1
|
Zhou X, Liao J, Lei Z, Yao H, Zhao L, Yang C, Zu Y, Zhao Y. Nickel-based nanomaterials: a comprehensive analysis of risk assessment, toxicity mechanisms, and future strategies for health risk prevention. J Nanobiotechnology 2025; 23:211. [PMID: 40087769 PMCID: PMC11909927 DOI: 10.1186/s12951-025-03248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 02/18/2025] [Indexed: 03/17/2025] Open
Abstract
Nickel-based nanomaterials (NBNs) have seen a surge in usage across a variety of applications. However, the widespread use of NBNs has led to increased human exposure, raising questions about their associated health risks, both in the short and long term. Additionally, the spread of NBNs in the environment has attracted considerable attention, emerging as a vital focus for research and development. This review aims to provide an in-depth assessment of the current understanding of NBNs toxicity, the mechanisms underlying their toxicological effects, and the strategies for mitigating associated health risks. We begin by examining the physicochemical properties of NBNs, such as particle size, composition and surface functionalization, which are key determinants of their biological interactions and toxicity. Then, through an extensive analysis of in vitro and in vivo studies, we highlight the adverse effects of NBNs exposure, including the generation of reactive oxygen species (ROS), oxidative stress, inflammation, cytotoxicity, genotoxicity, and immunotoxicity. To address the potential health risks associated with NBNs, we propose future strategies for risk prevention, including the development of safer nanomaterial designs, implementation of stringent regulatory guidelines, and advancement of novel toxicity testing approaches.
Collapse
Affiliation(s)
- Xiaoting Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Jiaqi Liao
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zipeng Lei
- Clinical College of the Third Medical Center of Chinese PLA General Hospital, The Fifth Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huiqin Yao
- College of Basic Medicine, Ningxia Medical University, Yinchuan, 750004, China
| | - Le Zhao
- National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Chun Yang
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
2
|
Feng Z, Ye Z, Liang W, Tang J, Bao Y, Zeng Y, Li Y, Liu X, He Y. Synergistic NIR and ultrasound-responsive tellurium nanorods for enhanced antibacterial and osteogenic activity. Colloids Surf B Biointerfaces 2025; 246:114395. [PMID: 39608309 DOI: 10.1016/j.colsurfb.2024.114395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Bacterial infections and deficient osteogenic activity are the primary factors contributing to the failure of orthopedic implants. In recent years, light- and sound-based external stimulus-responsive therapies have emerged as highly effective in killing drug-resistant bacteria. In this study, we successfully synthesized tellurium nanorods coated with bovine serum albumin (Te@BSA). This novel nanomaterial exhibits excellent biocompatibility and possesses near-infrared light (NIR) and ultrasound (US) synergistic response properties. At a concentration of 100 μg/mL, Te@BSA nanorods, under combined NIR and US treatment, achieved 94 % bacterial eradication against drug-resistant strains, while maintaining cell viability above 90 % in osteoblast cultures. This dual-modality approach minimizes the risk of local thermal damage associated with conventional photothermal therapy, enhancing osteogenic activity by up to 150 % upon NIR exposure. By combining photothermal therapy and sonodynamic therapy, we achieved a remarkable antibacterial effect and enhanced osteogenic capacities in a mild and controlled manner. This study successfully balances antibacterial and osteogenic capabilities. These light- and sound-based external stimulus-responsive strategies aslo offer new perspectives and valuable insights for the surface modification of orthopedic implants.
Collapse
Affiliation(s)
- Zhenzhen Feng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhaoyi Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanting Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Junze Tang
- College of traditional chines medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Ying Bao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yaoxun Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999077, Hong Kong SAR
| | - Yushan Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xujie Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| | - Yan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
3
|
Chen Z, Zhou X, Mo M, Hu X, Liu J, Chen L. Systematic review of the osteogenic effect of rare earth nanomaterials and the underlying mechanisms. J Nanobiotechnology 2024; 22:185. [PMID: 38627717 PMCID: PMC11020458 DOI: 10.1186/s12951-024-02442-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Rare earth nanomaterials (RE NMs), which are based on rare earth elements, have emerged as remarkable biomaterials for use in bone regeneration. The effects of RE NMs on osteogenesis, such as promoting the osteogenic differentiation of mesenchymal stem cells, have been investigated. However, the contributions of the properties of RE NMs to bone regeneration and their interactions with various cell types during osteogenesis have not been reviewed. Here, we review the crucial roles of the physicochemical and biological properties of RE NMs and focus on their osteogenic mechanisms. RE NMs directly promote the proliferation, adhesion, migration, and osteogenic differentiation of mesenchymal stem cells. They also increase collagen secretion and mineralization to accelerate osteogenesis. Furthermore, RE NMs inhibit osteoclast formation and regulate the immune environment by modulating macrophages and promote angiogenesis by inducing hypoxia in endothelial cells. These effects create a microenvironment that is conducive to bone formation. This review will help researchers overcome current limitations to take full advantage of the osteogenic benefits of RE NMs and will suggest a potential approach for further osteogenesis research.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaohe Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China.
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Rotunjanu S, Racoviceanu R, Mioc A, Milan A, Negrea-Ghiulai R, Mioc M, Marangoci NL, Şoica C. Newly Synthesized CoFe 2-xDy xO 4 (x = 0; 0.1; 0.2; 0.4) Nanoparticles Reveal Promising Anticancer Activity against Melanoma (A375) and Breast Cancer (MCF-7) Cells. Int J Mol Sci 2023; 24:15733. [PMID: 37958717 PMCID: PMC10650938 DOI: 10.3390/ijms242115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The current study focuses on the synthesis via combustion of dysprosium-doped cobalt ferrites that were subsequently physicochemically analyzed in terms of morphological and magnetic properties. Three types of doped nanoparticles were prepared containing different Dy substitutions and coated with HPGCD for higher dispersion properties and biocompatibility, and were later submitted to biological tests in order to reveal their potential anticancer utility. Experimental data obtained through FTIR, XRD, SEM and TEM confirmed the inclusion of Dy3+ ions in the nanoparticles' structure. The size of the newly formed nanoparticles ranged between 20 and 50 nm revealing an inverse proportional relationship with the Dy content. Magnetic studies conducted by VSM indicated a decrease in remanent and saturation mass magnetization, respectively, in Dy-doped nanoparticles in a direct proportionality with the Dy content; the decrease was further amplified by cyclodextrin complexation. Biological assessment in the presence/absence of red light revealed a significant cytotoxic activity in melanoma (A375) and breast (MCF-7) cancer cells, while healthy keratinocytes (HaCaT) remained generally unaffected, thus revealing adequate selectivity. The investigation of the underlying cytotoxic molecular mechanism revealed an apoptotic process as indicated by nuclear fragmentation and shrinkage, as well as by Western blot analysis of caspase 9, p53 and cyclin D1 proteins. The anticancer activity for all doped Co ferrites varied was in a direct correlation to their Dy content but without being affected by the red light irradiation.
Collapse
Affiliation(s)
- Slaviţa Rotunjanu
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.R.); (A.M.); (R.N.-G.); (C.Ş.)
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania; (A.M.); (M.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Alexandra Mioc
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.R.); (A.M.); (R.N.-G.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania; (A.M.); (M.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Negrea-Ghiulai
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.R.); (A.M.); (R.N.-G.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania; (A.M.); (M.M.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Narcisa Laura Marangoci
- Petru Poni Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Vodă, 700487 Iaşi, Romania;
| | - Codruţa Şoica
- Department of Pharmacology-Pharmacotherapy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (S.R.); (A.M.); (R.N.-G.); (C.Ş.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|