1
|
Barker CA, D'Angelo SP, Wasilewski G, Steckler AM, Lian M, Zhang Z, Chapman PB, Shoushtari AN, Ariyan CE. A phase II randomized trial of talimogene laherparepvec oncolytic immunotherapy with or without radiotherapy for patients with cutaneous metastases from solid tumors. Radiother Oncol 2024; 200:110478. [PMID: 39159678 PMCID: PMC11438562 DOI: 10.1016/j.radonc.2024.110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Cutaneous metastases (CMs) are a manifestation of advanced cancer and can be treated with oncolytic immunotherapy. Laboratory studies suggest radiotherapy (RT) may facilitate response to immunotherapy. We hypothesized that oncolytic immunotherapy with talimogene lapherparepvec (T-VEC, an oncolytic immunotherapy that expresses granulocyte-macrophage colony stimulating factor) and RT would produce response in non-targeted metastases. METHODS A randomized phase 2 trial of T-VEC+/-RT was conducted. Eligible patients had ≥1 CM from a solid tumor amenable to T-VEC and RT and another measurable metastasis. Tumor and overall response was assessed using modified World Health Organization (mWHO) criteria. Adverse events (AEs) and quality of life (QOL) were characterized using CTCAE v4.0 and Skindex-16, respectively. Correlative analyses of tumor genomics and the immune system were performed. RESULTS 19 patients were randomized to receive T-VEC (n = 9) or T-VEC+RT (n = 10). One patient in each arm demonstrated complete response in the largest non-targeted metastasis. The trial was closed after the first stage of enrollment because of no overall mWHO responses, slow accrual and the COVID-19 pandemic. AEs were consistent with prior reports of T-VEC. Skin related QOL was poor before and after treatment. Median progression free survival was 1.2 and 2.5 months in the T-VEC and T-VEC+RT arms; median overall survival was 4.9 and 17.3 months in the T-VEC and T-VEC+RT arms. Analyses of peripheral blood cells and cytokines demonstrated responders exhibited several outlying lymphocyte and cytokine parameters. CONCLUSIONS Low overall response rate, slow accrual, and the COVID-19 pandemic led to closure of this trial. Responses in non-injected and non-irradiated metastases were infrequent.
Collapse
Affiliation(s)
- Christopher A Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Sandra P D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gloria Wasilewski
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexa M Steckler
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming Lian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhigang Zhang
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul B Chapman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Charlotte E Ariyan
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
2
|
Olivet MM, Brown MC, Reitman ZJ, Ashley DM, Grant GA, Yang Y, Markert JM. Clinical Applications of Immunotherapy for Recurrent Glioblastoma in Adults. Cancers (Basel) 2023; 15:3901. [PMID: 37568717 PMCID: PMC10416859 DOI: 10.3390/cancers15153901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain tumor in adults. Despite standard therapies, including resection and chemoradiation, recurrence is virtually inevitable. Current treatment for recurrent glioblastoma (rGBM) is rapidly evolving, and emerging therapies aimed at targeting primary GBM are often first tested in rGBM to demonstrate safety and feasibility, which, in recent years, has primarily been in the form of immunotherapy. The purpose of this review is to highlight progress in clinical trials of immunotherapy for rGBM, including immune checkpoint blockade, oncolytic virotherapy, chimeric antigen receptor (CAR) T-cell therapy, cancer vaccine and immunotoxins. Three independent reviewers covered literature, published between the years 2000 and 2022, in various online databases. In general, the efficacy of immunotherapy in rGBM remains uncertain, and is limited to subsets/small cohorts of patients, despite demonstrating feasibility in early-stage clinical trials. However, considerable progress has been made in understanding the mechanisms that may preclude rGBM patients from responding to immunotherapy, as well as in developing new approaches/combination strategies that may inspire optimism for the utility of immunotherapy in this devastating disease. Continued trials are necessary to further assess the best therapeutic avenues and ascertain which treatments might benefit each patient individually.
Collapse
Affiliation(s)
- Meagan Mandabach Olivet
- Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Michael C. Brown
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA; (M.C.B.); (D.M.A.); (G.A.G.)
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University, Durham, NC 27710, USA;
| | - David M. Ashley
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA; (M.C.B.); (D.M.A.); (G.A.G.)
| | - Gerald A. Grant
- Department of Neurosurgery, Duke University, Durham, NC 27710, USA; (M.C.B.); (D.M.A.); (G.A.G.)
| | - Yuanfan Yang
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
3
|
Monga V, Miller BJ, Tanas M, Boukhar S, Allen B, Anderson C, Stephens L, Hartwig S, Varga S, Houtman J, Wang L, Zhang W, Jaber O, Thomason J, Kuehn D, Rajput M, Metz C, Zamba KD, Mott S, Abanonu C, Bhatia S, Milhem M. Intratumoral talimogene laherparepvec injection with concurrent preoperative radiation in patients with locally advanced soft-tissue sarcoma of the trunk and extremities: phase IB/II trial. J Immunother Cancer 2021; 9:jitc-2021-003119. [PMID: 34330766 PMCID: PMC8327848 DOI: 10.1136/jitc-2021-003119] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2021] [Indexed: 12/22/2022] Open
Abstract
Background Soft-tissue sarcomas (STS) in the extremities and trunk treated with standard-of-care preoperative external beam radiation therapy (EBRT) followed by surgical resection are associated with local and distant relapses. In preclinical studies, oncolytic virotherapy in sarcoma has demonstrated antitumor effects via direct intratumoral oncolysis and cytotoxic T-cell–mediated immune responses. Talimogene laherparepvec (TVEC) is a replication-competent, immune-enhanced, oncolytic herpes simplex virus type 1 engineered for intratumoral injection; it has been approved by the FDA for the treatment of locally advanced and metastatic melanoma. Methods We explored a novel combination of TVEC with standard-of-care EBRT administered preoperatively in patients with locally advanced STS of the extremities and trunk in a phase IB/II clinical trial. Thirty patients with primary STS >5 cm for which EBRT was indicated to achieve negative margins were enrolled. FDA-approved TVEC doses were used. Immune correlative studies in peripheral blood, biopsy and resected tumor tissues were performed. Results No dose-limiting toxicity was observed. Adverse events were similar to those reported in prior studies with TVEC. One patient with myxoid liposarcoma exhibited a partial response. Seven of the 29 (24%) evaluable patients achieved 95% pathological necrosis. None of the patients developed a herpes infection due to the treatment. Eight of the 29 (27%) patients developed postoperative wound complications, which is consistent with previous studies. None of the patients developed local recurrence after surgical resection of the primary sarcoma. 2-year progression-free and overall survival were 57% and 88%, respectively. Caspase-3 demonstrated increased expression of both in TVEC-treated tissue samples as compared with control samples treated with radiation alone. Conclusion Preoperative intratumoral TVEC with concurrent EBRT for locally advanced STS is safe and well-tolerated. This combination treatment may enhance immune responses in some cases but did not increase the proposed rate of pathological necrosis. The Caspase-3 biomarker may be associated with a positive effect of TVEC in sarcoma tumor tissue and should be explored in future studies. Trial registration number NCT02453191.
Collapse
Affiliation(s)
- Varun Monga
- Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Benjamin J Miller
- Orthopedic Surgery, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Munir Tanas
- Pathology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Sarag Boukhar
- Pathology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Bryan Allen
- Radiation Oncology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Carryn Anderson
- Radiation Oncology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Laura Stephens
- Microbiology and Immunology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Stacey Hartwig
- Microbiology and Immunology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Steven Varga
- Microbiology and Immunology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Jon Houtman
- Microbiology and Immunology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Lei Wang
- Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Weizhou Zhang
- Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Omar Jaber
- Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Jon Thomason
- Pathology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - David Kuehn
- Radiology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Maheen Rajput
- Radiology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Catherine Metz
- Radiology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - K D Zamba
- Biostatistics, The University of Iowa College of Public Health, Iowa City, Iowa, USA
| | - Sarah Mott
- The University of Iowa Holden Comprehensive Cancer Center, Iowa City, Iowa, USA
| | - Chinemerem Abanonu
- HealthCare Partners Hematology/Oncology Maryland Parkway, Las Vegas, Nevada, USA
| | - Sudershan Bhatia
- Radiation Oncology, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| | - Mohammed Milhem
- Internal Medicine, The University of Iowa Hospitals and Clinics, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Zhou Z, Tian J, Zhang W, Xiang W, Ming Y, Chen L, Zhou J. Multiple strategies to improve the therapeutic efficacy of oncolytic herpes simplex virus in the treatment of glioblastoma. Oncol Lett 2021; 22:510. [PMID: 33986870 DOI: 10.3892/ol.2021.12771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/29/2021] [Indexed: 11/06/2022] Open
Abstract
Oncolytic viruses have attracted widespread attention as biological anticancer agents that can selectively kill tumor cells without affecting normal cells. Although progress has been made in therapeutic strategies, the prognosis of patients with glioblastoma (GBM) remains poor and no ideal treatment approach has been developed. Recently, oncolytic herpes simplex virus (oHSV) has been considered a promising novel treatment approach for GBM. However, the therapeutic efficacy of oHSV in GBM, with its intricate pathophysiology, remains unsatisfactory due to several obstacles, such as limited replication and attenuated potency of oHSV owing to deletions or mutations in virulence genes, and ineffective delivery of the therapeutic virus. Multiple strategies have attempted to identify the optimal strategy for the successful clinical application of oHSV. Several preclinical trials have demonstrated that engineering novel oHSVs, developing combination therapies and improving methods for delivering oHSV to tumor cells seem to hold promise for improving the efficacy of this virotherapy.
Collapse
Affiliation(s)
- Zhengjun Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Junjie Tian
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Wenyan Zhang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Wei Xiang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Yang Ming
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China
| | - Ligang Chen
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, P.R. China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan 646000, P.R. China
| | - Jie Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China.,Sichuan Clinical Research Center for Neurosurgery, Luzhou, Sichuan 646000, P.R. China.,Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan 646000, P.R. China.,Neurological Diseases and Brain Function Laboratory, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
5
|
Menotti L, Avitabile E. Herpes Simplex Virus Oncolytic Immunovirotherapy: The Blossoming Branch of Multimodal Therapy. Int J Mol Sci 2020; 21:ijms21218310. [PMID: 33167582 PMCID: PMC7664223 DOI: 10.3390/ijms21218310] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses are smart therapeutics against cancer due to their potential to replicate and produce the needed therapeutic dose in the tumor, and to their ability to self-exhaust upon tumor clearance. Oncolytic virotherapy strategies based on the herpes simplex virus are reaching their thirties, and a wide variety of approaches has been envisioned and tested in many different models, and on a range of tumor targets. This huge effort has culminated in the primacy of an oncolytic HSV (oHSV) being the first oncolytic virus to be approved by the FDA and EMA for clinical use, for the treatment of advanced melanoma. The path has just been opened; many more cancer types with poor prognosis await effective and innovative therapies, and oHSVs could provide a promising solution, especially as combination therapies and immunovirotherapies. In this review, we analyze the most recent advances in this field, and try to envision the future ahead of oHSVs.
Collapse
|
6
|
Ning J, Wakimoto H. Oncolytic herpes simplex virus-based strategies: toward a breakthrough in glioblastoma therapy. Front Microbiol 2014; 5:303. [PMID: 24999342 PMCID: PMC4064532 DOI: 10.3389/fmicb.2014.00303] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/03/2014] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses (OV) are a class of antitumor agents that selectively kill tumor cells while sparing normal cells. Oncolytic herpes simplex virus (oHSV) has been investigated in clinical trials for patients with the malignant brain tumor glioblastoma for more than a decade. These clinical studies have shown the safety of oHSV administration to the human brain, however, therapeutic efficacy of oHSV as a single treatment remains unsatisfactory. Factors that could hamper the anti-glioblastoma efficacy of oHSV include: attenuated potency of oHSV due to deletion or mutation of viral genes involved in virulence, restricting viral replication and spread within the tumor; suboptimal oHSV delivery associated with intratumoral injection; virus infection-induced inflammatory and cellular immune responses which could inhibit oHSV replication and promote its clearance; lack of effective incorporation of oHSV into standard-of-care, and poor knowledge about the ability of oHSV to target glioblastoma stem cells (GSCs). In an attempt to address these issues, recent research efforts have been directed at: (1) design of new engineered viruses to enhance potency, (2) better understanding of the role of the cellular immunity elicited by oHSV infection of tumors, (3) combinatorial strategies with different antitumor agents with a mechanistic rationale, (4) “armed” viruses expressing therapeutic transgenes, (5) use of GSC-derived models in oHSV evaluation, and (6) combinations of these. In this review, we will describe the current status of oHSV clinical trials for glioblastoma, and discuss recent research advances and future directions toward successful oHSV-based therapy of glioblastoma.
Collapse
Affiliation(s)
- Jianfang Ning
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Brain Tumor Research Center, Massachusetts General Hospital, Harvard Medical School Boston, MA, USA
| |
Collapse
|
7
|
A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther 2014; 22:1048-55. [PMID: 24572293 DOI: 10.1038/mt.2014.22] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/05/2014] [Indexed: 01/25/2023] Open
Abstract
G207, a mutant herpes simplex virus (HSV) type 1, is safe when inoculated into recurrent malignant glioma. We conducted a phase 1 trial of G207 to demonstrate the safety of stereotactic intratumoral administration when given 24 hours prior to a single 5 Gy radiation dose in patients with recurrent malignant glioma. Nine patients with progressive, recurrent malignant glioma despite standard therapy were included. Patients received one dose of G207 stereotactically inoculated into the multiple sites of the enhancing tumor margin and were then treated focally with 5 Gy radiation. Treatment was well tolerated, and no patient developed HSV encephalitis. The median interval between initial diagnosis and G207 inoculation was 18 months (mean: 23 months; range: 11-51 months). Six of the nine patients had stable disease or partial response for at least one time point. Three instances of marked radiographic response to treatment occurred. The median survival time from G207 inoculation until death was 7.5 months (95% confidence interval: 3.0-12.7). In conclusion, this study showed the safety and the potential for clinical response of single-dose oncolytic HSV therapy augmented with radiation in the treatment of malignant glioma patients. Additional studies with oncolytic HSV such as G207 in the treatment of human glioma are recommended.
Collapse
|
8
|
EGFR-Targeted Adenovirus Dendrimer Coating for Improved Systemic Delivery of the Theranostic NIS Gene. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e131. [PMID: 24193032 PMCID: PMC3889187 DOI: 10.1038/mtna.2013.58] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/10/2013] [Indexed: 12/19/2022]
Abstract
We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of
combined radiovirotherapy after systemic delivery of the theranostic sodium iodide
symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and
targeting we physically coated replication-selective adenoviruses carrying the
hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM)
dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand
GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent
but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus
in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver
due to hepatic sequestration, which were significantly reduced after coating as
demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling
resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral
xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly
lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody
cetuximab. A significantly enhanced oncolytic effect was observed following systemic
application of dendrimer-coated adenovirus that was further increased by additional
treatment with a therapeutic dose of 131I. These results demonstrate restricted
virus tropism and tumor-selective retargeting after systemic application of coated,
EGFR-targeted adenoviruses therefore representing a promising strategy for improved
systemic adenoviral NIS gene therapy.
Collapse
|
9
|
Buckel L, Advani SJ, Frentzen A, Zhang Q, Yu YA, Chen NG, Ehrig K, Stritzker J, Mundt AJ, Szalay AA. Combination of fractionated irradiation with anti-VEGF expressing vaccinia virus therapy enhances tumor control by simultaneous radiosensitization of tumor associated endothelium. Int J Cancer 2013; 133:2989-99. [PMID: 23729266 DOI: 10.1002/ijc.28296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/29/2013] [Indexed: 02/04/2023]
Abstract
Oncolytic viruses are currently in clinical trials for a variety of tumors, including high grade gliomas. A characteristic feature of high grade gliomas is their high vascularity and treatment approaches targeting tumor endothelium are under investigation, including bevacizumab. The aim of this study was to improve oncolytic viral therapy by combining it with ionizing radiation and to radiosensitize tumor vasculature through a viral encoded anti-angiogenic payload. Here, we show how vaccinia virus-mediated expression of a single-chain antibody targeting VEGF resulted in radiosensitization of the tumor-associated vasculature. Cell culture experiments demonstrated that purified vaccinia virus encoded antibody targeting VEGF reversed VEGF-induced radioresistance specifically in endothelial cells but not tumor cells. In a subcutaneous model of U-87 glioma, systemically administered oncolytic vaccinia virus expressing anti-VEGF antibody (GLV-1h164) in combination with fractionated irradiation resulted in enhanced tumor growth inhibition when compared to nonanti-VEGF expressing oncolytic virus (GLV-1h68) and irradiation. Irradiation of tumor xenografts resulted in an increase in VACV replication of both GLV-1h68 and GLV-1h164. However, GLV-1h164 in combination with irradiation resulted in a drastic decrease in intratumoral VEGF levels and tumor vessel numbers in comparison to GLV-1h68 and irradiation. These findings demonstrate the incorporation of an oncolytic virus expressing an anti-VEGF antibody (GLV-1h164) into a fractionated radiation scheme to target tumor cells by enhanced VACV replication in irradiated tumors as well as to radiosensitize tumor endothelium which results in enhanced efficacy of combination therapy of human glioma xenografts.
Collapse
Affiliation(s)
- Lisa Buckel
- Department of Biochemistry, Rudolph Virchow Center for Experimental Biomedicine and Institute for Molecular Infection Biology, University of Würzburg, D-97074, Würzburg, Germany; Genelux Corporation, San Diego Science Center, San Diego, CA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Grünwald GK, Vetter A, Klutz K, Willhauck MJ, Schwenk N, Senekowitsch-Schmidtke R, Schwaiger M, Zach C, Wagner E, Göke B, Holm PS, Ogris M, Spitzweg C. Systemic image-guided liver cancer radiovirotherapy using dendrimer-coated adenovirus encoding the sodium iodide symporter as theranostic gene. J Nucl Med 2013; 54:1450-7. [PMID: 23843567 DOI: 10.2967/jnumed.112.115493] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Currently, major limitations for the clinical application of adenovirus-mediated gene therapy are high prevalence of neutralizing antibodies, widespread expression of the coxsackie-adenovirus receptor (CAR), and adenovirus sequestration by the liver. In the current study, we used the sodium iodide symporter (NIS) as a theranostic gene to investigate whether coating of adenovirus with synthetic dendrimers could be useful to overcome these hurdles in order to develop adenoviral vectors for combination of systemic oncolytic virotherapy and NIS-mediated radiotherapy. METHODS We coated replication-deficient (Ad5-CMV/NIS) (CMV is cytomegalovirus) and replication-selective (Ad5-E1/AFP-E3/NIS) adenovirus serotype 5 carrying the hNIS gene with poly(amidoamine) dendrimers generation 5 (PAMAM-G5) in order to investigate transduction efficacy and altered tropism of these coated virus particles by (123)I scintigraphy and to evaluate their therapeutic potential for systemic radiovirotherapy in a liver cancer xenograft mouse model. RESULTS After dendrimer coating, Ad5-CMV/NIS demonstrated partial protection from neutralizing antibodies and enhanced transduction efficacy in CAR-negative cells in vitro. In vivo (123)I scintigraphy of nude mice revealed significantly reduced levels of hepatic transgene expression after intravenous injection of dendrimer-coated Ad5-CMV/NIS (dcAd5-CMV/NIS). Evasion from liver accumulation resulted in significantly reduced liver toxicity and increased transduction efficiency of dcAd5-CMV/NIS in hepatoma xenografts. After PAMAM-G5 coating of the replication-selective Ad5-E1/AFP-E3/NIS, a significantly enhanced oncolytic effect was observed after intravenous application (virotherapy) that was further increased by additional treatment with a therapeutic dose of (131)I (radiovirotherapy) and was associated with markedly improved survival. CONCLUSION These results demonstrate efficient liver detargeting and tumor retargeting of adenoviral vectors after coating with synthetic dendrimers, thereby representing a promising innovative strategy for systemic NIS gene therapy. Moreover, our study-based on the function of NIS as a theranostic gene allowing the noninvasive imaging of NIS expression by (123)I scintigraphy-provides detailed characterization of in vivo vector biodistribution and localization, level, and duration of transgene expression, essential prerequisites for exact planning and monitoring of clinical gene therapy trials that aim to individualize the NIS gene therapy concept.
Collapse
Affiliation(s)
- Geoffrey K Grünwald
- Department of Internal Medicine II-Campus Grosshadern, University Hospital of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Advance in herpes simplex viruses for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2013; 56:298-305. [PMID: 23564184 DOI: 10.1007/s11427-013-4466-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/27/2013] [Indexed: 02/07/2023]
Abstract
Oncolytic virotherapy is an attractive approach that uses live viruses to selectively kill cancer cells. Oncolytic viruses can be genetically engineered to induce cell lyses through virus replication and cytotoxic protein expression. Herpes simplex virus (HSV) has become one of the most widely clinically used oncolytic agent. Various types of HSV have been studied in basic or clinical research. Combining oncolytic virotherapy with chemotherapy or radiotherapy generally produces synergic action with unclear molecular mechanisms. Arming HSV with therapeutic transgenes is a promising strategy and can be used to complement conventional therapies. As an efficient gene delivery system, HSV has been successfully used to deliver various immunomodulatory molecules. Arming HSV with therapeutic genes merits further investigation for potential clinical application.
Collapse
|
12
|
Sodium iodide symporter (NIS)-mediated radiovirotherapy of hepatocellular cancer using a conditionally replicating adenovirus. Gene Ther 2012; 20:625-33. [PMID: 23038026 DOI: 10.1038/gt.2012.79] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we determined the in vitro and in vivo efficacy of sodium iodide symporter (NIS) gene transfer and the therapeutic potential of oncolytic virotherapy combined with radioiodine therapy using a conditionally replicating oncolytic adenovirus. For this purpose, we used a replication-selective adenovirus in which the E1a gene is driven by the mouse alpha-fetoprotein (AFP) promoter and the human NIS gene is inserted in the E3 region (Ad5-E1/AFP-E3/NIS). Human hepatocellular carcinoma cells (HuH7) infected with Ad5-E1/AFP-E3/NIS concentrated radioiodine at a level that was sufficiently high for a therapeutic effect in vitro. In vivo experiments demonstrated that 3 days after intratumoral (i.t.) injection of Ad5-E1/AFP-E3/NIS HuH7 xenograft tumors accumulated approximately 25% ID g(-1) (percentage of the injected dose per gram tumor tissue) (123)I as shown by (123)I gamma camera imaging. A single i.t. injection of Ad5-E1/AFP-E3/NIS (virotherapy) resulted in a significant reduction of tumor growth and prolonged survival, as compared with injection of saline. Combination of oncolytic virotherapy with radioiodine treatment (radiovirotherapy) led to an additional reduction of tumor growth that resulted in markedly improved survival as compared with virotherapy alone. In conclusion, local in vivo NIS gene transfer using a replication-selective oncolytic adenovirus is able to induce a significant therapeutic effect, which can be enhanced by additional (131)I application.
Collapse
|
13
|
Advani SJ, Buckel L, Chen NG, Scanderbeg DJ, Geissinger U, Zhang Q, Yu YA, Aguilar RJ, Mundt AJ, Szalay AA. Preferential replication of systemically delivered oncolytic vaccinia virus in focally irradiated glioma xenografts. Clin Cancer Res 2012; 18:2579-90. [PMID: 22379115 DOI: 10.1158/1078-0432.ccr-11-2394] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Radiotherapy is part of the standard of care in high-grade gliomas but its outcomes remain poor. Integrating oncolytic viruses with standard anticancer therapies is an area of active investigation. The aim of this study was to determine how tumor-targeted ionizing radiation (IR) could be combined with systemically delivered oncolytic vaccinia virus. EXPERIMENTAL DESIGN U-87 glioma xenografts were grown subcutaneously or orthotopically. Oncolytic vaccinia viruses GLV-1h68 and LIVP 1.1.1 were injected systemically and IR was given focally to glioma xenografts. In a bilateral tumor model, glioma xenografts were grown in both flanks, oncolytic vaccinia was injected systemically and radiation was delivered specifically to the right flank tumor, whereas the left flank tumor was shielded. Viral replication and tumor regression, after systemic injection, was analyzed and compared in irradiated and nonirradiated glioma xenografts. RESULTS Systemically administered oncolytic vaccinia virus replicated to higher titers in preirradiated U-87 xenografts than in nonirradiated glioma xenografts. This increased oncolytic viral replication correlated with increased tumor xenograft regression and mouse survival in subcutaneous and orthotopic U-87 glioma models compared with monotherapies. The ability of focal IR to mediate selective replication of oncolytic vaccinia was shown in a bilateral glioma model in which systemically administered oncolytic vaccinia replicated preferentially in the irradiated tumor compared with the nonirradiated tumor in the same mouse. CONCLUSION These findings show a potential clinical role of focal IR in sensitizing irradiated tumor sites for preferential vaccinia virus-mediated oncolysis.
Collapse
Affiliation(s)
- Sunil J Advani
- Department of Radiation Medicine and Applied Sciences and Center for Advanced Radiotherapy Technologies, University of California San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Deng H, Sambrook PJ, Logan RM. The treatment of oral cancer: an overview for dental professionals. Aust Dent J 2012; 56:244-52, 341. [PMID: 21884138 DOI: 10.1111/j.1834-7819.2011.01349.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Oral cancer is a serious life-threatening disease. Dental professionals may be the first individuals to identify/suspect these lesions before referring to oral and maxillofacial surgeons and oral medicine specialists. Because the general dentist will likely follow on with the patient's future oral health, it is important that he or she has a basic understanding of the various treatments involved in treating oral malignancies and their respective outcomes. The four main modalities discussed in this review include surgery alone, radiotherapy alone, surgery with radiotherapy, and chemotherapy with or without surgery and radiotherapy. Chemotherapy has become an area of great interest with the introduction of new 'targeted therapies' demonstrating promising results in conjunction with surgery. Despite these results, the toxicities associated with chemotherapy regimens are frequent and can be severe, and therefore may not be suitable for all patients. Treatment modalities have improved significantly over the decades with overall decreases in recurrence rates, improved disease-free and overall survival, and an improved quality of life. Prognosis, however, is still ultimately dependent on the clinical stage of the tumour at the initial diagnosis with respect to size, depth, extent, and metastasis as recurrence rates and survival rates plummet with disease progression.
Collapse
Affiliation(s)
- H Deng
- School of Dentistry, Faculty of Health Sciences, The University of Adelaide, South Australia
| | | | | |
Collapse
|
15
|
Geletneky K, Hartkopf AD, Krempien R, Rommelaere J, Schlehofer JR. Therapeutic implications of the enhanced short and long-term cytotoxicity of radiation treatment followed by oncolytic parvovirus H-1 infection in high-grade glioma cells. Bioeng Bugs 2011; 1:429-33. [PMID: 21468212 DOI: 10.4161/bbug.1.6.12943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 07/03/2010] [Accepted: 07/09/2010] [Indexed: 11/19/2022] Open
Abstract
The prognosis of malignant brain tumors remains extremely bad in spite of moderate improvements of conventional treatments. A promising alternative approach is the use of oncolytic viruses. Strategies to improve viral toxicity include the combination of oncolytic viruses with standard therapies. Parvovirus H-1 (H-1PV) is an oncolytic virus with proven toxicity in glioma cells. Recently it has been demonstrated that the combination of ionizing radiation (IR) with H-1PV showed promising results. Previously irradiated glioma cells remained fully permissive for H-1PV induced cytotoxicity supporting the use of H-1PV for recurrent gliomas, which typically arise from irradiated cell clones. When glioma cells were infected with H-1PV shortly (24 h) after IR, cell killing improved and only the combination of both treatments lead to complete long-term tumor cell killing. The latter finding raises the question whether IR in combination with H-1PV exerts an additional therapeutic effect on highly resistant glioma stem cells. A likely translation into current clinical treatment protocols is to use stereotactic radiation of non-resectable recurrent gliomas followed by intratumoral injection of H-1PV to harvest the synergistic effects of combination treatment.
Collapse
Affiliation(s)
- Karsten Geletneky
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
16
|
Wood LW, Shillitoe EJ. Effect of a caspase inhibitor, zVADfmk, on the inhibition of breast cancer cells by herpes simplex virus type 1. Cancer Gene Ther 2011; 18:685-94. [DOI: 10.1038/cgt.2011.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Campadelli-Fiume G, De Giovanni C, Gatta V, Nanni P, Lollini PL, Menotti L. Rethinking herpes simplex virus: the way to oncolytic agents. Rev Med Virol 2011; 21:213-26. [PMID: 21626603 DOI: 10.1002/rmv.691] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 12/22/2022]
Abstract
Oncolytic viruses infect, replicate in and kill cancer cells. HSV has emerged as a most promising candidate because it exerts a generally moderate pathogenicity in humans; it is amenable to attenuation and tropism retargeting; the ample genome provides space for heterologous genes; specific antiviral therapy is available in a worst case scenario. The first strategy to convert HSV into an oncolytic agent consisted in deletion of the γ(1) 34.5 gene which counteracts the protein kinase R (PKR) response, and of the UL39 gene which encodes the large ribonucleotide reductase subunit. Tumor specificity resided in low PKR activity, and high deoxyribonucleotides content of cancer cells. These highly attenuated viruses have been and presently are in clinical trials with encouraging results. The preferred route of administration has been intratumor or in tissues adjacent to resected tumors. Although the general population has a high seroprevalence of antibodies to HSV, studies in animals and humans demonstrate that prior immunity is not an obstacle to systemic routes of administration, and that oncolytic HSV (o-HSVs) do populate tumors. As the attenuated viruses undergo clinical experimentation, the research pipeline is developing novel, more potent and highly tumor-specific o-HSVs. These include viruses which overcome tumor heterogeneity in PKR level by insertion of anti-PKR genes, viruses which reinforce the host tumor clearance capacity by encoding immune cytokines (IL-12 or granulocyte-macrophage colony-stimulating factor), and non-attenuated viruses fully retargeted to tumor specific receptors. A strategy to generate o-HSVs fully retargeted to human epidermal growth factor receptor-2 (HER-2) or other cancer-specific surface receptors is detailed.
Collapse
Affiliation(s)
- Gabriella Campadelli-Fiume
- Department of Experimental Pathology, Section on Microbiology and Virology, Alma Mater Studiorum - University of Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Advani SJ, Markert JM, Sood RF, Samuel S, Gillespie GY, Shao MY, Roizman B, Weichselbaum RR. Increased oncolytic efficacy for high-grade gliomas by optimal integration of ionizing radiation into the replicative cycle of HSV-1. Gene Ther 2011; 18:1098-102. [PMID: 21544094 DOI: 10.1038/gt.2011.61] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Oncolytic viruses have been combined with standard cancer therapies to increase therapeutic efficacy. Given the sequential activation of herpes viral genes (herpes simplex virus-1, HSV-1) and the temporal cellular changes induced by ionizing radiation, we hypothesized an optimal temporal sequence existed in combining oncolytic HSV-1 with ionizing radiation. Murine U-87 glioma xenografts were injected with luciferase encoding HSV-1, and ionizing radiation (IR) was given at times before or after viral injection. HSV-1 replication and tumor-volume response were followed. Radiation given 6-9 h after HSV-1 injection resulted in maximal viral luciferase expression and infectious viral production in tumor xenografts. The greatest xenograft regression was also seen with radiation given 6 h after viral injection. We then tested if HSV-1 replication had a dose response to ionizing radiation. HSV-1 luciferase expression exhibited a dose response as xenografts were irradiated from 0 to 5 Gy. There was no difference in viral luciferase expression as IR dose increased from 5 Gy up to 20 Gy. These results suggest that the interaction of IR with the HSV-1 lytic cycle can be manipulated for therapeutic gain by delivering IR at a specific time within viral replicative cycle.
Collapse
Affiliation(s)
- S J Advani
- Department of Radiation Oncology and Center for Advanced Radiotherapy Technologies, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gaston DC, Whitley RJ, Parker JN. Engineered herpes simplex virus vectors for antitumor therapy and vaccine delivery. Future Virol 2011. [DOI: 10.2217/fvl.11.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Genetically modified herpes simplex viruses (HSVs) have been exploited for both antitumor therapy and vaccine delivery. These mutant viruses retain their ability to replicate and lyse permissive cells, including many tumor types, and are referred to as oncolytic HSVs. In addition, deletion of nonessential genes permits the introduction of foreign genes to augment the antitumor effect by either immune stimulation, targeting for select tumors, or expression of tumor or vaccine antigens. This article reviews the development of oncolytic HSVs as an anticancer therapy, as well as the application of HSV-1 vectors for delivery of targeted antigens or as vaccine adjuvants. The impact of these novel vectors with respect to enhanced antitumor activity and development of antitumor vaccination strategies is discussed.
Collapse
Affiliation(s)
- David C Gaston
- Medical Scientist Training Program, Department of Cell Biology, CHB 130, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Richard J Whitley
- Departments of Pediatrics, Microbiology, Medicine & Neurosurgery, CHB 303, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jacqueline N Parker
- Departments of Pediatrics & Cell Biology, CHB 118B, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
20
|
Kim W, Seong J, Oh HJ, Koom WS, Choi KJ, Yun CO. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma. JOURNAL OF RADIATION RESEARCH 2011; 52:646-654. [PMID: 21952320 DOI: 10.1269/jrr.10185] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, a novel combination treatment of armed oncolytic adenovirus expressing interleukin 12 (IL-12) and granulocyte-macrophage colony-stimulating factor (GM-CSF) with radiation was investigated for antitumor and antimetastatic effect in a murine hepatic cancer (HCa-I) model. Tumor bearing syngeneic mice were treated with radiation, armed oncolytic virus Ad-ΔE1Bmt7 (dB7) expressing both IL-12 and GM-CSF (armed dB7), or a combination of both. The adenovirus was administered by intratumoral injection 1 × 10(8) PFU per tumor in 50 µl of PBS four times every other day. Tumor response to treatment was determined by a tumor growth delay assay. Metastatic potential was evaluated by a lung metastasis model. To understand the underlying mechanism, the level of apoptosis was examined as well as the change in microvessel density and expression of immunological markers: CD4+, CD8+ and Cd11c. The combination of armed dB7 and radiation resulted in significant growth delay of murine hepatic cancer, HCa-1, with an enhancement factor of 4.3. The combination treatment also resulted in significant suppression of lung metastasis. Increase of apoptosis level as well as decrease of microvessel density was shown in the combination treatment, suggesting an underlying mechanism for the enhancement of antitumor effect. Expression of immunological markers: CD4+, CD8+ and Cd11c also increased in the combination treatment. This study showed that a novel combination treatment of radiotherapy with armed oncolytic adenovirus expressing IL-12 and GM-CSF was effective in suppressing primary tumor growth.
Collapse
Affiliation(s)
- Wonwoo Kim
- Department of Radiation Oncology, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Manservigi R, Argnani R, Marconi P. HSV Recombinant Vectors for Gene Therapy. Open Virol J 2010; 4:123-56. [PMID: 20835362 DOI: 10.2174/1874357901004030123] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/13/2010] [Accepted: 03/31/2010] [Indexed: 12/16/2022] Open
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
22
|
Abstract
The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has allowed the development of potential replication-competent and replication-defective vectors for several applications in human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors and examines the various strategies developed or proposed to overcome such challenges.
Collapse
Affiliation(s)
- Roberto Manservigi
- Department of Experimental and Diagnostic Medicine - Section of Microbiology, University of Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | |
Collapse
|
23
|
Cassady KA, Parker JN. Herpesvirus vectors for therapy of brain tumors. Open Virol J 2010; 4:103-8. [PMID: 20811578 DOI: 10.2174/1874357901004030103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 11/22/2022] Open
Abstract
Genetically modified, conditionally-replicating Herpes Simplex Virus Type 1 (HSV-1) vectors for the treatment of malignant glioma have provided encouraging results in the handful of Phase I and Phase II clinical trials conducted to date. In recent years, a number of new strategies have been developed to improve anti-tumor activity of these attenuated vectors, through either introduction of foreign gene inserts to enhance tumor killing through a variety of mechanisms, or through combination with existing treatment regimens, including radiation and/or chemotherapeutics. Another promising new approach has been the engineering of novel oncolytic HSV vectors that retain wildtype replication, but are targeted to tumor cells through a variety of mechanisms. This review summarizes the latest advances in herpesvirus-mediated oncolytic therapies from both preclinical results and clinical trials with oncolytic HSV vectors in patients, and their implication for design of future trials.
Collapse
Affiliation(s)
- Kevin A Cassady
- Department of Pediatrics, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL 35294-0011, USA
| | | |
Collapse
|
24
|
Liu C, Zhang Y, Liu MM, Zhou H, Chowdhury W, Lupold SE, Deweese TL, Rodriguez R. Evaluation of continuous low dose rate versus acute single high dose rate radiation combined with oncolytic viral therapy for prostate cancer. Int J Radiat Biol 2010; 86:220-9. [PMID: 20201650 DOI: 10.3109/09553000903419338] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Conditionally Replicative Adenovirus (CRAd) has been previously demonstrated to augment the activity of radiation, resulting in synergy of cell kill. However, previous models combining radiation with CRAd have not focused on the methods of radiation delivery. MATERIALS AND METHODS We model the combination of a novel prostate-specific CRAd, Ad5 PSE/PBN E1A-AR (Ad5: adenovirus 5; PSE: prostate-specific enhancer; PBN: rat probasin promoter; E1A: early region 1A; AR: androgen receptor), with radiation delivered both acutely and continuously, in an effort to better mimic the potential clinical modes of prostate cancer radiotherapy. RESULTS We demonstrate that pre-treatment of cells with acute single high dose rate (HDR) radiation 24 hours prior to viral infection results in significantly enhanced viral replication and virus-mediated cell death. In addition, this combination causes increased level of gamma-H2AX (Phosphorylated histone protein H2AX on serine 139), a marker of double-stranded DNA damage and an indirect measure of nuclear fragmentation. In contrast, continuous low dose rate (LDR) radiation immediately following infection of the same CRAd results in no enhancement of viral replication, and only additive effects in virus-mediated cell death. CONCLUSIONS These data provide the first direct assessment of the real-time impact of radiation on viral replication and the first comparison of the effect of radiation delivery on the efficacy of CRAd virotherapy. Our data demonstrate substantial differences in CRAd efficacy based on the mode of radiation delivery.
Collapse
Affiliation(s)
- Chunyan Liu
- James Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-2101, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Improved killing of human high-grade glioma cells by combining ionizing radiation with oncolytic parvovirus H-1 infection. J Biomed Biotechnol 2010; 2010:350748. [PMID: 20224643 PMCID: PMC2833303 DOI: 10.1155/2010/350748] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 10/06/2009] [Accepted: 11/19/2009] [Indexed: 11/18/2022] Open
Abstract
Purpose. To elucidate the influence of ionizing radiation (IR) on
the oncolytic activity of Parvovirus H-1 (H-1PV) in human
high-grade glioma cells. Methods. Short term cultures of human
high-grade gliomas were irradiated at different doses and infected
with H-1PV. Cell viability was assessed by determining relative
numbers of surviving cells. Replication of H-1PV was measured by
RT-PCR of viral RNA, fluorescence-activated cell sorter (FACS)
analysis and the synthesis of infectious virus particles. To
identify a possible mechanism for radiation induced change in the
oncolytic activity of H-1PV we performed cell cycle analyses.
Results. Previous irradiation rendered glioma cells fully
permissive to H-1PV infection. Irradiation 24 hours prior to H-1PV
infection led to increased cell killing most notably in
radioresistant glioma cells. Intracellular levels of NS-1, the
main effector of H-1PV induced cytotoxicity, were elevated after
irradiation. S-phase levels were increased one day after
irradiation improving S-phase dependent viral replication and
cytotoxicity. Conclusion. This study demonstrates intact
susceptibility of previously irradiated glioma-cells for H-1PV
induced oncolysis. The combination of ionizing radiation followed
by H-1PV infection increased viral cytotoxicity, especially in
radioresistant gliomas. These findings support the ongoing
development of a clinical trial of H-1PV in patients with
recurrent glioblastomas.
Collapse
|
26
|
Singh P, Yam M, Russell PJ, Khatri A. Molecular and traditional chemotherapy: a united front against prostate cancer. Cancer Lett 2010; 293:1-14. [PMID: 20117879 DOI: 10.1016/j.canlet.2009.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 11/23/2009] [Accepted: 11/27/2009] [Indexed: 01/28/2023]
Abstract
Castrate resistant prostate cancer (CRPC) is essentially incurable. Recently though, chemotherapy demonstrated a survival benefit ( approximately 2months) in the treatment of CRPC. While this was a landmark finding, suboptimal efficacy and systemic toxicities at the therapeutic doses warranted further development. Smart combination therapies, acting through multiple mechanisms to target the heterogeneous cell populations of PC and with potential for reduction in individual dosing, need to be developed. In that, targeted molecular chemotherapy has generated significant interest with the potential for localized treatment to generate systemic efficacy. This can be further enhanced through the use of oncolytic conditionally replicative adenoviruses (CRAds) to deliver molecular chemotherapy. The prospects of chemotherapy and molecular-chemotherapy as single and as components of combination therapies are discussed.
Collapse
Affiliation(s)
- P Singh
- Centre for Medicine and Oral Health, Griffith University - Gold Coast GH1, High Street, Southport, Gold Coast, QLD 4215, Australia
| | | | | | | |
Collapse
|
27
|
Saito K, Shirasawa H, Isegawa N, Shiiba M, Uzawa K, Tanzawa H. Oncolytic virotherapy for oral squamous cell carcinoma using replication-competent viruses. Oral Oncol 2009; 45:1021-7. [DOI: 10.1016/j.oraloncology.2009.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 08/29/2009] [Accepted: 09/02/2009] [Indexed: 01/02/2023]
|
28
|
Medical application of herpes simplex virus. J Dermatol Sci 2009; 57:75-82. [PMID: 19939634 DOI: 10.1016/j.jdermsci.2009.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 10/20/2009] [Accepted: 10/21/2009] [Indexed: 11/22/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are important human pathogens that cause a variety of diseases from mild skin diseases such as herpes labialis and herpes genitalis to life-threatening diseases such as herpes encephalitis and neonatal herpes. A number of studies have elucidated the roles of this virus in viral replication and pathogenicity, the regulation of gene expression, interaction with the host cell and immune evasion from the host system. This research has allowed the development of potential therapeutic agents and vectors for human diseases. This review focuses on the basic functions and roles of HSV gene products and reviews the current knowledge of medical applications of genetically engineered HSV mutants using different strategies. These major HSV-derived vectors include: (i) amplicons for gene delivery vectors; (ii) replication-defective HSV recombinants for vaccine vectors; (iii) replication-attenuated HSV recombinants for oncolytic virotherapy.
Collapse
|
29
|
Huszthy PC, Immervoll H, Wang J, Goplen D, Miletic H, Eide GE, Bjerkvig R. Cellular effects of oncolytic viral therapy on the glioblastoma microenvironment. Gene Ther 2009; 17:202-16. [DOI: 10.1038/gt.2009.130] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
30
|
A comparative review of the potential role of adenovirus and Herpes Simplex Virus in the treatment of advanced squamous cell carcinoma of the head and neck. JOURNAL OF RADIOTHERAPY IN PRACTICE 2009. [DOI: 10.1017/s146039690999001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractThe unsatisfactory outcome of patients who receive intensive multimodality treatment for advanced squamous cell carcinoma of the head and neck (SCCHN) has motivated investigators to seek novel treatments to improve survival. Advances in molecular biology has led to the development of cancer gene therapy (CGT) and revived interest in viral vectors as a mechanism. SCCHN is an ideal model for CGT as disease remains locoregional and is amenable to injection of viruses. Adenovirus and Herpes Simplex Virus Type-1 (HSV) are the most studied Oncolytic Viruses (OVs). Both viruses have been shown to select and replicate in tumour cells and demonstrate anti-tumour effect in laboratory studies and clinical trials. Toxicity from OVs is minor and manageable. Different adenoviral mutants have been investigated with mixed responses. One vector, H101, has now been licensed after showing significant tumour regression in conjunction with chemotherapy. HSV has a larger capacity to carry genetic material and with the addition of the granulocyte–macrophage colony–stimulating factor, has the potential to stimulate an immune response systemically and at the site of disease. OVs are limited by the distribution of virus beyond injection site and by pre-existing or rapidly established immune response. Phase III studies are required.
Collapse
|
31
|
Friedman GK, Pressey JG, Reddy AT, Markert JM, Gillespie GY. Herpes simplex virus oncolytic therapy for pediatric malignancies. Mol Ther 2009; 17:1125-35. [PMID: 19367259 DOI: 10.1038/mt.2009.73] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Despite improving survival rates for children with cancer, a subset of patients exist with disease resistant to traditional therapies such as surgery, chemotherapy, and radiation. These patients require newer, targeted treatments used alone or in combination with more traditional approaches. Oncolytic herpes simplex virus (HSV) is one of these newer therapies that offer promise for several difficult to treat pediatric malignancies. The potential benefit of HSV therapy in pediatric solid tumors including brain tumors, neuroblastomas, and sarcomas is reviewed along with the many challenges that need to be addressed prior to moving oncolytic HSV therapy from the laboratory to the beside in the pediatric population.
Collapse
Affiliation(s)
- Gregory K Friedman
- Department of Pediatrics, Children's Hospital of Alabama, University of Alabama at Birmingham, USA.
| | | | | | | | | |
Collapse
|
32
|
Singh R, Kostarelos K. Designer adenoviruses for nanomedicine and nanodiagnostics. Trends Biotechnol 2009; 27:220-9. [DOI: 10.1016/j.tibtech.2009.01.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/02/2009] [Accepted: 01/07/2009] [Indexed: 01/15/2023]
|
33
|
Tyler MA, Sonabend AM, Ulasov IV, Lesniak MS. Vector therapies for malignant glioma: shifting the clinical paradigm. Expert Opin Drug Deliv 2008; 5:445-58. [PMID: 18426385 DOI: 10.1517/17425247.5.4.445] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Malignant glioma represents one of the most aggressive and devastating forms of human cancer. At present, there exists no successful treatment for this disease. Gene therapy, or vector therapy, has emerged as a viable experimental treatment method for intracranial malignancies. OBJECTIVE Vector therapy paradigms that have entered the clinical arena have shown adequate safety; however, the majority of the studies failed to observe significant clinical benefits. As such, researchers have refocused their efforts on developing novel vectors as well as new delivery methods to enhance the therapeutic effect of a particular vector. In this review, we discuss common vector therapy approaches used in clinical trials, their drawbacks and potential ways of overcoming these challenges. METHODS We focus on the experimental evaluation of cell-based vector therapies and adenoviral and herpes simplex virus type 1 vectors in the treatment of malignant glioma. CONCLUSION Vector therapy remains a promising treatment strategy for malignant glioma. Although significant questions remain to be answered, early clinical data suggest safety of this approach and future studies will likely address the efficacy of the proposed therapy.
Collapse
Affiliation(s)
- Matthew A Tyler
- University of Chicago, The Brain Tumor Center, 5841 S. Maryland Avenue, MC 3026, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
34
|
Brown CW, Bell JC. Oncolytic Viruses: A New Weapon to Fight Cancer. J Med Imaging Radiat Sci 2008; 39:115-127. [PMID: 31051886 DOI: 10.1016/j.jmir.2008.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Remission from cancer after viral infection was first noted in the beginning of the 20th century, and with advances in virotherapy and genetic engineering, the advent of an approved viral therapeutic in North America is fast approaching. Mechanisms of tumour selectivity and killing, along with information obtained from clinical trials are reviewed here. Although oncolytic viruses are generally safe and well tolerated, their overall anti-tumour efficacy has varied. This article outlines strategies to improve the efficacy of the oncolytic platform without compromising its impressive safety profile. It will highlight new methods being developed to quantify the activity of oncolytic viruses in real time. Harnessing the factors that control the tumour microenvironment and the immune system are the key to enhancing the oncolytic activity. The purpose of this article is to introduce and provide an overview of the current state of cancer killing of oncolytic viruses. The reader will acquire knowledge of the basic principles of oncolytic viruses and their use in the clinical setting. This review summarizes articles retrieved from Medline using key words such as "virus," "oncolytic virus," "virotherapy," "cancer," and "clinical trials." Review articles published in the English language from 2005 onward were read and corroborating data and conclusions were summarized. When appropriate, cited references were also reviewed and incorporated. The reader is directed to references we found most concise.
Collapse
Affiliation(s)
- Christopher W Brown
- Department of Microbiology & Immunology and the Ottawa Health Research Institute, University of Ottawa, Ottawa Regional Cancer Center, Ottawa, Ontario; Division of Orthopaedic Surgery, University of Ottawa, Ottawa Hospital General Campus, Ottawa, Ontario
| | - John C Bell
- Department of Microbiology & Immunology and the Ottawa Health Research Institute, University of Ottawa, Ottawa Regional Cancer Center, Ottawa, Ontario.
| |
Collapse
|
35
|
Nagano S, Perentes JY, Jain RK, Boucher Y. Cancer cell death enhances the penetration and efficacy of oncolytic herpes simplex virus in tumors. Cancer Res 2008; 68:3795-802. [PMID: 18483263 DOI: 10.1158/0008-5472.can-07-6193] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The success of tumor oncolytic virotherapy is limited by the poor penetration of virus in tumors. Interstitial collagen fibers and the narrow spacing between cancer cells are major barriers hindering the movement of large viral particles. To bypass the cellular barrier, we tested the hypothesis that the void space produced by cancer cell apoptosis enhances the initial spread and efficacy of oncolytic herpes simplex virus (HSV). In mice with mammary tumors, apoptosis was induced by doxycycline-regulated expression/activation of CD8/caspase-8, paclitaxel, or paclitaxel plus tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). In both collagen-poor and collagen-rich tumors, apoptosis or necrosis increased the initial intratumoral spread of HSV. Compared with the isolated pattern of HSV infection generally located in the center of control tumors, apoptosis induction and a single i.t. injection of virus produced an interconnected and diffuse pattern of infection, which extended from the tumor center to the periphery. This interconnected pattern of viral infection correlated with the formation of void spaces and channel-like structures in apoptosis-rich tumor areas. We also show that the i.t. injection of HSV after caspase-8 activation or paclitaxel-TRAIL pretreatment retards tumor growth, whereas HSV administration before tumor cell death induction did not improve therapeutic efficacy. Hence, our findings show that the induction of cancer cell death before the injection of oncolytic HSV enhances intratumoral virus delivery/penetration and antitumor efficacy.
Collapse
Affiliation(s)
- Satoshi Nagano
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
36
|
Prestwich RJ, Errington F, Harrington KJ, Pandha HS, Selby P, Melcher A. Oncolytic viruses: do they have a role in anti-cancer therapy? Clin Med Oncol 2008; 2:83-96. [PMID: 21892269 PMCID: PMC3161683 DOI: 10.4137/cmo.s416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Oncolytic viruses are replication competent, tumor selective and lyse cancer cells. Their potential for anti-cancer therapy is based upon the concept that selective intratumoral replication will produce a potent anti-tumor effect and possibly bystander or remote cell killing, whilst minimizing normal tissue toxicity. Viruses may be naturally oncolytic or be engineered for oncolytic activity, and possess a host of different mechanisms to provide tumor selectivity. Clinical use of live replicating viruses is associated with a unique set of safety issues. Clinical experience has so far provided evidence of limited efficacy and a favourable toxicity profile. The interaction with the host immune system is complex. An anti-viral immune response may limit efficacy by rapidly clearing the virus. However, virally-induced cell lysis releases tumor associated antigens in a 'dangerous' context, and limited evidence suggests that this can lead to the generation of a specific anti-tumor immune response. Combination therapy with chemotherapy or radiotherapy represents a promising avenue for ongoing translation of oncolytic viruses into clinical practice. Obstacles to therapy include highly effective non-specific host mechanisms to clear virus following systemic delivery, immune-mediated clearance, and intratumoral barriers limiting virus spread. A number of novel strategies are now under investigation to overcome these barriers. This review provides an overview of the potential role of oncolytic viruses, highlighting recent progress towards developing effective therapy and asks if they are a realistic therapeutic option at this stage.
Collapse
Affiliation(s)
- Robin J Prestwich
- Cancer Research UK, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | | | | | | | | | | |
Collapse
|
37
|
Kurozumi K, Hardcastle J, Thakur R, Yang M, Christoforidis G, Fulci G, Hochberg FH, Weissleder R, Carson W, Chiocca EA, Kaur B. Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst 2007; 99:1768-81. [PMID: 18042934 DOI: 10.1093/jnci/djm229] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The tumor microenvironment is being increasingly recognized as an important determinant of tumor progression as well as of therapeutic response. We investigated oncolytic virus (OV) therapy-induced changes in tumor blood vessels and the impact of modulating tumor vasculature on the efficacy of oncolytic virus therapy. METHODS Rat glioma cells (D74/HveC) were implanted intracranially in immune-competent rats. Seven days later, the rats (groups of 3-7 rats) were treated with oncolytic virus (hrR3), and, 3 days later, brains were harvested for evaluation. Some rats were treated with angiostatic cRGD peptide 4 days before oncolytic virus treatment. Some rats were treated with cyclophosphamide (CPA), an immunosuppressant, 2 days before oncolytic virus treatment. Changes in tumor vascular perfusion were evaluated by magnetic resonance imaging of live rats and by fluorescence microscopy of tumor sections from rats perfused with Texas red-conjugated lectin immediately before euthanasia. Leukocyte infiltration in tumors was evaluated by anti-CD45 immunohistochemistry, and the presence of oncolytic virus in tumors was evaluated by viral titration. Changes in cytokine gene expression in tumors were measured by quantitative real-time polymerase chain reaction-based microarrays. Survival was analyzed by the Kaplan-Meier method. All statistical tests were two-sided. RESULTS Oncolytic virus treatment of experimental rat gliomas increased tumor vascular permeability, host leukocyte infiltration into tumors, and intratumoral expression of inflammatory cytokine genes, including interferon gamma (IFN-gamma). The increase in vascular permeability was suppressed in rats pretreated with cyclophosphamide. Compared with rats treated with hrR3 alone, rats pretreated with a single dose of cRGD peptide before hrR3 treatment had reduced tumor vascular permeability, leukocyte infiltration, and IFN-gamma protein levels (mean IFN-gamma level for hrR3 versus hrR3 + cRGD = 203 versus 65.6 microg/mg, difference = 137 microg/mg, 95% confidence interval = 72.7 to 202.9 microg/mg, P = .006); increased viral titers in tumor tissue; and longer median survival (21 days versus 17 days, P<.001). CONCLUSIONS A single dose of angiostatic cRGD peptide treatment before oncolytic virus treatment enhanced the antitumor efficacy of oncolytic virus.
Collapse
Affiliation(s)
- Kazuhiko Kurozumi
- Dardinger Laboratory for Neuro-oncology and Neurosciences, Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bieler A, Mantwill K, Holzmüller R, Jürchott K, Kaszubiak A, Stärk S, Glockzin G, Lage H, Grosu AL, Gansbacher B, Holm PS. Impact of radiation therapy on the oncolytic adenovirus dl520: implications on the treatment of glioblastoma. Radiother Oncol 2007; 86:419-27. [PMID: 17967494 DOI: 10.1016/j.radonc.2007.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 09/14/2007] [Accepted: 10/04/2007] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE Viral oncolytic therapy is emerging as a new form of anticancer therapy and has shown promising preclinical results, especially in combination with radio- and chemotherapy. We recently reported that nuclear localization of the human transcription factor YB-1 in multidrug-resistant cells facilitates E1-independent adenoviral replication. The aim of this study was to evaluate the combined treatment of the conditionally-replicating adenovirus dl520 and radiotherapy in glioma cell lines in vitro and in human tumor xenografts. Furthermore, the dependency of YB-1 on dl520 replication was verified by shRNA directed down regulation of YB-1. METHODS AND MATERIAL Localization of YB-1 was determined by immunostaining. Glioma cell lines LN-18, U373 and U87 were infected with dl520. Induction of cytopathic effect (CPE), viral replication, viral yield and viral release were determined after viral infection, radiation therapy and the combination of both treatment modalities. The capacity of treatments alone or combined to induce tumor growth inhibition of subcutaneous U373 tumors was tested also in nude mice. RESULTS Quantitative real-time PCR demonstrated that the shRNA-mediated down regulation of YB-1 is leading to a dramatic decrease in adenoviral replication of dl520. Immunostaining analysis showed that the YB-1 protein was predominantly located in the cytoplasm in the perinuclear space and less abundant in the nucleus. After irradiation we found an increase of nuclear YB-1. The addition of radiotherapy increased the oncolytic effect of dl520 with enhanced viral replication, viral yield and viral release. The oncolytic activity of dl520 plus radiation inhibited the growth of subcutaneous U373 tumors in a xenograft mouse model. CONCLUSIONS Radiation mediated increase of nuclear YB-1 in glioma cells enhanced the oncolytic potential of adenovirus dl520.
Collapse
Affiliation(s)
- Alexa Bieler
- Institute of Experimental Oncology, Technical University of Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Advani SJ, Weichselbaum RR, Chmura SJ. Enhancing Radiotherapy With Genetically Engineered Viruses. J Clin Oncol 2007; 25:4090-5. [PMID: 17827458 DOI: 10.1200/jco.2007.12.2739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Concurrent radiotherapy and chemotherapy have been used to treat a variety of tumors to improve local control and overall survival. Gene therapy strategies represent a novel means to further improve the therapeutic ratio of ionizing radiation. Cancer gene therapy strategies in clinical trials include the use of replication-defective shuttle vectors to deliver exogenous genes and replication-competent oncolytic viruses. This review focuses on these approaches in the context of radiotherapy and radiochemotherapy. In the shuttle vector approach, exogenous gene products that enhance ionizing radiation–mediated tumor cell destruction have been selected. Moreover, the expression of exogenous genes encoding therapeutic proteins can be regulated through the use of ionizing radiation–enhanced promoters. Also, genetically engineered attenuated replication-competent viruses have been investigated in clinical trials. Preclinical data indicate that ionizing radiation interacts with replication-competent oncolytic viruses to enhance viral replication and tumor destruction. Here, we review the background preclinical and current clinical data utilizing gene therapy with radiotherapy.
Collapse
Affiliation(s)
- Sunil J Advani
- Department of Radiation and Cellular Oncology, Center for Molecular Medicine, University of Chicago, Chicago, IL, USA
| | | | | |
Collapse
|
40
|
|
41
|
|