1
|
Liu Z, Wang D, Li G, Yi M, Zhang Z, Zhong G, Xu L, Jiang R, Zheng Y, Huang L, Peng Y, Liang L, Li J, Liu Y, Lai J, Lv X, Xu Y, Liu Q, Wang Z, Liu Z, Yang Q, Nie L, Lei J, Huang X, Liu Z, Jiang W. Neoadjuvant with low-dose radiotherapy, tislelizumab, albumin-bound paclitaxel, and cisplatin for resectable locally advanced head and neck squamous cell carcinoma: phase II single-arm trial. Nat Commun 2025; 16:4608. [PMID: 40382318 PMCID: PMC12085655 DOI: 10.1038/s41467-025-59865-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
Although pathological complete response (pCR) and major pathological response (MPR) rates of neoadjuvant immunotherapy combined with chemotherapy in head and neck squamous cell carcinoma (HNSCC) trials remain suboptimal, emerging evidence highlights the synergistic potential of combining low-dose radiotherapy with immunotherapy to promote the efficacy of immunotherapy. This phase II, open-label, single-arm, multicenter trial (NCT05343325) enrolled 28 patients with untreated stage III-IVB HNSCC (NeoRTPC02). Patients received neoadjuvant low-dose radiotherapy, the programmed death-1 (PD-1) inhibitor tislelizumab, albumin-bound paclitaxel, and cisplatin for two cycles, followed by radical resection ~4 weeks after treatment completion. The primary endpoint, pCR rate, was achieved in 14 of 23 patients (60.9%; 23/28, 82.1% of the total cohort underwent surgery). Secondary endpoints included MPR rate (21.7%, 5/23), R0 resection rate (100%), and objective response rate (64.3%; 18/28). Treatment-related adverse events were manageable, with grade 3 or 4 treatment-related adverse events occurring in 10 (35.7%) patients. No surgical delays were observed. Single-cell RNA sequencing revealed remodeling of the HNSCC tumor microenvironment, which may correlate with improved clinical outcomes. This trial met the pre-specified primary endpoint, demonstrating a high pCR rate with promising efficacy and manageable toxicity in locally advanced HNSCC.
Collapse
Affiliation(s)
- Zhigang Liu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China.
- Shenzhen School of Clinical Medicine, Southern Medical University, Guangdong, China.
| | - Dong Wang
- Department of Oral and Maxillofacial Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Guanjun Li
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
- Shenzhen School of Clinical Medicine, Southern Medical University, Guangdong, China
| | - Muhua Yi
- Department of Pathology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Zhaoyuan Zhang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
- Shenzhen School of Clinical Medicine, Southern Medical University, Guangdong, China
| | - Guihua Zhong
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Liangfu Xu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
- Shenzhen School of Clinical Medicine, Southern Medical University, Guangdong, China
| | - Rong Jiang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Yannan Zheng
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Linxuan Huang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Yingpeng Peng
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Lizhong Liang
- Department of Oral and Maxillofacial Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Jianpeng Li
- Department of Radiology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Ye Liu
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jun Lai
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xianjuan Lv
- Department of Pathology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Yongqiang Xu
- Department of Pathology, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Qiaodan Liu
- Cancer Center, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zhiqiang Wang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Zhutian Liu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Qinan Yang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Li Nie
- Department of Oral and Maxillofacial Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Jiao Lei
- Department of Oral and Maxillofacial Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
- School of Stomatology Jinan University, Guangzhou, Guangdong, China
| | - Xiaotao Huang
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Zhijie Liu
- Cancer Center, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523059, China
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Chen CQ, Huang H, Pan M, Jia Z, Zhang J, Chen QQ. Combination therapy of low-dose radiotherapy and immunotherapy in advanced metastatic nasopharyngeal carcinoma: a case report and literature review. Discov Oncol 2025; 16:52. [PMID: 39812951 PMCID: PMC11735707 DOI: 10.1007/s12672-025-01794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Nasopharyngeal cancer (NPC) is a common head and neck malignant tumor, which is difficult to treat at the advanced NPC due to its occult and high metastatic potential to the cervical lymph nodes and distant organs. Low-dose radiotherapy (LDRT) is increasingly being investigated for potential cancer treatment. When combined with immune checkpoint inhibitors, LDRT has been shown to significantly improve the immune microenvironment of tumors, thereby promote the immune attack on tumor cells. However, the therapeutic effect of LDRT combined with immunotherapy in advanced NPC is not well understood. We report a case of a 31-year-old man was diagnosed with advanced metastatic nasopharnygeal non-keratinizing carcinoma (T4N3M1 stage IVb AJCC8th). The patient was treated with a high-dose of radiation therapy combined with LDRT and immunotherapy to inhibit tumor cell proliferation and activate the body's immune system. The initial treatment procedure was as follows: chemotherapy regimen (nedaplatin + docetaxel + fluorouracil) induction, followed by radical radiotherapy for the primary lesion, LDRT for the L5 vertebral body metastasis, and concurrent use of low-dose capecitabine beat chemotherapy and toripalimab immunotherapy. The patient was also administered with human granulocyte-macrophage colony-stimulating factor and aspirin to enhance the immune function. This combination therapy approach alleviated patient symptoms, improved bone changes in the L5 vertebral body and resolved the tumor without any adverse effects signals. The progression-free survival (PFS) has reached 27 months and he is currently stable without tumor recurrence. CONCLUSION The combination of chemotherapy and LDRT with aspirin and human granulocyte macrophage colony-stimulating factor improved the disease state of advanced NPC cancer, effectively reducing the level of tumor markers, enhanced the immune function without significant adverse reactions.
Collapse
Affiliation(s)
- Chun-Qiao Chen
- Department of Oncology, People's Hospital of Guilin, No. 12 Wenming Road, Guilin, 541002, Guangxi Zhuang Autonomous Region, China
| | - Hui Huang
- Department of Oncology, People's Hospital of Guilin, No. 12 Wenming Road, Guilin, 541002, Guangxi Zhuang Autonomous Region, China
| | - Min Pan
- Department of Oncology, People's Hospital of Guilin, No. 12 Wenming Road, Guilin, 541002, Guangxi Zhuang Autonomous Region, China
| | - Zhe Jia
- Department of Oncology, People's Hospital of Guilin, No. 12 Wenming Road, Guilin, 541002, Guangxi Zhuang Autonomous Region, China
| | - Jing Zhang
- Department of Oncology, People's Hospital of Guilin, No. 12 Wenming Road, Guilin, 541002, Guangxi Zhuang Autonomous Region, China
| | - Qiu-Qiu Chen
- Department of Oncology, People's Hospital of Guilin, No. 12 Wenming Road, Guilin, 541002, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
3
|
Wu Y, Yi M, Niu M, Zhou B, Mei Q, Wu K. Beyond success: unveiling the hidden potential of radiotherapy and immunotherapy in solid tumors. Cancer Commun (Lond) 2024; 44:739-760. [PMID: 38837878 PMCID: PMC11260771 DOI: 10.1002/cac2.12576] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Immunotherapy, particularly with immune checkpoint inhibitors, has significantly transformed cancer treatment. Despite its success, many patients struggle to respond adequately or sustain long-lasting clinical improvement. A growing consensus has emerged that radiotherapy (RT) enhances the response rate and overall efficacy of immunotherapy. Although combining RT and immunotherapy has been extensively investigated in preclinical models and has shown promising results, establishing itself as a dynamic and thriving area of research, clinical evidence for this combination strategy over the past five years has shown both positive and disappointing results, suggesting the need for a more nuanced understanding. This review provides a balanced and updated analysis of the combination of immunotherapy and RT. We summarized the preclinical mechanisms through which RT boosts antitumor immune responses and mainly focused on the outcomes of recently updated clinical trials, including those that may not have met expectations. We investigated the optimization of the therapeutic potential of this combined strategy, including key challenges, such as fractionation and scheduling, lymph node irradiation, and toxicity. Finally, we offered insights into the prospects and challenges associated with the clinical translation of this combination therapy, providing a realistic perspective on the current state of research and potential future directions.
Collapse
Affiliation(s)
- Yuze Wu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Ming Yi
- Department of Breast SurgeryZhejiang University School of Medicine First Affiliated HospitalHangzhouZhejiangP. R. China
| | - Mengke Niu
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Binghan Zhou
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Qi Mei
- Department of OncologyTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| | - Kongming Wu
- Cancer CenterShanxi Bethune HospitalShanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical UniversityTaiyuanShanxiP. R. China
- Cancer CenterTongji Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiP. R. China
| |
Collapse
|
4
|
Scirocco E, Cellini F, Zamagni A, Macchia G, Deodato F, Cilla S, Strigari L, Buwenge M, Rizzo S, Cammelli S, Morganti AG. Clinical Studies on Ultrafractionated Chemoradiation: A Systematic Review. Front Oncol 2021; 11:748200. [PMID: 34868948 PMCID: PMC8635188 DOI: 10.3389/fonc.2021.748200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/25/2021] [Indexed: 01/08/2023] Open
Abstract
Aim The efficacy of low-dose fractionated radiotherapy (LDFRT) and chemotherapy (CHT) combination has large preclinical but little clinical evidence. Therefore, the aim of this review was to collect and analyze the clinical results of LDRT plus concurrent CHT in patients with advanced cancers. Methods A systematic literature search was conducted on PubMed using the PRISMA methodology. Only studies based on the combination of LDFRT (< 1 Gy/fraction) and CHT were included. Endpoints of the analysis were tumor response, toxicity, and overall survival, with particular focus on any differences between LDFRT-CHT and CHT alone. Results Twelve studies (307 patients) fulfilled the selection criteria and were included in this review. Two studies were retrospective, one was a prospective pilot trial, six were phase II studies, two were phase I trials, and one was a phase I/II open label study. No randomized controlled trials were found. Seven out of eight studies comparing clinical response showed higher rates after LDFRT-CHT compared to CHT alone. Three out of four studies comparing survival reported improved results after combined treatment. Three studies compared toxicity of CHT and LDFRT plus CHT, and all of them reported similar adverse events rates. In most cases, toxicity was manageable with only three likely LDFRT-unrelated fatal events (1%), all recorded in the same series on LDFRT plus temozolomide in glioblastoma multiforme patients. Conclusion None of the analyzed studies provided level I evidence on the clinical impact of LDFRT plus CHT. However, it should be noted that, apart from two small series of breast cancers, all studies reported improved therapeutic outcomes and similar tolerability compared to CHT alone. Systematic Review Registration www.crd.york.ac.uk/prospero/, identifier CRD42020206639.
Collapse
Affiliation(s)
- Erica Scirocco
- Radiation Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine-Alma Mater Studiorum Bologna University, Bologna, Italy
| | - Francesco Cellini
- Università Cattolica del Sacro Cuore, Dipartimento Universitario Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy.,Fondazione Policlinico Universitario "A. Gemelli" Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Roma, Italy
| | - Alice Zamagni
- Radiation Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine-Alma Mater Studiorum Bologna University, Bologna, Italy
| | - Gabriella Macchia
- Radiotherapy Unit, Gemelli Molise Hospital, Catholic University of Sacred Heart, Campobasso, Italy
| | - Francesco Deodato
- Radiotherapy Unit, Gemelli Molise Hospital, Catholic University of Sacred Heart, Campobasso, Italy
| | - Savino Cilla
- Medical Physic Unit, Gemelli Molise Hospital, Catholic University of Sacred Heart, Campobasso, Italy
| | - Lidia Strigari
- Medical Physics Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Milly Buwenge
- Department of Experimental, Diagnostic and Specialty Medicine-Alma Mater Studiorum Bologna University, Bologna, Italy
| | - Stefania Rizzo
- Service of Radiology, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale (EOC), Lugano, Switzerland
| | - Silvia Cammelli
- Radiation Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine-Alma Mater Studiorum Bologna University, Bologna, Italy
| | - Alessio Giuseppe Morganti
- Radiation Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine-Alma Mater Studiorum Bologna University, Bologna, Italy
| |
Collapse
|
5
|
DUOX2, a New Biomarker for Disseminated Gastric Cancer's Response to Low Dose Radiation in Mice. Cancers (Basel) 2021; 13:cancers13164186. [PMID: 34439340 PMCID: PMC8392330 DOI: 10.3390/cancers13164186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
Treatment options are rather limited for gastrointestinal cancer patients whose disease has disseminated into the intra-abdominal cavity. Here, we designed pre-clinical studies to evaluate the potential application of chemopotentiation by Low Dose Fractionated Radiation Therapy (LDFRT) for disseminated gastric cancer and evaluate the role of a likely biomarker, Dual Oxidase 2 (DUOX2). Nude mice were injected orthotopically with human gastric cancer cells expressing endogenous or reduced levels of DUOX2 and randomly assigned to four treatment groups: 1; vehicle alone, 2; modified regimen of docetaxel, cisplatin and 5'-fluorouracil (mDCF) for three consecutive days, 3; Low Dose- Whole Abdomen Radiation Therapy (LD-WART) (5 fractions of 0.15 Gy in three days), 4; mDCF and LD-WART. The combined regimen increased the odds of preventing cancer dissemination (mDCF + LD-WART OR = 4.16; 80% CI = 1.0, 17.29) in the DUOX2 positive tumors, while tumors expressing lower DUOX2 levels were more responsive to mDCF alone with no added benefit from LD-WART. The molecular mechanisms underlying DUOX2 effects in response to the combined regimen include NF-κB upregulation. These data are particularly important since our study indicates that about 33% of human stomach adenocarcinoma do not express DUOX2. DUOX2 thus seems a likely biomarker for potential clinical application of chemopotentiation by LD-WART.
Collapse
|
6
|
Monjazeb AM, Giobbie-Hurder A, Lako A, Thrash EM, Brennick RC, Kao KZ, Manuszak C, Gentzler RD, Tesfaye A, Jabbour SK, Alese OB, Rahma OE, Cleary JM, Sharon E, Mamon HJ, Cho M, Streicher H, Chen HX, Ahmed MM, Mariño-Enríquez A, Kim-Schulze S, Gnjatic S, Maverakis E, Marusina AI, Merleev AA, Severgnini M, Pfaff KL, Lindsay J, Weirather JL, Ranasinghe S, Spektor A, Rodig SJ, Hodi SF, Schoenfeld JD. A Randomized Trial of Combined PD-L1 and CTLA-4 Inhibition with Targeted Low-Dose or Hypofractionated Radiation for Patients with Metastatic Colorectal Cancer. Clin Cancer Res 2021; 27:2470-2480. [PMID: 33568343 PMCID: PMC8102320 DOI: 10.1158/1078-0432.ccr-20-4632] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/14/2021] [Accepted: 02/05/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Prospective human data are lacking regarding safety, efficacy, and immunologic impacts of different radiation doses administered with combined PD-L1/CTLA-4 blockade. PATIENTS AND METHODS We performed a multicenter phase II study randomly assigning patients with metastatic microsatellite stable colorectal cancer to repeated low-dose fractionated radiation (LDFRT) or hypofractionated radiation (HFRT) with PD-L1/CTLA-4 inhibition. The primary endpoint was response outside the radiation field. Correlative samples were analyzed using multiplex immunofluorescence (IF), IHC, RNA/T-cell receptor (TCR) sequencing, cytometry by time-of-flight (CyTOF), and Olink. RESULTS Eighteen patients were evaluable for response. Median lines of prior therapy were four (range, 1-7). Sixteen patients demonstrated toxicity potentially related to treatment (84%), and 8 patients had grade 3-4 toxicity (42%). Best response was stable disease in 1 patient with out-of-field tumor shrinkage. Median overall survival was 3.8 months (90% confidence interval, 2.3-5.7 months). Correlative IF and RNA sequencing (RNA-seq) revealed increased infiltration of CD8+ and CD8+/PD-1+/Ki-67+ T cells in the radiation field after HFRT. LDFRT increased foci of micronuclei/primary nuclear rupture in two subjects. CyTOF and RNA-seq demonstrated significant declines in multiple circulating immune populations, particularly in patients receiving HFRT. TCR sequencing revealed treatment-associated changes in T-cell repertoire in the tumor and peripheral blood. CONCLUSIONS We demonstrate the feasibility and safety of adding LDFRT and HFRT to PD-L1/CTLA-4 blockade. Although the best response of stable disease does not support the use of concurrent PD-L1/CTLA-4 inhibition with HFRT or LDFRT in this population, biomarkers provide support that both LDFRT and HFRT impact the local immune microenvironment and systemic immunogenicity that can help guide future studies.
Collapse
Affiliation(s)
- Arta M Monjazeb
- Department of Radiation Oncology, University of California Davis, Comprehensive Cancer Center, Sacramento, California
| | | | - Ana Lako
- Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | | | | | | | - Anteneh Tesfaye
- Karmanos Cancer Institute/Wayne State University, Detroit, Michigan
| | - Salma K Jabbour
- Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | | | - Osama E Rahma
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Brigham and Women's Hospital, Boston, Massachusetts
| | - James M Cleary
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Brigham and Women's Hospital, Boston, Massachusetts
| | - Elad Sharon
- Cancer Therapy Evaluation Program, NCI, Bethesda, Maryland
| | - Harvey J Mamon
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Brigham and Women's Hospital, Boston, Massachusetts
| | - May Cho
- Department of Radiation Oncology, University of California Davis, Comprehensive Cancer Center, Sacramento, California
| | | | - Helen X Chen
- Cancer Therapy Evaluation Program, NCI, Bethesda, Maryland
| | | | - Adrian Mariño-Enríquez
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Brigham and Women's Hospital, Boston, Massachusetts
| | | | | | - Emanual Maverakis
- Department of Dermatology, University of California Davis, School of Medicine, Sacramento, California
| | - Alina I Marusina
- Department of Dermatology, University of California Davis, School of Medicine, Sacramento, California
| | - Alexander A Merleev
- Department of Dermatology, University of California Davis, School of Medicine, Sacramento, California
| | | | | | | | | | | | - Alexander Spektor
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Brigham and Women's Hospital, Boston, Massachusetts
| | - Scott J Rodig
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Brigham and Women's Hospital, Boston, Massachusetts
| | - Stephen F Hodi
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Brigham and Women's Hospital, Boston, Massachusetts
| | - Jonathan D Schoenfeld
- Dana-Farber Cancer Institute, Boston, Massachusetts.
- Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
7
|
Ju X, Yu H, Liang D, Jiang T, Liu Y, Chen L, Dong Q, Liu X. LDR reverses DDP resistance in ovarian cancer cells by affecting ERCC-1, Bcl-2, Survivin and Caspase-3 expressions. Biomed Pharmacother 2018; 102:549-554. [PMID: 29597088 DOI: 10.1016/j.biopha.2018.03.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Ovarian cancer is the most frequent cause of death resulting from malignant gynecological tumors. After surgical intervention, cisplatin (DDP) is a major chemotherapy drug for ovarian cancer, but the ovarian cancer cells tend to develop DDP resistance in the clinical setting. Tumor cells are sensitive to low-dose radiation (LDR). However, how the LDR therapy improves the effects of chemotherapy drugs on ovarian cancer is not well understood. This study aimed to explore this issue. METHODS The SKOV3/DDP cells were divided into 3 groups, including low-dose group, conventional-dose group, and control group (no radiation). Cell counting kit-8 assay was performed to measure cell proliferation. Flow cytometric analysis was then utilized to quantify the apoptosis with classical Annexin V/propidium iodide co-staining. And Real-time quantitative PCR and western blot were eventually used to analyze the mRNA and protein levels of excision repair cross complementing-group 1 (ERCC1), B-cell lymphoma 2 (Bcl-2), Survivin and Caspase-3, respectively. RESULTS The IC50 value of DDP in the low-dose group was significantly lower compared with the other two groups. Compared with the conventional-dose group and control group, LDR treatment resulted in significantly more apoptosis. Besides, LDR treatment significantly decreased the mRNA and protein expression of ERCC1, Bcl-2, and Survivin, and enhanced the mRNA and protein expression of Caspase-3 compared with the other two groups. CONCLUSIONS LDR reversed DDP resistance in SKOV3/DDP cells possibly by suppressing ERCC1, Bcl-2, and Survivin expressions, and increasing Caspase-3 expression.
Collapse
Affiliation(s)
- Xingyan Ju
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongsheng Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Donghai Liang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tao Jiang
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanwei Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ling Chen
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China; Department of Oncology, Qingdao Municipal Hospital, Qingdao, China
| | - Qing Dong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoran Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Nardone L, Valentini V, Marino L, De Santis MC, Terribile D, Franceschini G, Balducci M, Mantini G, Mattiucci G, Mulè A, Belli P, Masetti R. A Feasibility Study of Neo-Adjuvant Low-Dose Fractionated Radiotherapy with Two Different Concurrent Anthracycline-Docetaxel Schedules in Stage IIA/B-IIIA Breast Cancer. TUMORI JOURNAL 2018; 98:79-85. [DOI: 10.1177/030089161209800110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims and Background The aim of the study was to evaluate the feasibility of neoadjuvant low-dose fractionated radiotherapy, in combination with two anthracycline-docetaxel regimens, in breast cancer treatment. Materials and Methods Women with stage IIA/B-IIIA breast cancer were assigned to receive the treatment of low-dose fractionated radiotherapy (0.4 Gy/per fraction, 2 fractions per day, for 2 days, every 21 days for 8–6 cycles) with concomitant neoadjuvant chemotherapy with non-pegylated liposomal doxorubicin and docetaxel. Two chemotherapy schedules were planned to be combined with low-dose fractionated radiotherapy. The first schedule consisted of four cycles of non-pegylated liposomal doxorubicin sequentially followed by four cycles of docetaxel, and the second schedule consisted of six cycles of non-pegylated liposomal doxorubicin plus concomitant docetaxel. Acute toxicity was evaluated according to the Radiation Therapy Oncology Group score system. Pathological response was evaluated by the Mandard score and expressed as tumor regression grade. Results Between March 2008 and February 2009, 10 patients underwent low-dose fractionated radiotherapy and concomitant chemotherapy. No grade 3–4 breast toxicity was observed. Five patients had a clinical complete response. Seven patients underwent conservative surgery. Overall, tumor regression grade 1 (absence of residual cancer) was achieved in one patient (10%) and grade 2 (residual isolated cells scattered through the fibrosis) in 4 patients (40%). The pathologic major response rate (tumor regression grade 1 + 2) was 20% in patients receiving low-dose fractionated radiotherapy and sequential non-pegylated liposomal doxorubicin and docetaxel and 80% in the group receiving low-dose fractionated radiotherapy and concurrent non-pegylated liposomal doxorubicin and docetaxel treatment. Conclusions Concomitant low-dose fractionated radiotherapy combined with anthracycline and docetaxel is feasible. The toxicity profile of radio-chemotherapy was similar to that of chemotherapy alone: there was no acute skin or cardiac toxicity. The concurrent application of liposomal doxorubicin and docetaxel with low-dose fractionated radiation led to higher histological response rates compared to the sequential application of the same two drugs.
Collapse
Affiliation(s)
- Luigia Nardone
- Radiotherapy Department, Policlinico Universitario “A. Gemelli”, Catholic University, Rome, Italy
| | - Vincenzo Valentini
- Radiotherapy Department, Policlinico Universitario “A. Gemelli”, Catholic University, Rome, Italy
| | - Lorenza Marino
- Radiotherapy Department, Policlinico Universitario “A. Gemelli”, Catholic University, Rome, Italy
| | - Maria Carmen De Santis
- Radiotherapy Department, Policlinico Universitario “A. Gemelli”, Catholic University, Rome, Italy
| | - Daniela Terribile
- Breast Surgery Unit Department, Policlinico Universitario “A. Gemelli”, Catholic University, Rome, Italy
| | - Gianluca Franceschini
- Breast Surgery Unit Department, Policlinico Universitario “A. Gemelli”, Catholic University, Rome, Italy
| | - Mario Balducci
- Radiotherapy Department, Policlinico Universitario “A. Gemelli”, Catholic University, Rome, Italy
| | - Giovanna Mantini
- Radiotherapy Department, Policlinico Universitario “A. Gemelli”, Catholic University, Rome, Italy
| | - Giancarlo Mattiucci
- Radiotherapy Department, Policlinico Universitario “A. Gemelli”, Catholic University, Rome, Italy
| | - Antonino Mulè
- Pathology Department, Policlinico Universitario “A. Gemelli”, Catholic University, Rome, Italy
| | - Paolo Belli
- Radiology Department, Policlinico Universitario “A. Gemelli”, Catholic University, Rome, Italy
| | - Riccardo Masetti
- Breast Surgery Unit Department, Policlinico Universitario “A. Gemelli”, Catholic University, Rome, Italy
| |
Collapse
|
9
|
Jahraus CD, Friedman AH. Chemopotentiation by Ultrafractionated Radiotherapy in Glioblastoma Resistant to Conventional Therapy. TUMORI JOURNAL 2018; 96:771-5. [DOI: 10.1177/030089161009600522] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction Induced radiation resistance (IRR) and hyper-radiosensitivity (HRS) are well-described phenomena in basic literature, yet few reports have been published in which such phenomena are exploited clinically for the benefit of patients. Glioblastoma is a prime example. Case and methods The case of an 82-year-old woman is described whose resected frontoparietal glioblastoma progressed through treatment administered according to standard methods. With review board and patient approval, we continued her treatment using radiotherapy and temozolomide, but drastically modified the radiotherapy fractionation, administering 50 cGy twice daily on each of the first 5 days of a 14-day cycle. Temozolomide was administered on the first 4 days of each cycle. We use the term “ultrafractionated radiotherapy” to refer to the extremely low doses of radiation used in this case. Results This modified regimen resulted in regression of the contrast-enhancing areas of disease recurrence identified on MRI, and the patient survived approximately 6 months following recurrence of her disease, having received 5 cycles of additional therapy after prior full-dose treatment. Conclusions Ultrafractionated radiotherapy and concurrent temozolomide were efficacious and tolerable in this patient whose glioblastoma previously progressed through conventional treatment. Additional studies of this approach are warranted. Free full text available at www.tumorionline.it
Collapse
|
10
|
Mattoli MV, Massaccesi M, Castelluccia A, Scolozzi V, Mantini G, Calcagni ML. The predictive value of 18F-FDG PET-CT for assessing the clinical outcomes in locally advanced NSCLC patients after a new induction treatment: low-dose fractionated radiotherapy with concurrent chemotherapy. Radiat Oncol 2017; 12:4. [PMID: 28057034 PMCID: PMC5217210 DOI: 10.1186/s13014-016-0737-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022] Open
Abstract
Background Patients with locally advanced non-small-cell lung cancer (LA-NSCLC) have poor prognosis despite several multimodal approaches. Recently, low-dose fractionated radiotherapy concurrent to the induction chemotherapy (IC-LDRT) has been proposed to further improve the effects of chemotherapy and prognosis. Until now, the predictive value of metabolic response after IC-LDRT has not yet been investigated. Aim: to evaluate whether the early metabolic response, assessed by 18F-fluoro-deoxyglucose positron emission-computed tomography (18F-FDG PET-CT), could predict the prognosis in LA-NSCLC patients treated with a multimodal approach, including IC-LDRT. Methods Forty-four consecutive patients (35males, mean age: 66 ± 7.8 years) with stage IIIA/IIIB NSCLC were retrospectively evaluated. Forty-four patients underwent IC-LDRT (2 cycles of chemotherapy, 40 cGy twice daily), 26/44 neo-adjuvant chemo-radiotherapy (CCRT: 50.4Gy), and 20/44 surgery. 18F-FDG PET-CT was performed before (baseline), after IC-LDRT (early) and after CCRT (final), applying PET response criteria in solid tumours (PERCIST). Patients with complete/partial metabolic response were classified as responders; patients with stable/progressive disease as non-responders. Progression free survival (PFS) and overall survival (OS) were assessed using Kaplan-Meyer analysis; the relationship between clinical factors and survivals were assessed using uni-multivariate regression analysis. Results Forty-four out of 44, 42/44 and 23/42 patients underwent baseline, early and final PET-CT, respectively. SULpeak of primary tumour and lymph-node significantly (p = 0.004, p = 0.0002, respectively) decreased after IC-LDRT with a further reduction after CCRT (p = 0.0006, p = 0.02, respectively). At early PET-CT, 20/42 (47.6%) patients were classified as responders, 22/42 (52.3%) as non-responders. At final PET-CT, 19/23 patients were classified as responders (12 responders and 7 non-responders at early PET-CT), and 4/23 as non-responders (all non-responders at early PET-CT). Early responders had better PFS and OS than early non-responders (p ≤ 0.01). Early metabolic response was predictive factor for loco-regional, distant and global PFS (p = 0.02, p = 0.01, p = 0.005, respectively); surgery for loco-regional and global PFS (p = 0.03, p = 0.009, respectively). Conclusions In LA-NSCLC patients, 18F-FDG metabolic response assessed after only two cycles of IC-LDRT predicts the prognosis. The early evaluation of metabolic changes could allow to personalize therapy. This multimodality approach, including both low-dose radiotherapy that increases the effects of induction chemotherapy, and surgery that removes the disease, improved clinical outcomes. Further prospective investigation of this new induction approach is warranted.
Collapse
Affiliation(s)
- Maria Vittoria Mattoli
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Mariangela Massaccesi
- Department of Radiation Oncology, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Alessandra Castelluccia
- Department of Radiation Oncology, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy.
| | - Valentina Scolozzi
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Giovanna Mantini
- Department of Radiation Oncology, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy
| | - Maria Lucia Calcagni
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Largo A. Gemelli, 8, 00168, Rome, Italy
| |
Collapse
|
11
|
De Santis MC, Nardone L, Diletto B, Canna R, Dispinzieri M, Marino L, Lozza L, Valentini V. Comparison of two radiation techniques for the breast boost in patients undergoing neoadjuvant treatment for breast cancer. Br J Radiol 2016; 89:20160264. [PMID: 27452265 DOI: 10.1259/bjr.20160264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE After breast conservative surgery (BCS) and whole-breast radiotherapy (WBRT), the use of boost irradiation is recommended especially in patients at high risk. However, the standard technique and the definition of the boost volume have not been well defined. METHODS We retrospectively compared an anticipated pre-operative photon boost on the tumour, administered with low-dose fractionated radiotherapy, and neoadjuvant chemotherapy with two different sequential boost techniques, administered after BCS and standard adjuvant WBRT: (1) a standard photon beam (2) and an electron beam technique on the tumour bed of the same patients. The plans were analyzed for the dosimetric coverage of the CT-delineated irradiated volume. The minimal dose received by 95% of the target volume (D95), the minimal dose received by 90% of the target volume (D90) and geographic misses were evaluated. RESULTS 15 patients were evaluated. The sequential photon and electron boost techniques resulted in inferior target volume coverage compared with the anticipated boost technique, with a median D95 of 96.3% (range 94.7-99.6%) and 0.8% (range 0-30%) and a median D90 of 99.1% (range 90.2-100%) and 54.7% (range 0-84.8%), respectively. We observed a geographic miss in 26.6% of sequential electron plans. The results of the anticipated boost technique were better: 99.4% (range 96.5-100%) and 97.1% (range 86.2-99%) for median D90 and median D95, respectively, and no geographic miss was observed. We observed a dose reduction to the heart, with left-sided breast irradiation, using the anticipated pre-operative boost technique, when analyzed for all dose-volume parameters. When compared with the sequential electron plans, the pre-operative photon technique showed a higher median ipsilateral lung Dmax. CONCLUSION Our data show that an anticipated pre-operative photon boost results in a better coverage with respect to the standard sequential boost while also saving the organs at risk and consequently fewer side effects. ADVANCES IN KNOWLEDGE This is the first dosimetric study that evaluated the association between an anticipated boost and neoadjuvant chemotherapy treatment.
Collapse
Affiliation(s)
- Maria C De Santis
- 1 Radiotherapy Unit 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luigia Nardone
- 2 Department of Radiation Oncology, Catholic University of the Sacred Heart, Rome, Italy
| | - Barbara Diletto
- 1 Radiotherapy Unit 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Roberta Canna
- 2 Department of Radiation Oncology, Catholic University of the Sacred Heart, Rome, Italy
| | - Michela Dispinzieri
- 1 Radiotherapy Unit 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lorenza Marino
- 3 Division of Radiotherapy, REM-Istituto Oncologico del Mediterraneo, Catania, Italy
| | - Laura Lozza
- 1 Radiotherapy Unit 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Vincenzo Valentini
- 2 Department of Radiation Oncology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
12
|
Arnold SM, Kudrimoti M, Dressler EV, Gleason JF, Silver NL, Regine WF, Valentino J. Using low-dose radiation to potentiate the effect of induction chemotherapy in head and neck cancer: Results of a prospective phase 2 trial. Adv Radiat Oncol 2016; 1:252-259. [PMID: 28740895 PMCID: PMC5514161 DOI: 10.1016/j.adro.2016.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 11/08/2022] Open
Abstract
Purpose Low-dose fractionated radiation therapy (LDFRT) induces effective cell killing through hyperradiation sensitivity and potentiates effects of chemotherapy. We report our second investigation of LDFRT as a potentiator of the chemotherapeutic effect of induction carboplatin and paclitaxel in locally advanced squamous cell cancer of the head and neck (SCCHN). Experimental design Two cycles of induction therapy were given every 21 days: paclitaxel (75 mg/m2) on days 1, 8, and 15; carboplatin (area under the curve 6) day 1; and LDFRT 50 cGy fractions (2 each on days 1, 2, 8, and 15). Objectives included primary site complete response rate; secondary included overall survival, progression-free survival (PFS), disease-specific survival, and toxicity. Results A total of 24 evaluable patients were enrolled. Primary sites included oropharynx (62.5%), larynx (20.8%), oral cavity (8.3%), and hypopharynx (8.3%). Grade 3/4 toxicities included neutropenia (20%), leukopenia (32%), dehydration/hypotension (8%), anemia (4%), infection (4%), pulmonary/allergic rhinitis (4%), and diarrhea (4%). Primary site response rate was 23/24 (95.8%): 15/24 (62.5%) complete response, 8/24 (33.3%) partial response, and 1/24 (4.2%) stable disease. With median follow-up of 7.75 years, 9-year rates for overall survival were 49.4% (95% confidence interval [CI], 30.5-79.9), PFS was 72.2% (CI, 55.3-94.3), and disease-specific survival was 65.4% (44.3-96.4). Conclusion Chemopotentiating LDFRT combined with paclitaxel and carboplatin is effective in SCCHN and provided an excellent median overall survival of 107.2 months, with median PFS not yet reached in this locally advanced SCCHN cohort. This compares favorably to prior investigations and caused fewer grade 3 and 4 toxicities than more intensive, 3-drug induction regimens. This trial demonstrates the innovative use of LDFRT as a potentiator of chemotherapy.
Collapse
Affiliation(s)
- Susanne M Arnold
- Department of Internal Medicine, Division of Medical Oncology, University of Kentucky, Markey Cancer Center, Lexington, Kentucky
| | - Mahesh Kudrimoti
- Department of Radiation Medicine, University of Kentucky, Markey Cancer Center, Lexington, Kentucky
| | - Emily V Dressler
- Division of Cancer Biostatistics, University of Kentucky, Markey Cancer Center, Lexington, Kentucky
| | | | | | - William F Regine
- Department of Radiation Oncology, University of Maryland, Baltimore, Maryland
| | - Joseph Valentino
- Department of Otolaryngology Head and Neck Surgery, University of Kentucky, Markey Cancer Center, Lexington, Kentucky
| |
Collapse
|
13
|
Morganti AG, Cellini F, Mignogna S, Padula GDA, Caravatta L, Deodato F, Picardi V, Macchia G, Cilla S, Buwenge M, Lullo LDI, Gambacorta MA, Balducci M, Mattiucci GC, Autorino R, Valentini V. Low-dose radiotherapy and concurrent FOLFIRI-bevacizumab: a Phase II study. Future Oncol 2016; 12:779-87. [DOI: 10.2217/fon.15.350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aims: Low-dose radiation therapy (LDRT) can increase biological efficacy of chemotherapy. This Phase II trial evaluates LDRT plus FOLFIRI-bevacizumab (FOLFIRI-B) in metastatic colorectal cancer. Materials & methods: Primary objective: raising the clinical complete response rate from 5 to 25%. Secondary objectives: toxicity, progression-free survival. Patients underwent 12 FOLFIRI-B cycles plus two daily LDRT fractions (20 cGy/6 h interval) on each cycle. Statistical analysis was planned on 18 patients. Results: Results on 18 patients are reported. Specifically considering irradiated sites: 15/18 patients had a partial (11/18) or complete (4/18) response. Among 11 partial responders, three became a pathological CR after surgery. Grade 3–4 toxicity was recorded in two patients (11.1%). At median follow-up of 30 months (range: 8-50), 7/18 patients progressed in irradiated sites. Conclusion: Seven out of 18 patients (38.9%) had clinical or pathological CR in lesions treated with LDRT. Further studies on this newer treatment modality seem justified.
Collapse
Affiliation(s)
- Alessio Giuseppe Morganti
- Radiation Oncology Unit, Department of Experimental, Diagnostic & Specialty Medicine – DIMES, University of Bologna, S Orsola-Malpighi Hospital, Bologna, Italy
| | - Francesco Cellini
- Radiation Oncology Department – Gemelli ART, Policlinico Universitario ‘A Gemelli’, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Samantha Mignogna
- General Oncology Unit – Fondazione di Ricerca e Cura ‘Giovanni Paolo II’, Campobasso, Italy
| | - Gilbert DA Padula
- Cancer Research Consortium of West Michigan (CRCWM), Michigan State University, MI, USA
| | - Luciana Caravatta
- Radiation Oncology Unit – Fondazione di Ricerca e Cura ‘Giovanni Paolo II’, Campobasso, Italy
| | - Francesco Deodato
- Radiation Oncology Unit – Fondazione di Ricerca e Cura ‘Giovanni Paolo II’, Campobasso, Italy
| | - Vincenzo Picardi
- Radiation Oncology Unit – Fondazione di Ricerca e Cura ‘Giovanni Paolo II’, Campobasso, Italy
| | - Gabriella Macchia
- Radiation Oncology Unit – Fondazione di Ricerca e Cura ‘Giovanni Paolo II’, Campobasso, Italy
| | - Savino Cilla
- Medical Physics Unit – Fondazione di Ricerca e Cura ‘Giovanni Paolo II’, Campobasso, Italy
| | - Milly Buwenge
- Radiation Oncology Unit – Fondazione di Ricerca e Cura ‘Giovanni Paolo II’, Campobasso, Italy
| | | | - Maria Antonietta Gambacorta
- Radiation Oncology Department – Gemelli ART, Policlinico Universitario ‘A Gemelli’, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mario Balducci
- Radiation Oncology Department – Gemelli ART, Policlinico Universitario ‘A Gemelli’, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Carlo Mattiucci
- Radiation Oncology Department – Gemelli ART, Policlinico Universitario ‘A Gemelli’, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rosa Autorino
- Radiation Oncology Department – Gemelli ART, Policlinico Universitario ‘A Gemelli’, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Vincenzo Valentini
- Radiation Oncology Department – Gemelli ART, Policlinico Universitario ‘A Gemelli’, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
14
|
Revannasiddaiah S, Susheela SP. Chemically enhanced radiotherapy: visions for the future. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:52. [PMID: 26904574 DOI: 10.3978/j.issn.2305-5839.2015.11.06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Radiotherapy (RT) is an important part of cancer management, with more than a third of all cancer cures being attributable to RT. Despite the advances in RT over the past century, the overall outcomes in a majority of malignancies are still unsatisfactory. There has been a constant endeavor to enhance the outcome of RT, and this has been in the form of altered fractionation, oxymimetic radiosensitizers, the use of concurrent chemotherapy, anti-angiogenic therapy and anti-growth factor receptor targeted therapies. This article presents a vision for the future, with emphasis upon emerging prospects which could enhance RT outcomes. Positive speculations regarding the use of immunological aspects, the use of nanoscale technology and the adoption of metronomic concurrent chemotherapy have been presented. Also, the potential with the use of low dose hyperradiosensitivity in enhancing chemotherapy outcomes too has been discussed. In this era of evidence based clinical practise, there exists a strong obsession towards the 'present' with 'contempt towards the future'. Accepting the shortcomings of the existing modalities, there must be a strong zeal towards discovering better methodologies to enhance radiotherapeutic outcomes for the sake of a better future.
Collapse
Affiliation(s)
- Swaroop Revannasiddaiah
- 1 Department of Radiation Oncology, Government Medical College- Haldwani, Nainital, Uttarakhand, India ; 2 Department of Radiation Oncology, HealthCare Global- Bangalore Institute of Oncology, Bengaluru, India
| | - Sridhar P Susheela
- 1 Department of Radiation Oncology, Government Medical College- Haldwani, Nainital, Uttarakhand, India ; 2 Department of Radiation Oncology, HealthCare Global- Bangalore Institute of Oncology, Bengaluru, India
| |
Collapse
|
15
|
Das S, Chandramohan A, Rami Reddy JK, Mukhopadhyay S, Kumar RM, Isiah R, John S, Oommen R, Jeyaseelan V. Role of conventional and diffusion weighted MRI in predicting treatment response after low dose radiation and chemotherapy in locally advanced carcinoma cervix. Radiother Oncol 2015; 117:288-93. [DOI: 10.1016/j.radonc.2015.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/26/2015] [Accepted: 10/03/2015] [Indexed: 11/28/2022]
|
16
|
Silver NL, Arnold SM, Gleason JF, Kudrimoti M, Brill Y, Dressler EV, Valentino J. p16INK4a Status and Response to Induction Low-Dose Fractionated Radiation in Advanced Head and Neck Cancer. Ann Otol Rhinol Laryngol 2015; 124:714-20. [PMID: 25810339 PMCID: PMC5555599 DOI: 10.1177/0003489415579220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate the impact of p16INK4a (p16) expression on clinical efficacy of induction low-dose fractionated radiation therapy (LDFRT) with concurrent chemotherapy in patients with locally advanced squamous cell carcinoma of the head and neck (SCCHN). STUDY DESIGN Historical cohort study. SETTING Tertiary medical center. METHODS A total of 66 Patients with locally advanced SCCHN were enrolled in 2 clinical trials using paclitaxel, carboplatin, and concurrent LDFRT induction therapy. Patients were evaluated for response to induction by a multidisciplinary team and then were given definitive treatment. Adequate tissue samples from the pretreatment biopsies of 42 individuals were identified and analyzed for p16 expression. Expression was correlated with clinical outcomes. RESULTS Of 42 tumors, 15 (35.7%) were positive for p16. Patients with p16-positive tumors had improved response to induction, but this was not statistically significant (P = .06). Five-year overall survival was 80% in p16-positive patients and 58% in p16-negative patients (P = .025). CONCLUSIONS p16 Expression affects treatment response in patients treated with induction LDFRT with concurrent chemotherapy. This is similar to results reported for standard induction chemotherapy.
Collapse
Affiliation(s)
- Natalie L Silver
- Department of Otolaryngology HNS, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Susanne M Arnold
- Division of Medical Oncology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - John F Gleason
- Department of Radiation, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Mahesh Kudrimoti
- Department of Radiation, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Yolanda Brill
- Department of Pathology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Emily V Dressler
- Division of Cancer Biostatistics, University of Kentucky College of Public Health, Lexington, Kentucky, USA
| | - Joseph Valentino
- Department of Otolaryngology HNS, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
17
|
Low-dose fractionated radiation and chemotherapy prior to definitive chemoradiation in locally advanced carcinoma of the uterine cervix: Results of a prospective phase II clinical trial. Gynecol Oncol 2015; 138:292-8. [DOI: 10.1016/j.ygyno.2015.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/16/2015] [Indexed: 11/24/2022]
|
18
|
Nguyen DM, Parekh PR, Chang ET, Sharma NK, Carrier F. Contribution of Dual Oxidase 2 (DUOX2) to Hyper-Radiosensitivity in Human Gastric Cancer Cells. Radiat Res 2015. [PMID: 26207686 DOI: 10.1667/rr13661.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Whole-abdominal radiotherapy (WART) is a primary method for managing gastrointestinal cancers that have disseminated into intra-abdominal tissues. While effective, this approach is limited because of the increased toxicity to normal tissue associated with combined WART and full-dose chemotherapy regimens. Recent studies have demonstrated a survival advantage in a novel treatment paradigm that allows for the safe use of full-dose systemic chemotherapy in combination with low-dose fractionated radiotherapy (LDFRT). Traditionally, radiation doses greater than 120 cGy have been used in radiotherapy because lower doses were thought to be ineffective for tumor therapy. However, we now know that LDFRT can produce hyper-radiosensitivity (HRS), a phenomenon where cells undergo apoptosis at radiation doses as low as 15 cGy, in a number of proliferating cells. The objectives of our current study were to determine whether LDFRT can induce HRS in gastrointestinal cancer cells and to identify biomarkers of chemopotentiation by LDFRT. Our data indicate that three consecutive daily fractions of 15 cGy produced HRS in gastric cancer cells and potentiated a modified regimen of docetaxel, cisplatin and 5'-fluorouracil (mDCF). Colony survival assays indicated that 15 cGy was sufficient to kill 90% of the cells when LDFRT was combined with mDCF whereas a dose almost 10 times higher (135 cGy) was needed to achieve the same rate when using conventional radiotherapy alone. RT(2) PCR Profiler™ array analysis indicated that this combined regimen upregulated dual oxidase 2 (DUOX2), an enzyme functioning in the production of hydrogen peroxide, without upregulating genes involved in DNA repair. Moreover, downregulation of DUOX2 increased radioresistance at every radiation dose tested. In addition, our data indicate that reactive oxygen species (ROS) increase up to 3.5-fold in cells exposed to LDFRT and mDCF. Furthermore, inhibition of NADPH oxidase abrogated the killing efficiency of this combined regimen. Taken together these data suggest that chemopotentiation by LDFRT in gastric cancer cells may be due, at least in part, to increased ROS production (DUOX2) without upregulation of the DNA repair machinery. These data thus provide a rationale for further explorations of potential clinical applications of LDFRT, such as in WART, as a chemopotentiator for advanced and metastatic gastric cancers.
Collapse
Affiliation(s)
- Duc M Nguyen
- Marlene and Stewart Greenebaum Cancer Center, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Palak R Parekh
- Marlene and Stewart Greenebaum Cancer Center, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Elizabeth T Chang
- Marlene and Stewart Greenebaum Cancer Center, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Navesh K Sharma
- Marlene and Stewart Greenebaum Cancer Center, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - France Carrier
- Marlene and Stewart Greenebaum Cancer Center, Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| |
Collapse
|
19
|
Multi-institutional phase I study of low-dose ultra-fractionated radiotherapy as a chemosensitizer for gemcitabine and erlotinib in patients with locally advanced or limited metastatic pancreatic cancer. Radiother Oncol 2014; 113:35-40. [PMID: 25441058 DOI: 10.1016/j.radonc.2014.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/07/2014] [Accepted: 08/24/2014] [Indexed: 11/22/2022]
Abstract
PURPOSE Gemcitabine (G) has been shown to sensitize pancreatic cancer to radiotherapy but requires lower doses of G and thus delays aggressive systemic treatment, potentially leading to distant failure. We initiated a phase I trial combining ultra-fractionated low-dose radiotherapy with full dose G and erlotinib in the treatment of patients with advanced pancreatic cancer. METHODS Patients with locally advanced or metastatic pancreatic cancer confined to the abdomen and an ECOG performance status (PS) of 0-1 who had received 0-1 prior regimens (without G or E) and no prior radiotherapy were eligible. Patients were treated in 21 day cycles with G IV days 1 & 8, E once PO QD, and twice daily RT fractions separated by at least 4h on days 1, 2, 8, and 9. Whole abdominal RT fields were used. Primary endpoint was to define dose limiting toxicity (DLT) and the maximum tolerated dose (MTD). RESULTS 27 patients (median age 64 years and 15 male) were enrolled between 11/24/08 and 4/12/12. 1 patient withdrew consent prior to receiving any protocol therapy. 17 patients had a PS of 1. The majority of patients were stage IV. One DLT was noted out of 7 patients at dose level (DL) 1. Subsequently no DLTs were noted in 3 patients each enrolled at DL2-4 or 11 patients in the expansion cohort. The majority of grade 3 toxicities were hematologic with 1 grade 5 bowel perforation in dose level 1 in cycle 4. Best response in 24 evaluable patients: PR (8), stable (15), PD 1. Median survival for the entire group was 9.1 months. CONCLUSION This phase I study combining low-dose ultra-fractionated RT as a sensitizer to full dose G plus E was well tolerated with encouraging efficacy. This represents a novel strategy worthy of further investigation in advanced pancreatic cancer patients.
Collapse
|
20
|
Nardone L, Diletto B, De Santis MC, D' Agostino GR, Belli P, Bufi E, Franceschini G, Mulé A, Sapino A, Terribile D, Valentini V. Primary systemic treatment and concomitant low dose radiotherapy for breast cancer: Final results of a prospective phase II study. Breast 2014; 23:597-602. [DOI: 10.1016/j.breast.2014.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/14/2014] [Accepted: 06/05/2014] [Indexed: 11/17/2022] Open
|
21
|
Prasanna A, Ahmed MM, Mohiuddin M, Coleman CN. Exploiting sensitization windows of opportunity in hyper and hypo-fractionated radiation therapy. J Thorac Dis 2014; 6:287-302. [PMID: 24688774 DOI: 10.3978/j.issn.2072-1439.2014.01.14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/12/2014] [Indexed: 12/13/2022]
Abstract
In contrast to the conventional radiotherapy/chemoradiotherapy paradigms used in the treatment of majority of cancer types, this review will describe two areas of radiobiology, hyperfractionated and hypofractionated radiation therapy, for cancer treatment focusing on application of novel concepts underlying these treatment modalities. The initial part of the review discusses the phenomenon of hyper-radiation sensitivity (HRS) at lower doses (0.1 to 0.6 Gy), describing the underlying mechanisms and how this could enhance the effects of chemotherapy, particularly, in hyperfractionated settings. The second part examines the radiobiological/physiological mechanisms underlying the effects of high-dose hypofractionated radiation therapy that can be exploited for tumor cure. These include abscopal/bystander effects, activation of immune system, endothelial cell death and effect of hypoxia with re-oxygenation. These biological properties along with targeted dose delivery and distribution to reduce normal tissue toxicity may make high-dose hypofractionation more effective than conventional radiation therapy for treatment of advanced cancers. The novel radiation physics based methods that take into consideration the tumor volume to be irradiated and normal tissue avoidance/tolerance can further improve treatment outcome and post-treatment quality of life. In conclusion, there is enough evidence to further explore novel avenues to exploit biological mechanisms from hyper-fractionation by enhancing the efficacy of chemotherapy and hypo-fractionated radiation therapy that could enhance tumor control and use imaging and technological advances to reduce toxicity.
Collapse
Affiliation(s)
- Anish Prasanna
- 1 Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA ; 2 Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Mansoor M Ahmed
- 1 Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA ; 2 Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - Mohammed Mohiuddin
- 1 Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA ; 2 Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - C Norman Coleman
- 1 Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA ; 2 Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
22
|
Morganti AG, Mignogna S, Caravatta L, Deodato F, Macchia G, Plantamura NM, Massaccesi M, Picardi V, Cilla S, Valentini V. FOLFIRI-bevacizumab and concurrent low-dose radiotherapy in metastatic colorectal cancer: preliminary results of a phase I-II study. J Chemother 2014; 26:353-8. [PMID: 24621170 DOI: 10.1179/1973947813y.0000000163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
BACKGROUND To evaluate the effectiveness of low-dose radiation therapy (LDRT) and FOLFIRI-bevacizumab (FOLFIRI-B) combination in metastatic colorectal cancer. METHODS The primary objective of the study is to raise the clinical complete response (CR) rate from 5% to 25%. Secondary objectives include toxicity and progression-free survival. Patients underwent 12 FOLFIRI-B cycles plus two daily LDRT (20 cGy/6-hour interval) on the first and second days of each cycle. RESULTS CR and toxicity of 10 patients are reported. Considering irradiated sites, 10/10 patients had clinical partial response (PR) (7/10) or CR (3/10). Three clinical PR patients subsequently underwent surgery and reported a pathological CR in the irradiated sites. Grade 3-4 toxicities rate was 30%. With a median follow-up of 29 months (range: 12-49 months), 2/10 progression of disease in irradiated sites and 3/5 in non-irradiated sites were observed. CONCLUSIONS The very high response rate requires urgent verification in a larger patient series.
Collapse
|
23
|
Low-dose fractionated radiotherapy and concomitant chemotherapy for recurrent or progressive glioblastoma: final report of a pilot study. Strahlenther Onkol 2014; 190:370-6. [PMID: 24429479 DOI: 10.1007/s00066-013-0506-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Evaluated in this study were the feasibility and the efficacy of concurrent low dose fractionated radiotherapy (LD-FRT) and chemotherapy as palliative treatment for recurrent/progressive glioblastoma multiforme (GBM). PATIENTS AND METHODS Eligible patients had recurrent or progressive GBM, Karnofsky performance status ≥ 70, prior surgery, and standard radiochemotherapy treatment. Recurrence/progression disease during temozolomide (TMZ) received cisplatin (CDDP; 30 mg/m(2) on days 1, 8, 15), fotemustine (FTM; 40 mg/m(2) on days 2, 9, 16), and concurrent LD-FRT (0.3 Gy twice daily); recurrence/progression after 4 months from the end of adjuvant TMZ were treated by TMZ (150/200 mg/m(2) on days 1-5) concomitant with LD-FRT (0.4 Gy twice daily). Primary endpoints were safety and toxicity. RESULTS A total of 32 patients were enrolled. Hematologic toxicity G1-2 was observed in 18.7 % of patients and G3-4 in 9.4 %. One patient (3.1 %) had complete response, 3 (9.4 %) had partial response, 8 (25 %) had stable disease for at least 8 weeks, while 20 patients (62.5 %) experienced progressive disease. The clinical benefit was 37.5 %. Median progression-free survival (PFS) and overall survival (OS) were 5 and 8 months, respectively. Survival rate at 12 months was of 27.8 %. CONCLUSION LD-FRT and chemotherapy for recurrent/progressive GBM have a good toxicity profile and clinical outcomes, even though further investigation of this novel palliative treatment approach is warranted.
Collapse
|
24
|
mRNA Expression Profiles for Prostate Cancer following Fractionated Irradiation Are Influenced by p53 Status. Transl Oncol 2013; 6:573-85. [PMID: 24151538 DOI: 10.1593/tlo.13241] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/20/2013] [Accepted: 07/24/2013] [Indexed: 11/18/2022] Open
Abstract
We assessed changes in cell lines of varying p53 status after various fractionation regimens to determine if p53 influences gene expression and if multifractionated (MF) irradiation can induce molecular pathway changes. LNCaP (p53 wild-type), PC3 (p53 null), and DU145 (p53 mutant) prostate carcinoma cells received 5 and 10 Gy as single-dose (SD) or MF (0.5 Gy x 10, 1 Gy x 10, and 2 Gy x 5) irradiation to simulate hypofractionated and conventionally fractionated prostate radiotherapies, respectively. mRNA analysis revealed 978 LNCaP genes differentially expressed (greater than two-fold change, P < .05) after irradiation. Most were altered with SD (69%) and downregulated (75%). Fewer PC3 (343) and DU145 (116) genes were induced, with most upregulated (87%, 89%) and altered with MF irradiation. Gene ontology revealed immune response and interferon genes most prominently expressed after irradiation in PC3 and DU145. Cell cycle regulatory (P = 9.23 x 10(-73), 14.2% of altered genes, nearly universally downregulated) and DNA replication/repair (P = 6.86 x 10(-30)) genes were most prominent in LNCaP. Stress response and proliferation genes were altered in all cell lines. p53-activated genes were only induced in LNCaP. Differences in gene expression exist between cell lines and after varying irradiation regimens that are p53 dependent. As the duration of changes is ≥24 hours, it may be possible to use radiation-inducible targeted therapy to enhance the efficacy of molecular targeted agents.
Collapse
|
25
|
Mantini G, Valentini V, Meduri B, Margaritora S, Balducci M, Micciché F, Nardone L, De Rose F, Cesario A, Larici AR, Maggi F, Calcagni ML, Granone P. Low-dose radiotherapy as a chemo-potentiator of a chemotherapy regimen with pemetrexed for recurrent non-small-cell lung cancer: A prospective phase II study. Radiother Oncol 2012; 105:161-6. [DOI: 10.1016/j.radonc.2012.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Revised: 07/08/2012] [Accepted: 09/06/2012] [Indexed: 12/25/2022]
|
26
|
Low-dose fractionated radiation with induction chemotherapy for locally advanced head and neck cancer: 5 year results of a prospective phase II trial. ACTA ACUST UNITED AC 2012; 2:35-42. [PMID: 26052405 DOI: 10.1007/s13566-012-0074-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVE This study aims to report the long-term outcomes of a novel treatment approach utilizing induction low-dose fractionated radiation therapy (LDFRT) and chemotherapy for locally advanced squamous cell carcinoma of head and neck (SCCHN). METHODS We prospectively enrolled 40 patients with locally advanced SCCHN (77 % stage IV) on a phase II clinical trial and treated with induction paclitaxel (225 mg/m2), carboplatin (AUC 6), and LDFRT (80 cGy BID on days 1 and 2) every 21 days for two cycles. RESULTS Forty patients enrolled; 39 were evaluable. The acute toxicity and response data have been previously reported; overall response rate (RR) was 82 %. After induction, definitive therapy was concurrent chemoradiation (CRT) in 51 %, XRT alone in 39 %, surgery in 5 %, and surgery and XRT in 5 %. The long-term outcomes are now reported with a median follow-up of 83 months. Locoregional control (LRC) is 80 % and distant control (DC) is 77 %. Five-year overall survival (OS), disease-specific survival, and progression-free survival (PFS) are 62 %, 66 %, and 58 %, respectively. CONCLUSION Induction chemotherapy with LDFRT has a high initial RR, comparable toxicity to two-drug induction regimens, but adds a third novel and effective agent, LDFRT. Five-year follow-up shows favorable outcomes compared to historical controls and excellent compliance with definitive therapy. This novel treatment approach is now planned for phase 3 trial evaluation.
Collapse
|
27
|
Balducci M, Chiesa S, Diletto B, D'Agostino GR, Mangiola A, Manfrida S, Mantini G, Albanese A, Fiorentino A, Frascino V, De Bari B, Micciche' F, De Rose F, Morganti AG, Anile C, Valentini V. Low-dose fractionated radiotherapy and concomitant chemotherapy in glioblastoma multiforme with poor prognosis: a feasibility study. Neuro Oncol 2011; 14:79-86. [PMID: 21993440 DOI: 10.1093/neuonc/nor173] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We explored the feasibility of concurrent palliative chemotherapy and low-dose fractionated radiotherapy (LD-FRT) in glioblastoma multiforme (GBM). Patients with recurrent/progressive GBM at least 3 months after the end of primary radiotherapy received 0.3 Gy twice daily with cisplatin and fotemustine if progressing on temozolomide, or 0.4 Gy twice daily with temozolomide if recurrent 4-6 months later (retreatment group). Newly diagnosed GBM with gross residual mass received 30 Gy with concomitant and adjuvant temozolomide and 0.4 Gy twice daily from the second adjuvant cycle (naive group) for 2-4 cycles. Twenty-six patients were enrolled. In the retreatment group (n = 17; median LD-FRT total dose 7.2 Gy [range 2.4-11.6]), grade 3 or 4 hematological toxicity was observed in 5.9% of patients. Median follow-up time was 20 months (range 4-35). Median progression-free survival (PFS) and overall survival (OS) from the time of recurrence or progression were 4 and 8 months, respectively (OS at 6 months, 69%; at 12 months, 16.7%). In the naive group (n = 9; median LD-FRT total dose 8 Gy [range 3.2-16]), grade 3 or 4 hematological toxicity was observed in 11.1% of patients. Median follow-up time was 17 months (range 8-20)-median PFS was 9 months, with PFS at 6 months and at 1 year of 66.7% and 26.7%, respectively; and median OS was 12 months, with OS at 6 months and at 1 year of 77.8% and 34.6%, respectively. LD-FRT with concurrent chemotherapy was well tolerated.
Collapse
Affiliation(s)
- Mario Balducci
- Department of Radiotherapy, Catholic University of the Sacred Heart, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kunos CA, Sill MW, Buekers TE, Walker JL, Schilder JM, Yamada SD, Waggoner SE, Mohiuddin M, Fracasso PM. Low-dose abdominal radiation as a docetaxel chemosensitizer for recurrent epithelial ovarian cancer: a phase I study of the Gynecologic Oncology Group. Gynecol Oncol 2011; 120:224-8. [PMID: 21075438 PMCID: PMC3026069 DOI: 10.1016/j.ygyno.2010.10.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 10/13/2010] [Accepted: 10/17/2010] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The aim of this study was to determine the maximum tolerated dose and dose-limiting toxicity (DLT) of whole abdomen radiation as a chemosensitizer of weekly docetaxel for women with recurrent epithelial ovarian fallopian tube, or peritoneal cancers. PATIENTS AND METHODS Women were enrolled on one of three dose levels of docetaxel (20, 25, or 30 mg/m(2)) administered weekly with concurrent low-dose whole abdominal radiation given as 60 cGy bid 2 days weekly for a total of 6 weeks. RESULTS Thirteen women were enrolled and received 70 weekly treatments of docetaxel in combination with radiation therapy. At the first dose level, docetaxel 25mg/m(2), grade 3 fatigue and thrombocytopenia were observed. At the next dose level, docetaxel 30 mg/m(2), grade 3 febrile neutropenia, grade 4 thrombocytopenia with epistaxis, and grade 3 diarrhea were observed. Given these dose-limiting toxicities, a lower dose of docetaxel 20mg/m(2) was administered and found to be tolerable. No objective responses were observed among the 10 patients with measurable disease; however, the median progression-free survival (PFS) in all patients was 3.3 months, and 3 of the patients with measurable disease were free of tumor progression after 6 months (30%; 90% confidence interval 8.7-61%). CONCLUSIONS Twice weekly low-dose whole abdomen radiation during weekly docetaxel 20 mg/m(2) was well-tolerated. Given the PFS demonstrated in these women with resistant ovarian cancer, further study of whole abdominal radiation and concurrent chemotherapy may be warranted.
Collapse
Affiliation(s)
- Charles A. Kunos
- Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, OH 44106
| | - Michael W. Sill
- Gynecologic Oncology Group Statistical and Data Center, Buffalo, NY 14263
| | | | - Joan L. Walker
- Obstetrics & Gynecology, University of Oklahoma, Oklahoma City, Oklahoma 73190
| | - Jeanne M. Schilder
- Section of GYN Oncology, Indiana University Medical Center, Indianapolis, IN 46202
| | - S. Diane Yamada
- Section of Gynecologic Oncology, University of Chicago, Chicago, IL 60637
| | - Steven E. Waggoner
- Department of Obstetrics and Gynecology, University Hospital Case Western Medical Center, Cleveland, OH 44106
| | - Mohammed Mohiuddin
- Department of Radiation Oncology, University of Kentucky, Lexington, KY 40536
| | - Paula M. Fracasso
- Department of Medicine, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
29
|
Gupta S, Koru-Sengul T, Arnold SM, Devi GR, Mohiuddin M, Ahmed MM. Low-Dose Fractionated Radiation Potentiates the Effects of Cisplatin Independent of the Hyper-Radiation Sensitivity in Human Lung Cancer Cells. Mol Cancer Ther 2011; 10:292-302. [DOI: 10.1158/1535-7163.mct-10-0630] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Valentini V, Massaccesi M, Balducci M, Mantini G, Micciché F, Mattiucci GC, Dinapoli N, Meduri B, D'Agostino GR, Salvi G, Nardone L. Low-Dose Hyperradiosensitivity: Is There a Place for Future Investigation in Clinical Settings? Int J Radiat Oncol Biol Phys 2010; 76:535-9. [DOI: 10.1016/j.ijrobp.2009.02.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 02/09/2009] [Accepted: 02/09/2009] [Indexed: 11/25/2022]
|
31
|
Favorable survival observed after carboplatin, paclitaxel, and concurrent accelerated hyperfractionated radiotherapy for treatment of locally advanced head and neck carcinoma. Invest New Drugs 2008; 26:473-81. [PMID: 18473121 DOI: 10.1007/s10637-008-9128-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 03/13/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE Several trials have demonstrated the superiority of simultaneous chemoradiotherapy compared with radiation alone for patients with locally advanced head and neck cancers. However, the optimal regimen remains to be defined. This study assessed the safety and activity of combined carboplatin (C), paclitaxel (P), and twice-daily radiotherapy (RT) in a community based, multicenter, phase II trial. MATERIALS AND METHODS Eligible patients (N = 52) had ECOG PS 0-2 and previously untreated, stage III or IV (M0), unresectable, squamous cell cancers of the head and neck. Treatment consisted of 6 weekly courses of C (AUC = 1), P (40 mg/m(2)/1-h) and twice-daily radiation (120 cGy BID; total dose of 6,960 cGy). Subsequently, patients with N2/N3 disease were permitted neck dissection. RESULTS Median follow-up was 61 months. Sixty-seven percent (67%) of patients had stage IV (M0) disease at baseline. Fifty-five percent (55%) of treated patients experienced NCI Grade 3-4 dysphagia, stomatitis, or mucositis; 80% had > or = Grade 3 toxicity of any organ system. Median weight loss was 7.1 lbs; 35% of patients experienced 10% or more weight loss. Of 43 patients evaluable for response, responses were: 29 CR (67%), 7 PR (16%), 1 MR (2%), 4 SD (9%), and 2 PD (5%); the overall response rate (CR+PR) was 84%. For the entire cohort of 52 patients, the estimated overall survival at 36 months was 60%; progression-free survival was 50%. CONCLUSIONS We conclude that weekly C + P and concurrent twice-daily hyperfractionated radiotherapy is tolerated and highly active in patients with unresectable, locally advanced squamous cell carcinoma of the head and neck.
Collapse
|
32
|
Low-Dose Hyper-Radiosensitivity: Past, Present, and Future. Int J Radiat Oncol Biol Phys 2008; 70:1310-8. [DOI: 10.1016/j.ijrobp.2007.11.071] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/27/2007] [Accepted: 11/30/2007] [Indexed: 01/07/2023]
|
33
|
Shareef MM, Brown B, Shajahan S, Sathishkumar S, Arnold SM, Mohiuddin M, Ahmed MM, Spring PM. Lack of P-Glycoprotein Expression by Low-Dose Fractionated Radiation Results from Loss of Nuclear Factor-κB and NF-Y Activation in Oral Carcinoma Cells. Mol Cancer Res 2008; 6:89-98. [DOI: 10.1158/1541-7786.mcr-07-0221] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Krueger SA, Collis SJ, Joiner MC, Wilson GD, Marples B. Transition in survival from low-dose hyper-radiosensitivity to increased radioresistance is independent of activation of ATM Ser1981 activity. Int J Radiat Oncol Biol Phys 2007; 69:1262-71. [PMID: 17967316 DOI: 10.1016/j.ijrobp.2007.08.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 08/01/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE The molecular basis of low-dose hyper-radiosensitivity (HRS) is only partially understood. The aim of this study was to define the roles of ataxia telangiectasia mutated (ATM) activity and the downstream ATM-dependent G(2)-phase cell cycle checkpoint in overcoming HRS and triggering radiation resistance. METHODS AND MATERIALS Survival was measured using a high-resolution clonogenic assay. ATM Ser1981 activation was measured by Western blotting. The role of ATM was determined in survival experiments after molecular (siRNA) and chemical (0.4 mM caffeine) inhibition and chemical (20 microg/mL chloroquine, 15 microM genistein) activation 4-6 h before irradiation. Checkpoint responsiveness was assessed in eight cell lines of differing HRS status using flow cytometry to quantify the progression of irradiated (0-2 Gy) G(2)-phase cells entering mitosis, using histone H3 phosphorylation analysis. RESULTS The dose-response pattern of ATM activation was concordant with the transition from HRS to radioresistance. However, ATM activation did not play a primary role in initiating increased radioresistance. Rather, a relationship was discovered between the function of the downstream ATM-dependent early G(2)-phase checkpoint and the prevalence and overcoming of HRS. Four cell lines that exhibited HRS failed to show low-dose (<0.3-Gy) checkpoint function. In contrast, four HRS-negative cell lines exhibited immediate cell cycle arrest for the entire 0-2-Gy dose range. CONCLUSION Overcoming HRS is reliant on the function of the early G(2)-phase checkpoint. These data suggest that clinical exploitation of HRS could be achieved by combining radiotherapy with chemotherapeutic agents that modulate this cell cycle checkpoint.
Collapse
Affiliation(s)
- Sarah A Krueger
- Department of Radiation Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
35
|
Yu HS, Xue HW, Guo CB, Song AQ, Shen FZ, Liang J, Deng C. Low dose radiation increased the therapeutic efficacy of cyclophosphamide on S(180) sarcoma bearing mice. JOURNAL OF RADIATION RESEARCH 2007; 48:281-8. [PMID: 17548941 DOI: 10.1269/jrr.06093] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We examined whether low dose radiation (LDR) exposure (75 mGy) could increase the therapeutic efficacy of cyclophosphamide (CTX) by comparing the effects of tumor suppression, tumor cell apoptosis, cell cycle and proliferation of bone marrow in vivo. Kunming mice implanted with S(180) sarcoma cells were given 75 mGy whole body gamma-ray radiation exposure and CTX (300 mg/kg) by intraperitoneal injection 36 hours after LDR. Proliferation of bone marrow and tumor cells was analyzed by flow cytometry. Cytochrome c leakage from the tumor was measured by Western-blot. We discovered that tumor growth was significantly reduced in the group exposed to CTX add to LDR. The apoptosis of tumor cells increased significantly after LDR. The tumor cells were arrested in G(1) phase in the groups treated with CTX and CTX + LDR, but cell cycle was more significantly arrested in mice exposed to LDR followed by CTX than in mice exposed only to LDR or CTX chemotherapy. Concentration of bone marrow cells and proliferation index in CTX + LDR mice were higher than those in the untreated mice. LDR or CTX + LDR could induce greater cytochrome c levels and caspase-3 activity in tumors. These results suggest that low dose radiation can enhance the anti-tumor effect of the chemotherapy agent CTX markedly. Furthermore, LDR significantly protects hematopoetic function of the bone marrow, which is of practical significance on adjuvant chemotherapy.
Collapse
Affiliation(s)
- Hong-Sheng Yu
- The Department of Oncology, Affiliated Hospital of Qingdao University, Qingdao, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Regine WF, Hanna N, Garofalo MC, Doyle A, Arnold S, Kataria R, Sims J, Tan M, Mohiuddin M. Low-Dose Radiotherapy as a Chemopotentiator of Gemcitabine in Tumors of the Pancreas or Small Bowel: A Phase I Study Exploring a New Treatment Paradigm. Int J Radiat Oncol Biol Phys 2007; 68:172-7. [PMID: 17276612 DOI: 10.1016/j.ijrobp.2006.11.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Revised: 10/03/2006] [Accepted: 11/26/2006] [Indexed: 11/28/2022]
Abstract
PURPOSE To determine the maximum tolerated dose of upper abdominal low-dose fractionated radiotherapy (<1.0 Gy per fraction) given in combination with, and as a chemopotentiator for, gemcitabine. METHODS AND MATERIALS Gemcitabine was given at 1,250 mg/m(2) at 10 mg/m(2)/min on Days 1 and 8 of a 3-week cycle. Low-dose fractionated radiotherapy was tested at two dose levels: 60 cGy per fraction and 70 cGy per fraction. Radiotherapy was given b.i.d. on Days 1, 2, 8, and 9. Four cycles were planned. RESULTS Twenty-seven patients have been put on study. Ten patients have been entered in Phase I: 6 with metastatic/recurrent pancreatic carcinoma and 4 with unresectable pancreatic/small bowel carcinoma. Two of four patients at Dose Level 2 experienced dose-limiting toxicity. The overall radiographic response was 30%, and median survival was 11 months (range, 4-37 months). CONCLUSION Low-dose fractionated radiotherapy to the upper abdomen is well tolerated at 60 cGy per fraction when combined with gemcitabine. Phase II evaluation is ongoing.
Collapse
Affiliation(s)
- William F Regine
- Department of Radiation Oncology, University of Maryland, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Colen CB, Seraji-Bozorgzad N, Marples B, Galloway MP, Sloan AE, Mathupala SP. Metabolic remodeling of malignant gliomas for enhanced sensitization during radiotherapy: an in vitro study. Neurosurgery 2007; 59:1313-23; discussion 1323-4. [PMID: 17277695 PMCID: PMC3385862 DOI: 10.1227/01.neu.0000249218.65332.bf] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To investigate a novel method to enhance radiosensitivity of gliomas via modification of metabolite flux immediately before radiotherapy. Malignant gliomas are highly glycolytic and produce copious amounts of lactic acid, which is effluxed to the tumor microenvironment via lactate transporters. We hypothesized that inhibition of lactic acid efflux would alter glioma metabolite profiles, including those that are radioprotective. H magnetic resonance spectroscopy (MRS) was used to quantify key metabolites, including those most effective for induction of low-dose radiation-induced cell death. METHODS We inhibited lactate transport in U87-MG gliomas with alpha-cyano-4-hydroxycinnamic acid (ACCA). Flow cytometry was used to assess induction of cell death in treated cells. Cells were analyzed by MRS after ACCA treatment. Control and treated cells were subjected to low-dose irradiation, and the surviving fractions of cells were determined by clonogenic assays. RESULTS MRS revealed changes to intracellular lactate on treatment with ACCA. Significant decreases in the metabolites taurine, glutamate, glutathione, alanine, and glycine were observed, along with inversion of the choline/phosphocholine profile. On exposure to low-dose radiation, ACCA-pretreated U-87MG cells underwent rapid morphological changes, which were followed by apoptotic cell death. CONCLUSION Inhibition of lactate efflux in malignant gliomas results in alterations of glycolytic metabolism, including decreased levels of the antioxidants taurine and glutathione and enhanced radiosensitivity of ACCA-treated cells. Thus, in situ application of lactate transport inhibitors such as ACCA as a novel adjunctive therapeutic strategy against glial tumors may greatly enhance the level of radiation-induced cell killing during a combined radio- and chemotherapeutic regimen.
Collapse
Affiliation(s)
- Chaim B Colen
- Department of Neurological Surgery, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW This review presents new data on the role of paclitaxel and docetaxel in the management of squamous cell carcinoma of the head and neck. Recently both agents have been tested in squamous cell carcinoma of the head and neck in combination with other chemotherapeutic agents, targeted drugs, and radiotherapy in in-vitro experiments and in the clinic as first-line treatment of patients with metastatic/recurrent and locally advanced squamous cell carcinoma of the head and neck. RECENT FINDINGS The combination of taxanes with standard or accelerated radiotherapy is feasible and induction chemotherapy followed by chemoradiation is active and feasible without excessive toxicity in patients with locally advanced squamous cell carcinoma of the head and neck. The use of low-dose fractionated radiotherapy shows promising in-vitro and clinical results and is further explored. SUMMARY Both docetaxel and paclitaxel can be combined with chemotherapeutic agents and radiotherapy, but phase III studies are needed to prove the superiority of these approaches compared to standard treatment. The final results of the combination study of cisplatin and 5-fluorouracil with or without docetaxel may change the standard chemotherapeutic regimen for induction chemotherapy in patients with locally advanced squamous cell carcinoma of the head and neck.
Collapse
Affiliation(s)
- Dirk Schrijvers
- Department of Medical Oncology, Middelheim Hospital, Antwerp, Belgium
| | | |
Collapse
|
39
|
Wollina U, Hansel G, Koch A, Köstler E. Oral capecitabine plus subcutaneous interferon alpha in advanced squamous cell carcinoma of the skin. J Cancer Res Clin Oncol 2004; 131:300-4. [PMID: 15619125 DOI: 10.1007/s00432-004-0656-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 11/15/2004] [Indexed: 11/30/2022]
Abstract
PURPOSE Squamous cell carcinoma of the skin (SSC) is a UV-damage-related skin tumor. The first-line treatment is surgery, which has a high cure rate. In advanced cases, however, the established treatment is often not curative and shows a high rate of side effects. Improved treatment modalities are necessary. METHODS Oral capecitabine plus subcutaneous interferon alpha were used in a prospective case series in advanced SSC of the skin at an academic teaching hospital for dermatology. Four patients with advanced SCC were included. Capecitabine 950 mgm(-2) body surface on days 1 to 14 was combined with interferon alpha 3x3 mioU s.c. three times a week. The chemotherapy was repeated on day 22. Clinical response, histology, monitoring of side effects and health performance status were assessed. RESULTS Four patients (two females and two males) with advanced SCC were included (age range: 19 to 75 years). Complete remission (CR) was obtained in two and partial response (PR) in two. The final outcome was CR in two and progressive disease in one. One patient died of an unknown cause. Side effects were mild. Adjuvant treatment was unnecessary. Health performance status was not affected by the treatment. CONCLUSIONS The treatment protocol with a combination of capecitabine and interferon alpha seems to be effective and well tolerated in patients with advanced SCC. Controlled trials are necessary to prove the benefit we observed in this case series.
Collapse
Affiliation(s)
- Uwe Wollina
- Department of Dermatology, Hospital Dresden-Friedrichstadt, Friedrichstrasse 41, 01067 Dresden, Germany.
| | | | | | | |
Collapse
|