1
|
Richard SA, Roy SK, Asiamah EA. Pivotal Role of Cranial Irradiation-Induced Peripheral, Intrinsic, and Brain-Engrafting Macrophages in Malignant Glioma. Clin Med Insights Oncol 2024; 18:11795549241282098. [PMID: 39421649 PMCID: PMC11483687 DOI: 10.1177/11795549241282098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Malignant (high-grade) gliomas are aggressive intrinsic brain tumors that diffusely infiltrate the brain parenchyma. They comprise of World Health Organization (WHO) grade III and IV gliomas. Ionizing radiation or irradiation (IR) is frequently utilized in the treatment of both primary as well as metastatic brain tumors. On the contrary, macrophages (MΦ) are the most copious infiltrating immune cells of all the different cell types colonizing glioma. MΦ at tumor milieu are referred to as tumor-associated macrophages (TAMΦ). In malignant gliomas milieu, TAMΦ are also polarized into two distinct phenotypes such as M1 TAMΦ or M2 TAMΦ, which are capable of inhibiting or promoting tumor growth, respectively. Cranial-IR such as x- and γ-IR are sufficient to induce the migration of peripherally derived MΦ into the brain parenchyma. The IR facilitate a more immunosuppressive milieu via the stimulation of efferocytosis in TAMΦ, and an upsurge of tumor cell engulfment by TAMΦ exhibited detrimental effect of the anti-tumoral immune response in glioma. The MΦ inside the tumor mass are associated with multiple phenomena that include IR resistance and enrichment of the M2 MΦ after IR is able to facilitate glioblastoma multiforme (GBM) recurrence. Reviews on the role of cranial IR-induced peripheral and brain-engrafting macrophages (BeMΦ) in glioma are lacking. Specifically, most studies on peripheral, intrinsic as well as beMΦ on IR focus on WHO grade III and IV. Thus, this review precisely focuses primary on WHO grade III as well as IV gliomas.
Collapse
Affiliation(s)
- Seidu A Richard
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), UK, Ghana
- Institute of Neuroscience, Third Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Sagor Kumar Roy
- Department of Neurology, TMSS Medical College and Hospital, Bogura, Bangladesh
| | - Emmanuel Akomanin Asiamah
- Department of Medical Laboratory Sciences, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
2
|
Ren Y, Wang M, Yuan H, Wang Z, Yu L. A novel insight into cancer therapy: Lipid metabolism in tumor-associated macrophages. Int Immunopharmacol 2024; 135:112319. [PMID: 38801810 DOI: 10.1016/j.intimp.2024.112319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/07/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
The tumor immune microenvironment (TIME) can limit the effectiveness and often leads to significant side effects of conventional cancer therapies. Consequently, there is a growing interest in identifying novel targets to enhance the efficacy of targeted cancer therapy. More research indicates that tumor-associated macrophages (TAMs), originating from peripheral blood monocytes generated from bone marrow myeloid progenitor cells, play a crucial role in the tumor microenvironment (TME) and are closely associated with resistance to traditional cancer therapies. Lipid metabolism alterations have been widely recognized as having a significant impact on tumors and their immune microenvironment. Lipids, lipid derivatives, and key substances in their metabolic pathways can influence the carcinogenesis and progression of cancer cells by modulating the phenotype, function, and activity of TAMs. Therefore, this review focuses on the reprogramming of lipid metabolism in cancer cells and their immune microenvironment, in which the TAMs are especially concentrated. Such changes impact TAMs activation and polarization, thereby affecting the tumor cell response to treatment. Furthermore, the article explores the potential of targeting the lipid metabolism of TAMs as a supplementary approach to conventional cancer therapies. It reviews and evaluates current strategies for enhancing efficacy through TAMs' lipid metabolism and proposes new lipid metabolism targets as potential synergistic options for chemo-radiotherapy and immunotherapy. These efforts aim to stimulate further research in this area.
Collapse
Affiliation(s)
- Yvxiao Ren
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Mingjie Wang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People's Republic of China
| | - Hanghang Yuan
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People's Republic of China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, Jilin, People's Republic of China
| | - Lei Yu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
3
|
He D, Zhao Z, Fu B, Li X, Zhao L, Chen Y, Liu L, Liu R, Li J. Exosomes Participate in the Radiotherapy Resistance of Cancers. Radiat Res 2022; 197:559-565. [PMID: 35588472 DOI: 10.1667/rade-21-00115.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 12/21/2021] [Indexed: 02/05/2023]
Affiliation(s)
- Dan He
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R.China
| | | | - Bo Fu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| | - Xiaofei Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| | - Long Zhao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| | - Yongbin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, 650223, China
| | - Lei Liu
- Department of Head and Neck Oncology, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R.China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sich
| | - Jingyi Li
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, P.R.China
| |
Collapse
|
4
|
Pinto AT, Pinto ML, Velho S, Pinto MT, Cardoso AP, Figueira R, Monteiro A, Marques M, Seruca R, Barbosa MA, Mareel M, Oliveira MJ, Rocha S. Intricate Macrophage-Colorectal Cancer Cell Communication in Response to Radiation. PLoS One 2016; 11:e0160891. [PMID: 27513864 PMCID: PMC4981353 DOI: 10.1371/journal.pone.0160891] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/26/2016] [Indexed: 11/19/2022] Open
Abstract
Both cancer and tumour-associated host cells are exposed to ionizing radiation when a tumour is subjected to radiotherapy. Macrophages frequently constitute the most abundant tumour-associated immune population, playing a role in tumour progression and response to therapy. The present work aimed to evaluate the importance of macrophage-cancer cell communication in the cellular response to radiation. To address this question, we established monocultures and indirect co-cultures of human monocyte-derived macrophages with RKO or SW1463 colorectal cancer cells, which exhibit higher and lower radiation sensitivity, respectively. Mono- and co-cultures were then irradiated with 5 cumulative doses, in a similar fractionated scheme to that used during cancer patients' treatment (2 Gy/fraction/day). Our results demonstrated that macrophages sensitize RKO to radiation-induced apoptosis, while protecting SW1463 cells. Additionally, the co-culture with macrophages increased the mRNA expression of metabolism- and survival-related genes more in SW1463 than in RKO. The presence of macrophages also upregulated glucose transporter 1 expression in irradiated SW1463, but not in RKO cells. In addition, the influence of cancer cells on the expression of pro- and anti-inflammatory macrophage markers, upon radiation exposure, was also evaluated. In the presence of RKO or SW1463, irradiated macrophages exhibit higher levels of pro-inflammatory TNF, IL6, CCL2 and CCR7, and of anti-inflammatory CCL18. However, RKO cells induce an increase of macrophage pro-inflammatory IL1B, while SW1463 cells promote higher pro-inflammatory CXCL8 and CD80, and also anti-inflammatory VCAN and IL10 levels. Thus, our data demonstrated that macrophages and cancer cells mutually influence their response to radiation. Notably, conditioned medium from irradiated co-cultures increased non-irradiated RKO cell migration and invasion and did not impact on angiogenesis in a chicken embryo chorioallantoic membrane assay. Overall, the establishment of primary human macrophage-cancer cell co-cultures revealed an intricate cell communication in response to ionizing radiation, which should be considered when developing therapies adjuvant to radiotherapy.
Collapse
Affiliation(s)
- Ana T. Pinto
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- FEUP-Faculty of Engineering, University of Porto, Porto, Portugal
| | - Marta L. Pinto
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Sérgia Velho
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Marta T. Pinto
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Ana P. Cardoso
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
| | - Rita Figueira
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, Portugal
| | - Armanda Monteiro
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, Portugal
| | - Margarida Marques
- Radiotherapy Service, Centro Hospitalar S. João, EPE, Porto, Portugal
| | - Raquel Seruca
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Mário A. Barbosa
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Marc Mareel
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Maria J. Oliveira
- i3s-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal
- Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal
- * E-mail:
| | - Sónia Rocha
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
5
|
Leroi N, Lallemand F, Coucke P, Noel A, Martinive P. Impacts of Ionizing Radiation on the Different Compartments of the Tumor Microenvironment. Front Pharmacol 2016; 7:78. [PMID: 27064581 PMCID: PMC4811953 DOI: 10.3389/fphar.2016.00078] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/14/2016] [Indexed: 01/13/2023] Open
Abstract
Radiotherapy (RT) is one of the most important modalities for cancer treatment. For many years, the impact of RT on cancer cells has been extensively studied. Recently, the tumor microenvironment (TME) emerged as one of the key factors in therapy resistance. RT is known to influence and modify diverse components of the TME. Hence, we intent to review data from the literature on the impact of low and high single dose, as well as fractionated RT on host cells (endothelial cells, fibroblasts, immune and inflammatory cells) and the extracellular matrix. Optimizing the schedule of RT (i.e., dose per fraction) and other treatment modalities is a current challenge. A better understanding of the cascade of events and TME remodeling following RT would be helpful to design optimal treatment combination.
Collapse
Affiliation(s)
- Natacha Leroi
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer, University of Liège Liège, Belgium
| | - François Lallemand
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer, University of LiègeLiège, Belgium; Cyclotron Research Center, University of LiègeLiège, Belgium
| | - Philippe Coucke
- Radiotherapy-Oncology Department, Centre Hospitalier Universitaire de Liège Liège, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer, University of Liège Liège, Belgium
| | - Philippe Martinive
- Laboratory of Tumor and Development Biology, Groupe Interdisciplinaire de Génoprotéomique Appliquée-Cancer, University of LiègeLiège, Belgium; Radiotherapy-Oncology Department, Centre Hospitalier Universitaire de LiègeLiège, Belgium
| |
Collapse
|
6
|
Sermeus A, Engels B, Urbain D, De Ridder M. Advances in radiotherapy delivery for rectal cancer: a European perspective. Expert Rev Gastroenterol Hepatol 2015; 9:393-7. [PMID: 25644307 DOI: 10.1586/17474124.2015.1003543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Preoperative chemoradiotherapy and radiotherapy with an integrated boost offer excellent local control rates in patients with rectal cancer. The introduction of intensity-modulated radiotherapy and image-guided radiotherapy has drastically improved the tolerance of these treatments. The new challenge is developing organ-preserving strategies and curative treatments for medically inoperable patients. Contact radiotherapy seems efficient for small tumors. Tumor hypoxia limits the success of radiotherapy for locally advanced cancers. Modulation of the L-arginine/iNOS pathway and implementation of hypoxia imaging in radiotherapy planning may overcome this hurdle.
Collapse
Affiliation(s)
- Alexandra Sermeus
- Department of Gastroenterology, UZ Brussel, Vrije Universiteit Brussel, Laarbeeklaan 101, B-1090 Brussel, Belgium
| | | | | | | |
Collapse
|
7
|
Dalton HJ, Armaiz-Pena GN, Gonzalez-Villasana V, Lopez-Berestein G, Bar-Eli M, Sood AK. Monocyte subpopulations in angiogenesis. Cancer Res 2014; 74:1287-93. [PMID: 24556724 DOI: 10.1158/0008-5472.can-13-2825] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Growing understanding of the role of the tumor microenvironment in angiogenesis has brought monocyte-derived cells into focus. Monocyte subpopulations are an increasingly attractive therapeutic target in many pathologic states, including cancer. Before monocyte-directed therapies can be fully harnessed for clinical use, understanding of monocyte-driven angiogenesis in tissue development and homeostasis, as well as malignancy, is required. Here, we provide an overview of the mechanisms by which monocytic subpopulations contribute to angiogenesis in tissue and tumor development, highlight gaps in our existing knowledge, and discuss opportunities to exploit these cells for clinical benefit.
Collapse
Affiliation(s)
- Heather J Dalton
- Authors' Affiliations: Departments of Gynecologic Oncology and Reproductive Medicine, Experimental Therapeutics, and Cancer Biology; and Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | |
Collapse
|
8
|
Chautard E, Ouédraogo ZG, Biau J, Verrelle P. Role of Akt in human malignant glioma: from oncogenesis to tumor aggressiveness. J Neurooncol 2014; 117:205-15. [PMID: 24477623 DOI: 10.1007/s11060-014-1382-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 01/19/2014] [Indexed: 12/21/2022]
Abstract
Gathering evidence has revealed that Akt signaling pathway plays an important role in glioma progression and aggressiveness. Among Akt kinases the most studied, Akt1, has been involved in many cellular processes that are in favor of cell malignancy. More recently, the actions of the two other isoforms, Akt2 and Akt3 have emerged in glioma. After a description of Akt pathway activation, we will explore the role of each isoform in malignant glioma that strengthens the current preclinical and clinical studies evaluating the impact of Akt pathway targeting in glioblastomas.
Collapse
Affiliation(s)
- Emmanuel Chautard
- Clermont Université, Université d'Auvergne, EA7283 CREaT, 28 Place Henri Dunant, 63000, Clermont-Ferrand, France,
| | | | | | | |
Collapse
|
9
|
CpG ODN107 potentiates radiosensitivity of human glioma cells via TLR9-mediated NF-κB activation and NO production. Tumour Biol 2012; 33:1607-18. [PMID: 22739939 DOI: 10.1007/s13277-012-0416-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 05/03/2012] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is a standard treatment for glioma patient with or without surgery; radiosensitizer can increase tumor sensitivity for radiotherapy. Herein, a synthetic oligodeoxynucleotide containing unmethylated CpG dinucleotides (CpG ODN107) as a radiosensitizer was investigated in vitro and in vivo, and the possible mechanisms were studied in vitro. In the present experiments, the human glioma U87 cell line used herein was resistant to 5 Gy of β-ray irradiation. The results showed that 10 μg/ml of CpG ODN107 in combination with irradiation significantly inhibited cell proliferation both in MTT assay and colony formation experiments. Tumor growth was inhibited by CpG ODN107 in combination with local irradiation but not by local irradiation or CpG ODN107 alone in human glioma xenograft model in nude mice. The inhibition ratio of tumor growth produced by CpG ODN107 (1.7, 5, and 15 mg/kg) in combination with irradiation was 27.3, 67.0, and 65.5 %, respectively. Further molecular mechanisms were studied in vitro. The results showed that the expressions of iNOS, NO, TLR9 mRNA, and NF-κB p50/p65 increased in the cells treated with CpG ODN107 in combination with irradiation. CpG ODN107 in combination with irradiation did not induce apoptosis but induced cell cycle arrest at G(1) phase. The said results demonstrated that CpG ODN107 possessed a radiosensitizing effect via TLR9-mediated NF-κB activation and NO production in the tumor cells, leading to cell cycle arrest. Therefore, CpG ODN107 is a potential candidate as radiosensitizer for human glioma.
Collapse
|
10
|
Sullivan R, Peppercorn J, Sikora K, Zalcberg J, Meropol NJ, Amir E, Khayat D, Boyle P, Autier P, Tannock IF, Fojo T, Siderov J, Williamson S, Camporesi S, McVie JG, Purushotham AD, Naredi P, Eggermont A, Brennan MF, Steinberg ML, De Ridder M, McCloskey SA, Verellen D, Roberts T, Storme G, Hicks RJ, Ell PJ, Hirsch BR, Carbone DP, Schulman KA, Catchpole P, Taylor D, Geissler J, Brinker NG, Meltzer D, Kerr D, Aapro M. Delivering affordable cancer care in high-income countries. Lancet Oncol 2011; 12:933-80. [PMID: 21958503 DOI: 10.1016/s1470-2045(11)70141-3] [Citation(s) in RCA: 503] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The burden of cancer is growing, and the disease is becoming a major economic expenditure for all developed countries. In 2008, the worldwide cost of cancer due to premature death and disability (not including direct medical costs) was estimated to be US$895 billion. This is not simply due to an increase in absolute numbers, but also the rate of increase of expenditure on cancer. What are the drivers and solutions to the so-called cancer-cost curve in developed countries? How are we going to afford to deliver high quality and equitable care? Here, expert opinion from health-care professionals, policy makers, and cancer survivors has been gathered to address the barriers and solutions to delivering affordable cancer care. Although many of the drivers and themes are specific to a particular field-eg, the huge development costs for cancer medicines-there is strong concordance running through each contribution. Several drivers of cost, such as over-use, rapid expansion, and shortening life cycles of cancer technologies (such as medicines and imaging modalities), and the lack of suitable clinical research and integrated health economic studies, have converged with more defensive medical practice, a less informed regulatory system, a lack of evidence-based sociopolitical debate, and a declining degree of fairness for all patients with cancer. Urgent solutions range from re-engineering of the macroeconomic basis of cancer costs (eg, value-based approaches to bend the cost curve and allow cost-saving technologies), greater education of policy makers, and an informed and transparent regulatory system. A radical shift in cancer policy is also required. Political toleration of unfairness in access to affordable cancer treatment is unacceptable. The cancer profession and industry should take responsibility and not accept a substandard evidence base and an ethos of very small benefit at whatever cost; rather, we need delivery of fair prices and real value from new technologies.
Collapse
Affiliation(s)
- Richard Sullivan
- Kings Health Partners, King's College, Integrated Cancer Centre, Guy's Hospital Campus, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Everaert H, Hoorens A, Vanhove C, Sermeus A, Ceulemans G, Engels B, Vermeersch M, Verellen D, Urbain D, Storme G, De Ridder M. Prediction of Response to Neoadjuvant Radiotherapy in Patients With Locally Advanced Rectal Cancer by Means of Sequential 18FDG-PET. Int J Radiat Oncol Biol Phys 2011; 80:91-6. [DOI: 10.1016/j.ijrobp.2010.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 12/16/2022]
|
12
|
Chautard E, Loubeau G, Tchirkov A, Chassagne J, Vermot-Desroches C, Morel L, Verrelle P. Akt signaling pathway: a target for radiosensitizing human malignant glioma. Neuro Oncol 2010; 12:434-43. [PMID: 20406894 DOI: 10.1093/neuonc/nop059] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Radiation therapy plays a central role in the treatment of glioblastoma, but it is not curative due to the high tumor radioresistance. Phosphatidyl-inositol 3-kinase/protein kinase B (Akt) and Janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3) pathways serve to block the apoptosis process, keeping cells alive in very toxic environments such as chemotherapy or ionizing radiation. In the present study, from a panel of 8 human malignant glioma cell lines, investigations on the relationship between intrinsic radioresistance and Akt or STAT3 basal activation were done. Secondly, the impact of down-modulation of Akt or STAT3 signaling on in vitro intrinsic radiosensitivity was evaluated. Using a clonogenic cell survival assay, our results revealed a significant correlation between the basal Akt activation and the surviving fraction at 2 Gy (SF2). In contrast, no correlation was found between STAT3 activation and SF2. According to this, down-modulation of Akt with a specific chemical inhibitor (Akt inhibitor IV) demonstrated a significant enhancement of radiation sensitivity on glioma cells in a clonogenic survival assay. On the contrary, down-modulation of STAT3 signaling with a specific chemical inhibitor (JSI-124) or a neutralizing gp130 antibody failed to radiosensitize glioma cells. These data indicate that the Akt intercept node could be a more relevant therapeutic target than STAT3 for radiosensitizing human malignant glioma.
Collapse
Affiliation(s)
- Emmanuel Chautard
- Centre Jean Perrin, Laboratoire de Radio-Oncologie Expérimentale, EA 3846 Thérapie Ciblée Combinatoire en Onco-Hématologie, Université d'Auvergne, Clermont-Ferrand, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Conrad S, Ritter S, Fournier C, Nixdorff K. Differential effects of irradiation with carbon ions and x-rays on macrophage function. JOURNAL OF RADIATION RESEARCH 2009; 50:223-231. [PMID: 19398853 DOI: 10.1269/jrr.08115] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Macrophages are potent elicitors of inflammatory reactions that can play both positive and negative roles in radiotherapy. While several studies have investigated the effects of X-rays or gamma-rays on macrophages, virtually no work has been done on the responses of these cells to irradiation with carbon ions. Investigations into the effects of carbon ion irradiation are of particular interest in light of the fact that this type of radiation is being used increasingly for cancer therapy. In the present investigation we compared the effects of 250 kV X-rays with those of 9.8 MeV/u carbon ions on RAW 264.7 macrophages over a wide range of radiation doses. Macrophage functions including vitality, phagocytic activity, production of the proinflammatory cytokines IL-1beta and TNFalpha and production of nitric oxide (NO) were measured. In comparison to lymphocytes and fibroblasts, macrophages showed only a small decrease in vitality after irradiation with either X-rays or carbon ions. Proinflammatory cytokines and NO were induced in macrophages by LPS but not by irradiation alone. X-rays or carbon ions had little modulating effect on LPS-induced TNFalpha production. However, LPS-induced NO increased in a dose dependent manner up to 6-fold after carbon ion irradiation, while X-ray irradiation did not have this effect. Carbon ion irradiation mediated a concomitant decrease in IL-1beta production. Carbon ions also had a greater effect than X-rays in enhancing the phagocytic activity of macrophages. These results underscore the greater potential of carbon ion irradiation with regard to radiobiological effectiveness.
Collapse
Affiliation(s)
- Sandro Conrad
- Department of Microbiology and Genetics, Darmstadt University of Technology, Darmstadt, Germany.
| | | | | | | |
Collapse
|
14
|
De Ridder M, Jiang H, Van Esch G, Law K, Monsaert C, Van den Berge DL, Verellen D, Verovski VN, Storme GA. IFN-γ+ CD8+ T Lymphocytes: Possible Link Between Immune and Radiation Responses in Tumor-Relevant Hypoxia. Int J Radiat Oncol Biol Phys 2008; 71:647-51. [DOI: 10.1016/j.ijrobp.2008.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 02/15/2008] [Accepted: 03/17/2008] [Indexed: 11/28/2022]
|
15
|
De Ridder M, Verellen D, Verovski V, Storme G. Hypoxic tumor cell radiosensitization through nitric oxide. Nitric Oxide 2008; 19:164-9. [PMID: 18474256 DOI: 10.1016/j.niox.2008.04.015] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 12/31/2022]
Abstract
Hypoxia is a principal signature of the tumor microenvironment and is considered to be the most important cause of clinical radioresistance and local failure. Oxygen is so far the best radiosensitizer, but tumor oxygenation protocols are compromised by its metabolic consumption and therefore limited diffusion inside tumors. Many chemical radiosensitizers can selectively target hypoxic tumor cells, but their systemic toxicity compromises their adequate clinical use. NO is an efficient hypoxic radiosensitizer, as it may mimic the effects of oxygen on fixation of radiation-induced DNA damage, but the required levels cannot be obtained in vivo because of vasoactive complications. Our laboratory explored whether this problem may be overcome by endogenous production of NO inside tumors. We demonstrated that iNOS, activated by pro-inflammatory cytokines, is capable of radiosensitizing tumor cells through endogenous production of NO, at non-toxic extracellular concentrations. We observed that this radiosensitizing effect is transcriptionally controlled by hypoxia and by NF-kappaB. Tumor-associated immune cells may contribute to the iNOS-mediated radiosensitization by the generation of pro-inflammatory cytokines and NO, which may diffuse towards bystander tumor cells. Our findings indicate a rationale for combining immunostimulatory and radiosensitizing strategies in the future.
Collapse
Affiliation(s)
- Mark De Ridder
- UZ Brussel, Oncologisch Centrum, Dienst Radiotherapie, Laarbeeklaan 101, B-1090 Brussels, Belgium.
| | | | | | | |
Collapse
|
16
|
Verellen D, De Ridder M, Linthout N, Tournel K, Soete G, Storme G. Innovations in image-guided radiotherapy. Nat Rev Cancer 2007; 7:949-60. [PMID: 18034185 DOI: 10.1038/nrc2288] [Citation(s) in RCA: 281] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The limited ability to control for the location of a tumour compromises the accuracy with which radiation can be delivered to tumour-bearing tissue. The resultant requirement for larger treatment volumes to accommodate target uncertainty restricts the radiation dose because more surrounding normal tissue is exposed. With image-guided radiotherapy (IGRT) these volumes can be optimized and tumoricidal doses can be delivered, achieving maximal tumour control with minimal complications. Moreover, with the ability of high-precision dose delivery and real-time knowledge of the target volume location, IGRT has initiated the exploration of new indications for radiotherapy, some of which were previously considered infeasible.
Collapse
Affiliation(s)
- Dirk Verellen
- UZ Brussel, Oncologisch Centrum, Radiotherapie, Laarbeeklaan 101, B-1090 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
17
|
Thamm DH. Interactions between radiation therapy and immunotherapy: the best of two worlds? Vet Comp Oncol 2006; 4:189-97. [DOI: 10.1111/j.1476-5829.2006.00110.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
De Ridder M, Verovski VN, Chiavaroli C, Van den Berge DL, Monsaert C, Law K, Storme GA. The radiosensitizing effect of immunoadjuvant OM-174 requires cooperation between immune and tumor cells through interferon-gamma and inducible nitric oxide synthase. Int J Radiat Oncol Biol Phys 2006; 66:1473-80. [PMID: 17056198 DOI: 10.1016/j.ijrobp.2006.07.1381] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 07/18/2006] [Accepted: 07/19/2006] [Indexed: 12/11/2022]
Abstract
PURPOSE To explore whether antitumor immunoadjuvant OM-174 can stimulate immune cells to produce interferon-gamma (IFN-gamma) and thereby radiosensitize tumor cells. METHODS AND MATERIALS Splenocytes from BALB/c mice were stimulated by OM-174 at plasma-achievable concentrations (0.03-3 mug/mL), and afterward analyzed for the expression and secretion of IFN-gamma by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Stimulated splenocytes were used as a source of IFN-gamma to radiosensitize hypoxic EMT-6 tumor cells through the cytokine-inducible isoform of nitric oxide synthase (iNOS). RESULTS OM-174 activated the production of IFN-gamma at high levels that reached 70 ng/mL in normoxia (21% oxygen) and 27 ng/mL in tumor-relevant hypoxia (1% oxygen). This caused up to 2.1-fold radiosensitization of EMT-6 tumor cells, which was associated with the iNOS-mediated production of the radiosensitizing molecule nitric oxide, as confirmed by accumulation of its oxidative metabolite nitrite, Western blot analysis, and reverse transcriptase-polymerase chain reaction. Both iNOS activation and radiosensitization were counteracted by neutralizing antibodies against IFN-gamma. The same mechanism of radiosensitization through the IFN-gamma secretion pathway was identified for IL-12 + IL-18, which are known to mediate IFN-gamma responses. Hypoxia displayed a dual effect on the immune-tumor cell interaction, by downregulating the expression of the IFN-gamma gene while upregulating iNOS at transcriptional level. CONCLUSION Immunoadjuvant OM-174 is an efficient radiosensitizer of tumor cells through activation of the IFN-gamma secretion pathway in immune cells. This finding indicates a rationale for combining immunostimulatory and radiosensitizing strategies and extends the potential therapeutic applications of OM-174.
Collapse
Affiliation(s)
- Mark De Ridder
- Academic Hospital Free University Brussels, Oncology Center, Cancer Research Unit, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|