1
|
Worden P, Webster A, Gandhi K, Gupta R, Deutscher AT, Hornitzky M, Bogema DR. Genomic diversity and tracing of Paenibacillus larvae in Australia: implications for American foulbrood outbreak surveillance in low-diversity populations. Microb Genom 2025; 11. [PMID: 40327033 DOI: 10.1099/mgen.0.001374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Paenibacillus larvae is the causative agent of American foulbrood (AFB) in honeybees (Apis mellifera) and a devastating pathogen for honey and pollination industries worldwide. Despite this threat, a genomic survey of P. larvae has not been attempted within Australia. To examine the diversity of Australian populations, we sequenced 368 P. larvae genomes sourced primarily from south-eastern Australia. Multilocus sequencing typing analysis identified only 4 sequence types across all 368 samples, with 2 sequence types (ST18 and ST5) representing 96% of all isolates. In comparison to European-sourced P. larvae, sequences revealed much less genetic diversity in Australian isolates. However, Australian genotypes were very similar to those found in New Zealand populations. All Australian isolates were identified as enterobacterial repetitive intergenic consensus (ERIC) type I. To determine the feasibility of a genomic tracing system in a low-diversity genetic background, we investigated core-genome SNP (cgSNP) genotyping of isolates from a single beekeeper and from isolates across multiple apiaries and sample sites. We identified highly related cgSNP clusters, one with known epidemiological links, but another highly related cluster spanned several decades. Results strongly suggest that cgSNP analysis does have the discriminatory power to assist in the trace-forward and trace-back of AFB outbreaks, but importantly, the inclusion of background sequences and careful consideration of multiple analysis methods are required to avoid erroneous conclusions.
Collapse
Affiliation(s)
- Paul Worden
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, 17 Broadway, Ultimo, NSW, Australia
| | - Ashlea Webster
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW, Australia
| | - Khushbu Gandhi
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW, Australia
| | - Risha Gupta
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW, Australia
| | - Ania T Deutscher
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW, Australia
| | - Michael Hornitzky
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW, Australia
| | - Daniel Ross Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Woodbridge Rd, Menangle, NSW, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, 17 Broadway, Ultimo, NSW, Australia
| |
Collapse
|
2
|
Tiritelli R, Zavatta L, Tadei R, Mathias da Silva EC, Sgolastra F, Cilia G. Microplastic ingestion and co-exposure to Nosema ceranae and flupyradifurone reduce the survival of honey bees (Apis mellifera L.). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104571. [PMID: 39401539 DOI: 10.1016/j.etap.2024.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
Bees are exposed to several threats, including pathogens (i.e. Nosema ceranae), pesticides and environmental contaminants. The new insecticide flupyradifurone, and the microplastics in the environment, have raised significant concerns on bee health. This study evaluated the simultaneous effects of microplastics, flupyradifurone, and N. ceranae on honey bee health, focusing on survival rates, N. ceranae replication, daily food consumption, and bee midgut histological alterations. Results showed a significant decrease in bee longevity across all treatments compared to the control, with the combination of flupyradifurone, microplastics, and N. ceranae having the most severe impact. Microplastics and flupyradifurone exposure also increased N. ceranae proliferation, especially in bees subjected to both stressors. Histological analysis revealed reduced regenerative cell nests in the midgut and changes in the nuclear matrix, indicating stress responses. Overall, the simultaneous presence of both biotic and abiotic stressors in nature can synergistically interact, leading to harmful effects on bees.
Collapse
Affiliation(s)
- Rossella Tiritelli
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy
| | - Laura Zavatta
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy; Department of Agricultural and Food Sciences, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Rafaela Tadei
- São Paulo State University, Institute of Biosciences, Rio Claro, Brazil
| | | | - Fabio Sgolastra
- Department of Agricultural and Food Sciences, Alma Mater Studiorum Università di Bologna, Bologna, Italy
| | - Giovanni Cilia
- Research Centre for Agriculture and Environment (CREA-AA), Council for Agricultural Research and Agricultural Economics Analysis, Bologna, Italy.
| |
Collapse
|
3
|
French SK, Pepinelli M, Conflitti IM, Jamieson A, Higo H, Common J, Walsh EM, Bixby M, Guarna MM, Pernal SF, Hoover SE, Currie RW, Giovenazzo P, Guzman-Novoa E, Borges D, Foster LJ, Zayed A. Honey bee stressor networks are complex and dependent on crop and region. Curr Biol 2024; 34:1893-1903.e3. [PMID: 38636513 DOI: 10.1016/j.cub.2024.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/23/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
Honey bees play a major role in crop pollination but have experienced declining health throughout most of the globe. Despite decades of research on key honey bee stressors (e.g., parasitic Varroa destructor mites and viruses), researchers cannot fully explain or predict colony mortality, potentially because it is caused by exposure to multiple interacting stressors in the field. Understanding which honey bee stressors co-occur and have the potential to interact is therefore of profound importance. Here, we used the emerging field of systems theory to characterize the stressor networks found in honey bee colonies after they were placed in fields containing economically valuable crops across Canada. Honey bee stressor networks were often highly complex, with hundreds of potential interactions between stressors. Their placement in crops for the pollination season generally exposed colonies to more complex stressor networks, with an average of 23 stressors and 307 interactions. We discovered that the most influential stressors in a network-those that substantively impacted network architecture-are not currently addressed by beekeepers. Finally, the stressor networks showed substantial divergence among crop systems from different regions, which is consistent with the knowledge that some crops (e.g., highbush blueberry) are traditionally riskier to honey bees than others. Our approach sheds light on the stressor networks that honey bees encounter in the field and underscores the importance of considering interactions among stressors. Clearly, addressing and managing these issues will require solutions that are tailored to specific crops and regions and their associated stressor networks.
Collapse
Affiliation(s)
- Sarah K French
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Mateus Pepinelli
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Ida M Conflitti
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Aidan Jamieson
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada
| | - Heather Higo
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Julia Common
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Elizabeth M Walsh
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, 100038 Township Road 720, Beaverlodge, AB T0H0C0, Canada
| | - Miriam Bixby
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - M Marta Guarna
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, 100038 Township Road 720, Beaverlodge, AB T0H0C0, Canada; University of Victoria, Department of Computer Science, 3800 Finnerty Road, Victoria, BC V8P5C2, Canada
| | - Stephen F Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, 100038 Township Road 720, Beaverlodge, AB T0H0C0, Canada
| | - Shelley E Hoover
- University of Lethbridge, Department of Biological Sciences, 4401 University Drive, Lethbridge, AB T1K3M4, Canada
| | - Robert W Currie
- University of Manitoba, Department of Entomology, 12 Dafoe Road, Winnipeg, MB R3T2N2, Canada
| | - Pierre Giovenazzo
- Université Laval, Département de biologie, 1045, avenue de la Médecine, Québec, QC G1V0A6, Canada
| | - Ernesto Guzman-Novoa
- University of Guelph, School of Environmental Sciences, 50 Stone Road East, Guelph, ON N1G2W1, Canada
| | - Daniel Borges
- Ontario Beekeepers' Association, Technology Transfer Program, 185-5420 Highway 6 North, Guelph, ON N1H6J2, Canada
| | - Leonard J Foster
- University of British Columbia, Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, 2185 East Mall, Vancouver, BC V6T1Z4, Canada
| | - Amro Zayed
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J1P3, Canada.
| |
Collapse
|
4
|
Zapata-Hernández G, Gajardo-Rojas M, Calderón-Seguel M, Muñoz AA, Yáñez KP, Requier F, Fontúrbel FE, Ormeño-Arriagada PI, Arrieta H. Advances and knowledge gaps on climate change impacts on honey bees and beekeeping: A systematic review. GLOBAL CHANGE BIOLOGY 2024; 30:e17219. [PMID: 38450832 DOI: 10.1111/gcb.17219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 03/08/2024]
Abstract
The Western honey bee Apis mellifera is a managed species that provides diverse hive products and contributing to wild plant pollination, as well as being a critical component of crop pollination systems worldwide. High mortality rates have been reported in different continents attributed to different factors, including pesticides, pests, diseases, and lack of floral resources. Furthermore, climate change has been identified as a potential driver negatively impacting pollinators, but it is still unclear how it could affect honey bee populations. In this context, we carried out a systematic review to synthesize the effects of climate change on honey bees and beekeeping activities. A total of 90 articles were identified, providing insight into potential impacts (negative, neutral, and positive) on honey bees and beekeeping. Interest in climate change's impact on honey bees has increased in the last decade, with studies mainly focusing on honey bee individuals, using empirical and experimental approaches, and performed at short-spatial (<10 km) and temporal (<5 years) scales. Moreover, environmental analyses were mainly based on short-term data (weather) and concentrated on only a few countries. Environmental variables such as temperature, precipitation, and wind were widely studied and had generalized negative effects on different biological and ecological aspects of honey bees. Food reserves, plant-pollinator networks, mortality, gene expression, and metabolism were negatively impacted. Knowledge gaps included a lack of studies at the apiary and beekeeper level, a limited number of predictive and perception studies, poor representation of large-spatial and mid-term scales, a lack of climate analysis, and a poor understanding of the potential impacts of pests and diseases. Finally, climate change's impacts on global beekeeping are still an emergent issue. This is mainly due to their diverse effects on honey bees and the potential necessity of implementing adaptation measures to sustain this activity under complex environmental scenarios.
Collapse
Affiliation(s)
- Germán Zapata-Hernández
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Martina Gajardo-Rojas
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Matías Calderón-Seguel
- Departamento de Ciencias Sociales, Facultad de Ciencias Sociales, Universidad de Tarapacá, Iquique, Chile
| | - Ariel A Muñoz
- Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro de Ciencia del Clima y la Resiliencia, Santiago, Chile
| | - Karen P Yáñez
- Centro de Biotecnología Dr. Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fabrice Requier
- CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Francisco E Fontúrbel
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Pablo I Ormeño-Arriagada
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Departamento de Informática, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Héctor Arrieta
- Centro de Acción Climática, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
5
|
Willcox BK, Potts SG, Brown MJF, Alix A, Al Naggar Y, Chauzat MP, Costa C, Gekière A, Hartfield C, Hatjina F, Knapp JL, Martínez-López V, Maus C, Metodiev T, Nazzi F, Osterman J, Raimets R, Strobl V, Van Oystaeyen A, Wintermantel D, Yovcheva N, Senapathi D. Emerging threats and opportunities to managed bee species in European agricultural systems: a horizon scan. Sci Rep 2023; 13:18099. [PMID: 37872212 PMCID: PMC10593766 DOI: 10.1038/s41598-023-45279-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023] Open
Abstract
Managed bee species provide essential pollination services that contribute to food security worldwide. However, managed bees face a diverse array of threats and anticipating these, and potential opportunities to reduce risks, is essential for the sustainable management of pollination services. We conducted a horizon scanning exercise with 20 experts from across Europe to identify emerging threats and opportunities for managed bees in European agricultural systems. An initial 63 issues were identified, and this was shortlisted to 21 issues through the horizon scanning process. These ranged from local landscape-level management to geopolitical issues on a continental and global scale across seven broad themes-Pesticides & pollutants, Technology, Management practices, Predators & parasites, Environmental stressors, Crop modification, and Political & trade influences. While we conducted this horizon scan within a European context, the opportunities and threats identified will likely be relevant to other regions. A renewed research and policy focus, especially on the highest-ranking issues, is required to maximise the value of these opportunities and mitigate threats to maintain sustainable and healthy managed bee pollinators within agricultural systems.
Collapse
Affiliation(s)
- Bryony K Willcox
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK.
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK
| | - Mark J F Brown
- Department of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Anne Alix
- Corteva Agriscience, Regulatory and Stewardship Europe, Middle East and Africa, Abingdon, UK
| | - Yahya Al Naggar
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Marie-Pierre Chauzat
- ANSES, Sophia Antipolis Laboratory, Unit of Honey Bee Pathology, 06902, Sophia Antipolis, France
| | - Cecilia Costa
- CREA Research Centre for Agriculture and Environment, 40128, Bologna, Italy
| | - Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Chris Hartfield
- National Farmers' Union, Agriculture House, Stoneleigh Park, Stoneleigh, Warwickshire, CV8 2TZ, UK
| | - Fani Hatjina
- Department of Apiculture, Institute of Animal Science, ELGO 'DIMITRA', 63200, Nea Moudania, Greece
| | - Jessica L Knapp
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
- Department of Biology, Lund University, Lund, Sweden
| | - Vicente Martínez-López
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Department of Zoology and Physical Anthropology, Faculty of Veterinary, University of Murcia, 30100, Murcia, Spain
| | | | | | - Francesco Nazzi
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Julia Osterman
- Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Str. 4, 79106, Freiburg, Germany
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Risto Raimets
- Department of Plant Protection, Estonian University of Life Sciences, 51014, Tartu, Estonia
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Dimitry Wintermantel
- Nature Conservation and Landscape Ecology, University of Freiburg, Tennenbacher Str. 4, 79106, Freiburg, Germany
| | | | - Deepa Senapathi
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6AR, UK
| |
Collapse
|
6
|
Tang J, Ji C, Shi W, Su S, Xue Y, Xu J, Chen X, Zhao Y, Chen C. Survey Results of Honey Bee Colony Losses in Winter in China (2009-2021). INSECTS 2023; 14:554. [PMID: 37367370 DOI: 10.3390/insects14060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
There is growing concern that massive loss of honey bees can cause serious negative effects on biodiversity and ecosystems. Surveys of colony losses have been performed worldwide to monitor the dynamic changes and health status of honey bee colonies. Here, we present the results of surveys regarding winter colony losses from 21 provinces in China from 2009 to 2021, with a total of 1,744,324 colonies managed by 13,704 beekeepers. The total colony losses were low (9.84%; 95% Confidence Interval (CI): 9.60-10.08%) but varied among years, provinces, and scales of apiaries. As little is known about the overwintering mortality of Apis cerana, in this study, we surveyed and compared the loss rates between Apis mellifera and A. cerana in China. We found colonies of A. mellifera suffered significantly lower losses than A. cerana in China. Larger apiaries resulted in higher losses in A. mellifera, whereas the opposite was observed in A. cerana. Furthermore, we used generalized linear mixed-effects models (GLMMs) to evaluate the effects of potential risk factors on winter colony losses and found that the operation size, species, migration, migration×species interaction, and queen problems were significantly related to the loss rates. New queens can increase their colony overwintering survival. Migratory beekeepers and large operations reported lower loss rates.
Collapse
Affiliation(s)
- Jiao Tang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Congcong Ji
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Shi
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yunbo Xue
- Jilin Province Institute of Apicultural Science, Jilin 132000, China
| | - Jinshan Xu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiao Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yazhou Zhao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chao Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|