.18 ± 4.20 µg/ml, and the equilibrium solubility of lumefantrine from 1.26 ± 1.60 µg/ml to 20.21 ± 6.91 µg/ml. Overall, the reported findings show how this new electromagnetic DoD technology can have a potential to become a cutting-edge 3D printing solvent-evaporation technique for on-demand and continuous manufacturing of ASDs for a variety of drugs.
Collapse
Affiliation(s)
- Abdelrahman M Helmy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minya, Egypt
| | - Anqi Lu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ishaan Duggal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kristina P Rodrigues
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677-1848, USA.
| |
Collapse
|
8
|
Tsai HA, Shih TM, Tsai T, Hu JW, Lai YA, Hsiao JF, Tsai GE. Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:465-474. [PMID: 38711579 PMCID: PMC11070952 DOI: 10.3762/bjnano.15.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/27/2024] [Indexed: 05/08/2024]
Abstract
ᴅ-cycloserine (DCS), an FDA-approved medicine for the treatment of tuberculosis, is also a partial agonist at the glycine recognition site of N-methyl-ᴅ-aspartate (NMDA) receptor and has shown significant treatment efficacy for central nervous system (CNS) disorders including depression, schizophrenia, Alzheimer's disease, and post-traumatic stress disorder. The physicochemical properties of DCS, however, limit the options of formulation and medicinal applications of DCS, and warrants further investigation for the development of CNS therapeutics. Nanocrystals play an important role in pharmaceutic design and development. The properties of nanocrystals are remarkably different from their bulk material counterpart, attributed to the large surface-area-to-volume ratio which can improve the bioavailability. In this study, for the first time, DCS, a highly water-soluble compound, has formed nanocrystals and this was confirmed by scanning electronic microscopy and X-ray powder diffraction. Furthermore, DCS nanocrystals were applied to several formulations to test their stability and then to the in vitro Franz diffusion test with reservoir patch formulation as well as in vivo pharmacokinetics study with enteric capsules. We tested these formulations regarding their nanocrystal physical properties, size effect, and dissolution rate, respectively. We found that DCS nanocrystals showed good performance in the Franz diffusion test and rodent pharmacokinetic studies due to the nanoparticle size and faster dissolution as compared with the commercial DCS powder. These DCS nanocrystal formulations could offer a new approach for the development of an advanced drug delivery system for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Hsuan-Ang Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Tsai-Miao Shih
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Theodore Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Jhe-Wei Hu
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Yi-An Lai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Jui-Fu Hsiao
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
| | - Guochuan Emil Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., 20F-8, No. 99, Sec. 1, Xintai 5th Rd., Xizhi District, New Taipei City 221, Taiwan
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, 10833 Le Conte Ave, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Dhumal G, Treffer D, Polli JE. Concordance of vacuum compression molding with spray drying in screening of amorphous solid dispersions of itraconazole. Int J Pharm 2024; 654:123952. [PMID: 38417729 DOI: 10.1016/j.ijpharm.2024.123952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
Spray drying is a well-established method for screening spray dried dispersions (SDDs) but is material consuming, and the amorphous solid dispersions (ASDs) formed have low bulk density. Vacuum Compression Molding (VCM) is a potential method to avoid these limitations. This study focuses on VCM to screen ASDs containing itraconazole and L, M, or H polymer grades of hydroxypropyl methylcellulose acetate succinate (HPMCAS) and compares their morphology, amorphous stability, and dissolution performance with spray drying. Results indicate that VCM ASDs were comparable to SDDs. Both VCM ASDs and spray drying SDDs with HPMCAS-L and HPMCAS-M had improved dissolution profiles, while HPMCAS-H did not. Dynamic light scattering findings agreed with dissolution profiles, indicating that L and M grades produced monodisperse, smaller colloids, whereas H grade formed larger, polydisperse colloids. Capsules containing ASDs from VCM disintegrated and dissolved in the media; however, SDD capsules formed agglomerates and failed to disintegrate completely. Findings indicate that the VCM ASDs are comparable to SDDs in terms of dissolution performance and amorphous stability. VCM may be utilized in early ASD formulation development to select drug-polymer pairs for subsequent development.
Collapse
Affiliation(s)
- Gaurav Dhumal
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States
| | - Daniel Treffer
- MeltPrep, Setauket - East Setauket, New York, United States
| | - James E Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, United States.
| |
Collapse
|
10
|
Liu YS, Della Rocca J, Schenck L, Koynov A, Sifri RJ, Winston MS, Frank DS. Poly(vinylpyridine- co-vinylpyridine N-oxide) Excipients Mediate Rapid Dissolution and Sustained Supersaturation of Posaconazole Amorphous Solid Dispersions. Mol Pharm 2024; 21:1182-1191. [PMID: 38323546 DOI: 10.1021/acs.molpharmaceut.3c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The chemical structure of excipients molecularly mixed in an amorphous solid dispersion (ASD) has a significant impact on properties of the ASD including dissolution behavior, physical stability, and bioavailability. Polymers used in ASDs require a balance between hydrophobic and hydrophilic functionalities to ensure rapid dissolution of the amorphous dispersion as well as sustained supersaturation of the drug in solution. This work demonstrates the use of postpolymerization functionalization of poly(vinylpyridine) excipients to elucidate the impact of polymer properties on the dissolution behavior of amorphous dispersions containing posaconazole. It was found that N-oxidation of pyridine functionalities increased the solubility of poly(vinylpyridine) derivatives in neutral aqueous conditions and allowed for nanoparticle formation which supplied posaconazole into solution at concentrations exceeding those achieved by more conventional excipients such as hydroxypropyl methylcellulose acetate succinate (HPMCAS) or Eudragit E PO. By leveraging these functional modifications of the parent poly(vinylpyridine) excipient to increase polymer hydrophilicity and minimize the effect of polymer on pH, a new polymeric excipient was optimized for rapid dissolution and supersaturation maintenance for a model compound.
Collapse
Affiliation(s)
- Yu-Sheng Liu
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Joseph Della Rocca
- Oral Formulation Sciences, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Luke Schenck
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Athanas Koynov
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Renee J Sifri
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew S Winston
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Derek S Frank
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|