1
|
Moseson DE, Tran TB, Karunakaran B, Ambardekar R, Hiew TN. Trends in amorphous solid dispersion drug products approved by the U.S. Food and Drug Administration between 2012 and 2023. Int J Pharm X 2024; 7:100259. [PMID: 38974024 PMCID: PMC11225173 DOI: 10.1016/j.ijpx.2024.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 07/09/2024] Open
Abstract
Forty-eight (48) drug products (DPs) containing amorphous solid dispersions (ASDs) have been approved by the U.S. Food and Drug Administration in the 12-year period between 2012 and 2023. These DPs comprise 36 unique amorphous drugs. Ten (10) therapeutic categories are represented, with most DPs containing antiviral and antineoplastic agents. The most common ASD polymers are copovidone (49%) and hypromellose acetate succinate (30%), while spray drying (54%) and hot melt extrusion (35%) are the most utilized manufacturing processes to prepare the ASD drug product intermediate (DPI). Tablet dosage forms are the most common, with several capsule products available. Line extensions of several DPs based on flexible oral solids and powders for oral suspension have been approved which provide patient-centric dosing to pediatric and other patient populations. The trends in the use of common excipients and film coating types are discussed. Eighteen (18) DPs are fixed-dose combinations, and some contain a mixture of amorphous and crystalline drugs. The DPs have dose/unit of amorphous drug ranging from <5 mg up to 300 mg, with the majority being ≤100 mg/unit. This review details several aspects of DPI and DP formulation and manufacturing of ASDs, as well as trends related to therapeutic category, dose, and patient-centricity.
Collapse
Affiliation(s)
- Dana E. Moseson
- Worldwide Research and Development, Pfizer, Inc., Groton, CT 06340, USA
| | - Trong Bien Tran
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa 52242, USA
| | - Bharathi Karunakaran
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa 52242, USA
| | - Rohan Ambardekar
- Worldwide Research and Development, Pfizer, Inc., Sandwich CT13 9NJ, UK
| | - Tze Ning Hiew
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa 52242, USA
| |
Collapse
|
2
|
Grönniger B, Kimpe K, Singh A, Sadowski G. Simultaneous Water Sorption and Crystallization in ASDs 1: Stability Studies Lasting for Two Years. Mol Pharm 2024; 21:957-969. [PMID: 38173336 DOI: 10.1021/acs.molpharmaceut.3c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
One way to increase the slow dissolution rate and the associated low bioavailability of newly developed active pharmaceutical ingredients (APIs) is to dissolve the API in a polymer, leading to a so-called amorphous solid dispersion (ASD). However, APIs are often supersaturated in ASDs and thus tend to crystallize during storage. The kinetics of the crystallization process is determined by the amount of water the ASD absorbs during storage at relative humidity (RH), storage temperature, polymer type, and the drug load of the ASD. Here, the crystallization kinetics and shelf life of spray-dried ASDs were investigated for ASDs consisting of nifedipine (NIF) or celecoxib (CCX) as the APIs and of poly(vinylpyrrolidone-co-vinyl acetate) or hydroxypropyl methylcellulose acetate succinate as polymers. Samples were stored over 2 years at different RHs covering conditions above and below the glass transition of the wet ASDs. Crystallization kinetics and onset time of the crystallization were qualitatively studied by using powder X-ray diffraction and microscopic inspection and were quantitatively determined by using differential scanning calorimetry. It was found that the NIF ASDs crystallize much faster than CCX ASDs at the same drug load and at the same storage conditions due to both higher supersaturation and higher molecular mobility in the NIF ASDs. Experimental data on crystallization kinetics were correlated using the Johnson-Mehl-Avrami-Kolmogorov equation. A detailed thermodynamic and kinetic modeling will be performed in Part 2 of this paper series.
Collapse
Affiliation(s)
- Birte Grönniger
- Department of Biochemical and Chemical Engineering, Laboratory of Thermodynamics, TU Dortmund University, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
| | - Kristof Kimpe
- Janssen Pharmaceutica R&D, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Abhishek Singh
- Janssen Pharmaceutica R&D, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Gabriele Sadowski
- Department of Biochemical and Chemical Engineering, Laboratory of Thermodynamics, TU Dortmund University, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
| |
Collapse
|
3
|
Pöstges F, Lenhart J, Stoyanov E, Lunter DJ, Wagner KG. Phase homogeneity in ternary amorphous solid dispersions and its impact on solubility, dissolution and supersaturation - Influence of processing and hydroxypropyl cellulose grade. Int J Pharm X 2023; 6:100222. [PMID: 38162398 PMCID: PMC10755049 DOI: 10.1016/j.ijpx.2023.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
As performance of ternary amorphous solid dispersions (ASDs) depends on the solid-state characteristics and polymer mixing, a comprehensive understanding of synergistic interactions between the polymers in regard of dissolution enhancement of poorly soluble drugs and subsequent supersaturation stabilization is necessary. By choosing hot-melt extrusion (HME) and vacuum compression molding (VCM) as preparation techniques, we manipulated the phase behavior of ternary efavirenz (EFV) ASDs, comprising of either hydroxypropyl cellulose (HPC)-SSL or HPC-UL in combination with Eudragit® L 100-55 (EL 100-55) (50:50 polymer ratio), leading to single-phased (HME) and heterogeneous ASDs (VCM). Due to higher kinetic solid-state solubility of EFV in HPC polymers compared to EL 100-55, we visualized higher drug distribution into HPC-rich phases of the phase-separated ternary VCM ASDs via confocal Raman microscopy. Additionally, we observed differences in the extent of phase-separation in dependence on the selected HPC grade. As HPC-UL exhibited decisive lower melt viscosity than HPC-SSL, formation of partially miscible phases between HPC-UL and EL 100-55 was facilitated. Consequently, as homogeneously mixed polymer phases were required for optimal extent of solubility improvement, the manufacturing-dependent differences in dissolution performances were smaller using HPC-UL, instead of HPC-SSL, i.e. using HPC-UL was less demanding on shear stress provided by the process.
Collapse
Affiliation(s)
- Florian Pöstges
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| | - Jonas Lenhart
- Department of Pharmaceutical Technology, Faculty of Sciences, University of Tübingen, Auf d. Morgenstelle 8, 72076 Tübingen, Germany
| | - Edmont Stoyanov
- Nisso Chemical Europe GmbH, Berliner Allee 42, 40212 Düsseldorf, Germany
| | - Dominique J. Lunter
- Department of Pharmaceutical Technology, Faculty of Sciences, University of Tübingen, Auf d. Morgenstelle 8, 72076 Tübingen, Germany
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, Gerhard-Domagk-Str. 3, 53121 Bonn, Germany
| |
Collapse
|
4
|
Luebbert C, Stoyanov E. Tailored ASD destabilization - Balancing shelf life stability and dissolution performance with hydroxypropyl cellulose. Int J Pharm X 2023; 5:100187. [PMID: 37396620 PMCID: PMC10314205 DOI: 10.1016/j.ijpx.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Abstract
Amorphous solid dispersion (ASD) formulations are preferred enabling formulations for poorly water soluble active pharmaceutical ingredients (API) as they reliably enhance the dissolution behavior and solubility. Balancing a high stability against unwanted transformations such as crystallization and amorphous phase separation during storage on the one hand and optimizing the dissolution behavior of the formulation (high supersaturation and maintenance for long time) on the other hand are essential during formulation development. This study assessed the potential of ternary ASDs (one API and two polymers) containing the polymers hydroxypropyl cellulose together with poly(vinylpyrrolidone-co-vinyl acetate) (PVP VA64) or hydroxypropyl cellulose acetate succinate to stabilize the amorphously embedded APIs fenofibrate and simvastatin during storage and to enhance the dissolution performance. Thermodynamic predictions using the PC-SAFT model revealed for each combination of polymers the optimal polymer ratio, maximum API load that is thermodynamically stable as well as miscibility of the two polymers. The stability predictions were validated by three months enduring stability tests, followed by a characterization of the dissolution behavior. The thermodynamically most stable ASDs were found to be the ASDs with deteriorated dissolution performance. Within the investigated polymer combinations, physical stability and dissolution performance opposed each other.
Collapse
Affiliation(s)
| | - Edmont Stoyanov
- Nisso Chemical Europe GmbH, Berliner Allee 42, Düsseldorf D-40212, Germany
| |
Collapse
|
5
|
Rathod V, Gajera B, Pinninti A, Mohammed IA, Dave RH. Strategizing Spray Drying Process Optimization for the Manufacture of Redispersible Indomethacin Nanoparticles Using Quality-by-Design Principles. AAPS PharmSciTech 2023; 24:133. [PMID: 37291469 DOI: 10.1208/s12249-023-02589-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
The present study adopted a Quality by Design (QbD) approach to spray dry indomethacin nanosuspension (IMC-NS) consisting of HPC-SL, poloxamer 407, and lactose monohydrate. The Box-Behnken Design was used to systematically evaluate the effects of inlet temperature, aspiration rate, and feed rate on the critical quality attributes (CQAs) [redispersibility index (RDI; minimize), % yield (maximize), and % release at 15 min (maximize)] of the indomethacin spray dried nanosuspension (IMC-SD-NS). To identify significant main and quadratic effects, two-way interactions, and create a predictive model for the spray drying process, regression analysis and ANOVA were utilized. Following optimization, the IMC-SD-NS was analyzed for its physicochemical properties using X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), and in vitro dissolution studies. Statistical analysis revealed significant independent variables, including inlet temperature, feed rate, and aspiration rate, that critically impacted the solidified end product's RDI, % yield, and % release at 15 min. The models developed for critical quality attributes (CQAs) were significant at a p-value of 0.05. The crystalline state of IMC was maintained in the solidified product, as confirmed by XRPD, and no interactions were observed between IMC and the excipients as evaluated by FTIR. In vitro dissolution studies showed improved dissolution rate for the IMC-SD-NS (3.82-fold increase in overall drug release), which may be attributed to the readily redispersible nanosized drug particles. The implementation of a well-designed study, utilizing Design of Experiments (DoE) methodology, played a crucial role in the development of a highly effective spray drying process.
Collapse
Affiliation(s)
- Vishal Rathod
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, New York, 11201, USA
- Blueprint Medicines, Cambridge, Massachusetts, 02139, USA
| | - Bhavin Gajera
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, New York, 11201, USA
| | - Anusha Pinninti
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, New York, 11201, USA
| | | | - Rutesh H Dave
- Division of Pharmaceutics Sciences, Arnold & Marie Schwartz College of Pharmacy and Health Sciences, The Long Island University, Brooklyn, New York, 11201, USA.
| |
Collapse
|
6
|
Grumann HD, Klinken S, Kleinebudde P. Evaluation of In-Die Compression Data for a Deeper Understanding of Altered Excipient Properties upon Temperature Rise. AAPS PharmSciTech 2023; 24:89. [PMID: 36977912 DOI: 10.1208/s12249-023-02554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
The thermodynamic analysis of tablet formation includes the thermal and mechanical analysis during compression. The aim of this study was to evaluate alterations of force-displacement data upon temperature rise as an indicator for changed excipient properties. The tablet press was equipped with a thermally controlled die to imitate the heat evolution from tableting on an industrial scale. Six predominantly ductile polymers with a comparably low glass transition temperature were tableted at temperatures ranging from 22-70°C. Lactose served as a brittle reference with a high melting point. The energy analysis included the net and recovery work during compression, from which the plasticity factor was calculated. The respective results were compared to the changes in compressibility obtained via Heckel analysis. Elevated temperatures reduced the necessary work for plastic deformation for the ductile polymers, which was reflected in decreasing values for the net work of compaction and the plasticity factor. The recovery work slightly increased for the maximum tableting temperature. Lactose showed no response to temperature variations. Changes in the net work of compaction showed a linear correlation to the changes in yield pressure, which could be correlated to the glass transition temperature of a material. It is therefore possible to detect material alterations directly from the compression data, if the glass transition temperature of a material is sufficiently low.
Collapse
Affiliation(s)
- Hanna Dorothea Grumann
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstraße 1, 40225, Duesseldorf, Germany
| | - Stefan Klinken
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstraße 1, 40225, Duesseldorf, Germany
| | - Peter Kleinebudde
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstraße 1, 40225, Duesseldorf, Germany.
| |
Collapse
|
7
|
Conrad N, Chang G, Fygenson DK, Saleh OA. Emulsion imaging of a DNA nanostar condensate phase diagram reveals valence and electrostatic effects. J Chem Phys 2022; 157:234203. [PMID: 36550026 DOI: 10.1063/5.0130808] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) in macromolecular solutions (e.g., coacervation) is relevant both to technology and to the process of mesoscale structure formation in cells. The LLPS process is characterized by a phase diagram, i.e., binodal lines in the temperature/concentration plane, which must be quantified to predict the system's behavior. Experimentally, this can be difficult due to complications in handling the dense macromolecular phase. Here, we develop a method for accurately quantifying the phase diagram without direct handling: We confine the sample within micron-scale, water-in-oil emulsion droplets and then use precision fluorescent imaging to measure the volume fraction of the condensate within the droplet. We find that this volume fraction grows linearly with macromolecule concentration; thus, by applying the lever rule, we can directly extract the dense and dilute binodal concentrations. We use this approach to study a model LLPS system of self-assembled, fixed-valence DNA particles termed nanostars (NSs). We find that temperature/concentration phase diagrams of NSs display, with certain exceptions, a larger co-existence regime upon increasing salt or valence, in line with expectations. Aspects of the measured phase behavior validate recent predictions that account for the role of valence in modulating the connectivity of the condensed phase. Generally, our results on NS phase diagrams give fundamental insight into limited-valence phase separation, while the method we have developed will likely be useful in the study of other LLPS systems.
Collapse
Affiliation(s)
- Nathaniel Conrad
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Grace Chang
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Deborah K Fygenson
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Omar A Saleh
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
8
|
Martin‐Pastor M, Stoyanov E. Liquid crystalline phase behavior and hydration of hydroxypropyl cellulose in water: A liquid and solid
NMR
investigation. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Manuel Martin‐Pastor
- Unidad de Resonancia Magnética, Área de Infraestructuras de Investigación Universidad de Santiago de Compostela, Santiago de Compostela A Coruña Spain
| | | |
Collapse
|
9
|
How Does Long-Term Storage Influence the Physical Stability and Dissolution of Bicalutamide from Solid Dispersions and Minitablets? Processes (Basel) 2022. [DOI: 10.3390/pr10051002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The stability of amorphous drugs is among the main challenges in the development of solid dosage forms. This paper examines the effect of storage conditions (25 °C/60% RH and 40 °C/75% RH) and different packaging materials, i.e., polystyrene containers and PVC/Al blisters, on the crystallinity and dissolution characteristics of solid dispersions containing bicalutamide and polyvinylpyrrolidone. The results confirmed drug amorphization upon milling and improved dissolution resulting from the lack of a crystal lattice. These properties varied with time regarding sample composition, storage conditions, and packaging material. The most resistant to storage conditions was the 1:1 solid dispersion packed into blisters. Based on the obtained results, the 1:1 solid dispersion was formulated into minitablets, which were then tested after tableting and then packed into PVC/Al blisters and stored for six months in the same conditions as solid dispersions. We proved that efficient stabilization of amorphous bicalutamide depends on the barrier properties of packaging materials and that a properly chosen material protected the drug substance from the influence of unfavorable storage conditions such as elevated temperature and humidity.
Collapse
|
10
|
Chen F, Gu S, Zhang Q, Liu T, Liu Z, Kuang T. A comparison study of hyaluronic acid hydrogel exquisite micropatterns with photolithography and light-cured inkjet printing methods. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The microstructure design of hydrogel materials offers a broad range of practical applications and is extensively used in flexible sensors, polymer microneedles, microfluidic chips, and other biomedical engineering fields. Among the bio-sourced hydrogels, oligomeric hyaluronic acid (HA) possesses wound healing, anti-tumor, and angiogenesis properties. However, micropatterning soft hydrogels, such as HA-relative hydrogels containing 90% water by weight, continue to pose difficulties for both high precision and micro-scale lithography. The purpose of this study was to compare the photolithography and light-cured inkjet printing methods of methacryloyl HA hydrogel (HAMA-gel) to those for synthetic light-curable polymer resins. Photolithography and light-cured inkjet printing methods with designed scale, high resolution, and little processing times were used to effectively prepare micropatterns of HAMA-gel. The well-shaped micropatterns consisted of parallel channels in tens of micrometers and strip/grid lines in the hundreds of micrometers. Human vein endothelial cells cultured on the material’s surface demonstrated that HAMA-gel had good biocompatibility. The width of the flow channel (10 and 20 µm) was regulated on the surface of the microstructure to allow for simultaneous control of cell growth along the flow channel and groove directions.
Collapse
Affiliation(s)
- Feng Chen
- College of Materials Science and Engineering, Zhejiang University of Technology , Hangzhou 310014 , China
| | - Shaochun Gu
- College of Materials Science and Engineering, Zhejiang University of Technology , Hangzhou 310014 , China
| | - Qianming Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology , Hangzhou 310014 , China
| | - Tong Liu
- College of Materials Science and Engineering, Zhejiang University of Technology , Hangzhou 310014 , China
| | - Zhenjie Liu
- The Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009 , China
| | - Tairong Kuang
- College of Materials Science and Engineering, Zhejiang University of Technology , Hangzhou 310014 , China
| |
Collapse
|
11
|
Saraf I, Roskar R, Modhave D, Brunsteiner M, Karn A, Neshchadin D, Gescheidt G, Paudel A. Forced Solid-State Oxidation Studies of Nifedipine-PVP Amorphous Solid Dispersion. Mol Pharm 2022; 19:568-583. [PMID: 35060741 DOI: 10.1021/acs.molpharmaceut.1c00678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, the oxidative degradation behavior of nifedipine (NIF) in amorphous solid dispersions (ASDs) prepared with poly(vinyl pyrrolidone) (PVP) with a short (K30) and a long (K90) chain length was investigated. The ASDs were prepared via dry ball-milling and analyzed using Fourier transform infrared (IR) spectroscopy, X-ray scattering, and differential scanning calorimetry. The ASDs were exposed to accelerated thermal-oxidative conditions using a pressurized oxygen headspace (120 °C for 1 day) and high temperatures at atmospheric pressure (60-120 °C for a period of 42 days). Additionally, solution-state oxidative degradation studies showed that pure NIF degrades to a greater extent than in the presence of PVP. Electronic structure calculations were performed to understand the impact of drug-polymer intermolecular interactions on the autoxidation of drugs. While no drug degradation was observed in freshly prepared ASD samples, alkyl free radicals were detected via electron paramagnetic resonance (EPR) spectroscopy. The free radicals were found to be consumed to a greater extent by PVP K30- than PVP K90-based ASDs upon exposure to high oxygen pressures. This was consistent with the greater solid-state oxidative degradation of NIF observed in ASDs with PVP K30 than with PVP K90. As no drug recrystallization occurred during this study period, the lower glass-transition temperature and presumed greater molecular mobility of PVP K30 and its ASD as compared to the PVP K90 system appear to contribute to the greater drug degradation in PVP-K30-based ASDs. The extent and the rate of oxidative degradation were higher in the case of PVP-K30-based ASD as compared to that in PVP-K90-based ASD, and the overall degradation increased with an increase in temperature. IR spectral analysis of drug-polymer interactions supports the electronic calculations of the oxidation process. We infer that, apart from the initial free radical content, the difference in the extent of drug-polymer intermolecular interactions in ASDs and amorphous stabilization during the forced oxidation experiments contribute to the observed differences in the autoxidative reactivity of the drug in ASDs with different PVP chain lengths. Overall, the chemical degradation of NIF in ASDs with two PVP chain lengths obtained from accelerated solid-state oxidation studies was in qualitative agreement with that obtained from long-term (3 years) storage under ambient conditions. The study highlights the ability of accelerated processes to determine the oxidative degradation behavior of polymeric ASDs and suggests that the polymer chain length could factor into chemical as well as physical stability considerations.
Collapse
Affiliation(s)
- Isha Saraf
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Robert Roskar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Dattatray Modhave
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Michael Brunsteiner
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Anjali Karn
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| | - Dmytro Neshchadin
- Graz University of Technology, Institute of Physical and Theoretical Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| | - Georg Gescheidt
- Graz University of Technology, Institute of Physical and Theoretical Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering (RCPE) GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute for Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
12
|
Niederquell A, Stoyanov E, Kuentz M. Hydroxypropyl Cellulose for Drug Precipitation Inhibition: From the Potential of Molecular Interactions to Performance Considering Microrheology. Mol Pharm 2022; 19:690-703. [PMID: 35005970 DOI: 10.1021/acs.molpharmaceut.1c00832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There has been recent interest in using hydroxypropyl cellulose (HPC) for supersaturating drug formulations. This study investigated the potential for molecular HPC interactions with the model drug celecoxib by integrating novel approaches in the field of drug supersaturation analysis. Following an initial polymer characterization study, quantum-chemical calculations and molecular dynamics simulations were complemented with results of inverse gas chromatography and broadband diffusing wave spectroscopy. HPC performance was studied regarding drug solubilization and kinetics of desupersaturation using different grades (i.e., HPC-UL, SSL, SL, and L). The results suggested that the potential contribution of dispersive interactions and hydrogen bonding depended strongly on the absence or presence of the aqueous phase. It was proposed that aggregation of HPC polymer chains provided a complex heterogeneity of molecular environments with more or less excluded water for drug interaction. In precipitation experiments at a low aqueous polymer concentration (i.e., 0.01%, w/w), grades L and SL appeared to sustain drug supersaturation better than SSL and UL. However, UL was particularly effective in drug solubilization at pH 6.8. Thus, a better understanding of drug-polymer interactions is important for formulation development, and polymer blends may be used to harness the combined advantages of individual polymer grades.
Collapse
Affiliation(s)
- Andreas Niederquell
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz CH 4132, Switzerland
| | - Edmont Stoyanov
- Nisso Chemical, Europe, Berliner Allee 42, Düsseldorf 40212, Germany
| | - Martin Kuentz
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz CH 4132, Switzerland
| |
Collapse
|
13
|
Han J, Li L, Su M, Heng W, Wei Y, Gao Y, Qian S. Deaggregation and Crystallization Inhibition by Small Amount of Polymer Addition for a Co-Amorphous Curcumin-Magnolol System. Pharmaceutics 2021; 13:pharmaceutics13101725. [PMID: 34684018 PMCID: PMC8540313 DOI: 10.3390/pharmaceutics13101725] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/23/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Different from previously reported co-amorphous systems, a co-amorphous curcumin-magnolol (CUR-MAG CM) system, as compared with its crystalline counterparts, exhibited decreased dissolution due to its aggregation during dissolution. The main purpose of the present study is to deaggregate CUR-MAG CM to optimize drug dissolution and explore the deaggregation mechanism involved. Herein, a small amount of polymer (HPMC, HPC, and PVP K30) was co-formulated at 5% (w/w) with CUR-MAG CM as ternary co-amorphous systems. The polymer addition changed the surface properties of CUR-MAG CM including improved water wettability enhanced surface free energy, and hence exerted a deaggregating effect. As a result, the ternary co-amorphous systems showed faster and higher dissolution as compared with crystalline CUR/MAG and CUR-MAG CM. In addition, the nucleation and crystal growth of dissolved CUR and MAG molecules were significantly inhibited by the added polymer, maintaining a supersaturated concentration for a long time. Furthermore, polymer addition increased the Tg of CUR-MAG CM, potentially involving molecular interactions and inhibiting molecular mobility, resulting in enhanced physical stability under 25 °C/60% RH and 40 °C/75% RH conditions. Therefore, this study provides a promising strategy to optimize the dissolution and physical stability of co-amorphous systems by deaggregation and crystallization inhibition via adding small amounts of polymers.
Collapse
Affiliation(s)
| | | | | | | | | | - Yuan Gao
- Correspondence: (Y.G.); (S.Q.); Tel.: +86-25-83379418 (Y.G.); +86-139-1595-7175 (S.Q.)
| | - Shuai Qian
- Correspondence: (Y.G.); (S.Q.); Tel.: +86-25-83379418 (Y.G.); +86-139-1595-7175 (S.Q.)
| |
Collapse
|