1
|
La Rosa A, Mittauer KE, Rzepczynski AE, Chuong MD, Bassiri-Gharb N, McAllister NC, Hall MD, Press RH, Gutierrez AN, Tolakanahalli R, Mehta MP, Kotecha R. Temporospatial tumor dynamic changes in glioblastoma during radiotherapy. J Neurooncol 2025:10.1007/s11060-025-05060-7. [PMID: 40299247 DOI: 10.1007/s11060-025-05060-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
INTRODUCTION Glioblastoma (GBM) management post maximal-safe resection consists of concurrent chemoradiation (CRT) and adjuvant chemotherapy. MRIs are historically performed post-operatively and/or at treatment planning. Continuous interfractional changes during CRT have not been adequately characterized. MR-guided radiation therapy (MRgRT) allows for detailed imaging of tumor volumes during the course of treatment. This is a preliminary initial report evaluating temporal and spatial changes that occur in GBM, in order to model tumor dynamics. METHODS Five GBM patients enrolled onto an institutional biorepository registry underwent treatment with our 0.35T MRgRT workflow. Target volumes were delineated based on T2/FLAIR (GTV_46Gy) and T1 gadolinium-enhanced MR (GTV_14Gy) sequences. Weekly post-contrast MRIs were performed during CRT with the 0.35T magnet to monitor target volume dynamics. RESULTS Thirty-five MR scans were evaluated. The median time from surgery to CRT was 32 days (range: 28-40), with a median of 13 days (range: 12-14) from simulation to CRT. We found median volume reductions of 40.0% (range: 8.3-86.5%), and 37.1% (range: 15.0-67.5%) for GTV_46Gy and GTV_14Gy, respectively. The bulk of these changes occurred early, within the first 3 weeks of the 6-week treatment, with significant reductions observed between baseline and week 1 -32.6% for GTV_46Gy and 17.9% for GTV_14Gy. Separately, statistically significant volume reductions for the cavity volume (F = 59.43, p < 0.05) were observed. Compared to baseline, centroid migrations of the target volumes were also noted: the median GTV_46Gy centroid migration was 7.4 mm (range: 2.0-10.8 mm) and the median GTV_14Gy centroid migration was 3.6 mm (range: 1.3-8.8 mm). CONCLUSIONS Our pilot study suggests that weekly MRgRT imaging for GBM patients undergoing long course CRT reveals significant GTV reductions and centroid migrations, especially during the first 3 weeks of treatment. A more detailed understanding of which patients are at highest risk for tumor change and migration is needed to best apply these imaging parameters to clinical practice.
Collapse
Affiliation(s)
- Alonso La Rosa
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Department of Radiation Oncology, Hospital Universitario La Paz, Madrid, Spain
| | - Kathryn E Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Amy E Rzepczynski
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Nema Bassiri-Gharb
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Nicole C McAllister
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Matthew D Hall
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Robert H Press
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Drive, Miami, FL, 33176, USA
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Drive, Miami, FL, 33176, USA
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 1R203, 8900 N Kendall Drive, Miami, FL, 33176, USA.
- Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| |
Collapse
|
2
|
Hiremath KC, Atakishi K, Lima EABF, Farhat M, Panthi B, Langshaw H, Shanker MD, Talpur W, Thrower S, Goldman J, Chung C, Yankeelov TE, Hormuth Ii DA. Identifiability and model selection frameworks for models of high-grade glioma response to chemoradiation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2025; 383:20240212. [PMID: 40172557 DOI: 10.1098/rsta.2024.0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/23/2024] [Accepted: 12/27/2024] [Indexed: 04/04/2025]
Abstract
We have developed a family of biology-based mathematical models of high-grade glioma (HGG), capturing the key features of tumour growth and response to chemoradiation. We now seek to quantify the accuracy of parameter estimation and determine, when given a virtual patient cohort, which model was used to generate the tumours. In this way, we systematically test both the parameter and model identifiability. Virtual patients are generated from unique growth parameters whose growth dynamics are determined by the model family. We then assessed the ability to recover model parameters and select the model used to generate the tumour. We then evaluated the accuracy of predictions using the selected model at four weeks post-chemoradiation. We observed median parameter errors from 0.04% to 72.96%. Our model selection framework selected the model that was used to generate the data in 82% of the cases. Finally, we predicted the growth of the virtual tumours using the selected model resulting in low error at the voxel-level (concordance correlation coefficient (CCC) ranged from 0.66 to 0.99) and global level (percentage error in total tumour cellularity ranged from -12.35% to 0.07%). These results demonstrate the reliability of our framework to identify the most appropriate model under noisy conditions expected in the clinical setting.This article is part of the theme issue 'Uncertainty quantification for healthcare and biological systems (Part 2)'.
Collapse
Affiliation(s)
- Khushi C Hiremath
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kenan Atakishi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ernesto A B F Lima
- Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Maguy Farhat
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bikash Panthi
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Holly Langshaw
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihir D Shanker
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Wasif Talpur
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sara Thrower
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jodi Goldman
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Caroline Chung
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Imaging Physics, MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX 78712, USA
- Department of Oncology, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA
| | - David A Hormuth Ii
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Qiu Y, Li Y, Jiang C, Wu X, Liu W, Fan C, Ye X, He L, Xiao S, Zhao Q, Wu W, Chen K, Tan C, Li Y, Wang H, Liu F. Toxicity and Efficacy of Different Target Volume Delineations of Radiation Therapy Based on the Updated Radiation Therapy Oncology Group/National Research Group and European Organization for Research and Treatment of Cancer Guidelines in Patients With Grade 3-4 Glioma: A Randomized Controlled Clinical Trial. Int J Radiat Oncol Biol Phys 2025; 121:1168-1181. [PMID: 39615657 DOI: 10.1016/j.ijrobp.2024.11.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024]
Abstract
PURPOSE Our study aimed to evaluate the safety and efficacy of radiation therapy (RT) in the treatment of grade 3-4 glioma by comparing the updated Radiation Therapy Oncology Group (RTOG)/National Research Group (NRG) with European Organization for Research and Treatment of Cancer (EORTC) guidelines for target volume delineation. METHODS AND MATERIALS A total of 245 patients with newly diagnosed World Health Organization grade 3-4 glioma were enrolled and randomly assigned (1:1 ratio) to undergo postoperative RT with concurrent and maintenance temozolomide. The radiation target volume delineation was determined by using either the updated RTOG/NRG (n = 122) or EORTC guidelines (n = 123). The primary endpoint was the toxicity associated with treatment. Progression-free survival (PFS) and overall survival (OS) were considered secondary endpoints. RESULTS No differences in low- or high-grade toxicities between the 2 groups, and neither group exhibited grade 5 toxicities. No significant differences in neurologic toxicities were observed between the RTOG/NRG and EORTC groups. The median PFS in the RTOG/NRG group and the EORTC group was 11.0 months (95% confidence interval [CI], 7.1-14.9 months) and 10.0 months (95% CI, 3.8-16.2 months), respectively (P = .73). The median OS in the RTOG/NRG group and the EORTC group was 19.5 months (95% CI, 14.2-24.8 months) and 18.5 months (95% CI, 12.8-24.2 months), respectively (P = .80). In patients with isocitrate dehydrogenase wild-type glioblastoma, there were no significant differences between the RTOG/NRG group and the EORTC group in median PFS (8.0 months [95% CI, 6.8-9.2 months] vs. 8.0 months [95% CI, 7.0-9.0 months], P = .38) and median OS (12.0 months [95% CI, 7.2-16.8 months] vs. 11.0 months [95% CI, 9.7-12.3 months], P = .10). CONCLUSIONS Compared with EORTC principles, postoperative RT according to RTOG/NRG principles did not increase treatment-related toxicities and was equally effective for patients with grade 3-4 glioma, including the subgroup of patients with isocitrate dehydrogenase wild-type glioblastoma.
Collapse
Affiliation(s)
- Yanfang Qiu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Yanxian Li
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Cuihong Jiang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Xiangwei Wu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Wen Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Changgen Fan
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Xu Ye
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Lili He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Shuai Xiao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Qi Zhao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Wenqiong Wu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Kailin Chen
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Chao Tan
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Yuyi Li
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China
| | - Hui Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China; Key Laboratory of Translational Radiation Oncology, Hunan Province, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China.
| | - Feng Liu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Hunan, China.
| |
Collapse
|
4
|
Karp JM, Kruser TJ. Contouring with FLAIR: Targeting Peritumoral Edema (and Beyond) in Glioblastoma. Int J Radiat Oncol Biol Phys 2025; 121:1182-1184. [PMID: 40089338 DOI: 10.1016/j.ijrobp.2024.11.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 03/17/2025]
Affiliation(s)
- Jerome M Karp
- Benjamin Davidai Department of Radiation Oncology, Sheba Medical Center, Ramat Gan, Israel; Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York
| | - Tim J Kruser
- Department of Human Oncology, University of Wisconsin Hospitals and Clinics, Madison, Wisconsin.
| |
Collapse
|
5
|
Matsui JK, Swanson D, Allen P, Perlow HK, Bradshaw J, Beckham TH, Tom MC, Wang C, Perni S, Yeboa DN, Ghia AJ, McAleer MF, Li J, Palmer JD, McGovern SL. Reduced Treatment Volumes for Glioblastoma Associated With Lower Rates of Radionecrosis and Lymphopenia: A Pooled Analysis. Adv Radiat Oncol 2025; 10:101717. [PMID: 40028224 PMCID: PMC11871440 DOI: 10.1016/j.adro.2025.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/03/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose There is marked variability in treatment fields for glioblastoma. We performed a retrospective study comparing outcomes of patients treated according to MD Anderson Cancer Center (MDACC) or Radiation Therapy Oncology Group (RTOG) guidelines and identified differences in treatment-related toxicity. Methods and Materials Adult patients with glioblastoma treated with surgery and adjuvant radiation treatment were included in this study. Primary outcomes were local control, progression-free survival (PFS), overall survival (OS), and radiation-related toxicity. PFS and OS were estimated using the Kaplan-Meier estimator. Univariate and multivariate analyses were conducted using Cox regression models. Results In total, 257 patients met the inclusion criteria with a median age of 60.1 years at diagnosis. There were 162 and 95 patients treated according to the MDACC or RTOG guidelines, respectively. Despite having similar gross tumor volumes, the RTOG cohort had a larger median planning target volume (303.2 cm³ vs 430.7 cm³, P < .001) and worse PFS (6 months vs 9 months, P = .031). There was no difference in OS between treatment techniques. Patients treated according to RTOG guidelines experienced higher rates of radionecrosis (34% vs 21%, P = .024) and severe lymphopenia (15% vs 7%, P = .044). Conclusions Patients treated according to MDACC guidelines had smaller treatment volumes, improved PFS, and lower rates of radionecrosis and severe lymphopenia. However, when adjusting for prognostic factors, treatment type was not associated with PFS in multivariate analysis. Prospective investigation is warranted to confirm these differences in outcomes.
Collapse
Affiliation(s)
- Jennifer K. Matsui
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - David Swanson
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pamela Allen
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Haley K. Perlow
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jared Bradshaw
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Thomas H. Beckham
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Martin C. Tom
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chenyang Wang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Subha Perni
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debra N. Yeboa
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amol J. Ghia
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mary Frances McAleer
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Li
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joshua D. Palmer
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Susan L. McGovern
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
6
|
Price SJ, Hughes JG, Jain S, Kelly C, Sederias I, Cozzi FM, Fares J, Li Y, Kennedy JC, Mayrand R, Wong QHW, Wan Y, Li C. Precision Surgery for Glioblastomas. J Pers Med 2025; 15:96. [PMID: 40137412 PMCID: PMC11943082 DOI: 10.3390/jpm15030096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
Glioblastomas are the most common primary malignant brain tumor. Most of the recent improvements their treatment are due to improvements in surgery. Although many would consider surgery as the most personalized treatment, the variation in resection between surgeons suggests there remains a need for objective measures to determine the best surgical treatment for individualizing therapy for glioblastoma. We propose applying a personalized medicine approach to improve outcomes for patients. We suggest looking at personalizing preoperative preparation, improving the resection target by understanding what needs removing and what ca not be removed, and better patient selection with personalized rehabilitation plans for all patients.
Collapse
Affiliation(s)
- Stephen J. Price
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Jasmine G. Hughes
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Swati Jain
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
- Division of Neurosurgery, University Surgical Cluster, National University Health System, 1E Lower Kent Ridge Road, Singapore 119074, Singapore
| | - Caroline Kelly
- Department of Neuro-Oncology Outpatient Physiotherapy, Cambridge University Hospitals, Cambridge CB2 0QQ, UK
| | - Ioana Sederias
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Francesca M. Cozzi
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Jawad Fares
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| | - Yonghao Li
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Jasmine C. Kennedy
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Roxanne Mayrand
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Queenie Hoi Wing Wong
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
| | - Yizhou Wan
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
- Department of Neurosurgery, John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DU, UK
| | - Chao Li
- Cambridge Brain Tumour Imaging Laboratory, Academic Neurosurgery Division, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK; (J.G.H.); (I.S.); (F.M.C.); (J.F.); (Y.L.); (J.C.K.); (R.M.); (Q.H.W.W.); (Y.W.); (C.L.)
- Department of Biomedical Engineering, School of Science and Engineering, Fulton Building, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
7
|
Horsley PJ, Bailey DL, Schembri G, Hsiao E, Drummond J, Back MF. The role of amino acid PET in radiotherapy target volume delineation for adult-type diffuse gliomas: A review of the literature. Crit Rev Oncol Hematol 2025; 205:104552. [PMID: 39521308 DOI: 10.1016/j.critrevonc.2024.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE To summarise existing literature examining amino acid positron emission tomography (AA-PET) for radiotherapy target volume delineation in patients with gliomas. METHODS Systematic search of MEDLINE and EMBASE databases. RESULTS Twenty studies met inclusion criteria. Studies comparing MRI- and AA-PET- derived target volumes consistently found these to be complementary. Across studies, AA-PET was a strong predictor of the site of subsequent relapse. In studies examining AA-PET-guided radiotherapy at standard doses, including one study using reduced margins, survival outcomes were similar to historical cohorts whose volumes were generated using MRI alone. Four prospective single-arm trials examining AA-PET-guided dose-escalated radiotherapy reported mixed results. The two trials that used both a higher biologically-effective dose and boost-volumes defined using both MRI and AA-PET reported promising outcomes. CONCLUSION AA-PET is a promising complementary tool to MRI for radiotherapy target volume delineation, with potential benefits requiring further validation including margin reduction and facilitation of dose-escalation.
Collapse
Affiliation(s)
- Patrick J Horsley
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia.
| | - Dale L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia; Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Geoffrey Schembri
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Edward Hsiao
- Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - James Drummond
- Department of Radiology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Michael F Back
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia; The Brain Cancer Group, Sydney, New South Wales, Australia; Northern Clinical School, Sydney Medical School, University of Sydney, Sydney, Australia; Central Coast Cancer Centre, Gosford Hospital, Gosford, New South Wales, Australia
| |
Collapse
|
8
|
Yavorska M, Tomaciello M, Sciurti A, Cinelli E, Rubino G, Perrella A, Cerase A, Pastina P, Gravina GL, Arcieri S, Mazzei MA, Migliara G, Baccolini V, Marampon F, Minniti G, Di Giacomo AM, Tini P. Predictive value of perilesional edema volume in melanoma brain metastasis response to stereotactic radiosurgery. J Neurooncol 2024; 170:611-618. [PMID: 39259411 PMCID: PMC11615094 DOI: 10.1007/s11060-024-04818-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND AIM Stereotactic radiotherapy (SRT) is an established treatment for melanoma brain metastases (MBM). Recent evidence suggests that perilesional edema volume (PEV) might compromise the delivery and efficacy of radiotherapy to treat BM. This study investigated the association between SRT efficacy and PEV extent in MBM. MATERIALS AND METHODS This retrospective study reviewed medical records from January 2020 to September 2023. Patients with up to 5 measurable MBMs, intracranial disease per RANO/iRANO criteria, and on low-dose corticosteroids were included. MRI scans assessed baseline neuroimaging, with PEV analyzed using 3D Slicer. SRT plans were based on MRI-CT fusion, delivering 18-32.5 Gy in 1-5 fractions. Outcomes included intracranial objective response rate (iORR) and survival measures (L-iPFS and OS). Statistical analysis involved decision tree analysis and multivariable logistic regression, adjusting for clinical and treatment variables. RESULTS Seventy-two patients with 101 MBM were analyzed, with a mean age of 68.83 years. The iORR was 61.4%, with Complete Response (CR) in 21.8% and Partial Response (PR) in 39.6% of the treated lesions. PEV correlated with KPS, BRAF status, and treatment response. Decision tree analysis identified a PEV cutoff at 0.5 cc, with lower PEVs predicting better responses (AUC = 0.82 sensitivity: 86.7%, specificity:74.4%,). Patients with PEV ≥ 0.5 cc had lower response rates (iORR 44.7% vs. 63.8%, p < 0.001). Median OS was 9.4 months, with L-iPFS of 27 months. PEV significantly impacted survival outcomes. CONCLUSIONS A more extensive PEV was associated with a less favorable outcome to SRT in MBM.
Collapse
Affiliation(s)
- Mariya Yavorska
- Unit of Radiation Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Miriam Tomaciello
- Radiation Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Sciurti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Elisa Cinelli
- Unit of Radiation Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giovanni Rubino
- Unit of Radiation Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Armando Perrella
- Unit of Neuroradiology, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Alfonso Cerase
- Unit of Neuroradiology, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Pierpaolo Pastina
- Unit of Neuroradiology, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Arcieri
- Policlinico Umberto I Hospital, Viale del Policlinico, Rome, 00161, Italy
| | - Maria Antonietta Mazzei
- Unit of Diagnostic Imaging, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Giuseppe Migliara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Valentina Baccolini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Francesco Marampon
- Radiation Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Minniti
- Radiation Oncology, Policlinico Umberto I, Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCSS Neuromed, Pozzilli, Italy
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Paolo Tini
- Unit of Radiation Oncology, Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy.
| |
Collapse
|
9
|
Witzmann K, Raschke F, Wesemann T, Löck S, Funer F, Linn J, Troost EGC. Diffusion decrease in normal-appearing white matter structures following photon or proton irradiation indicates differences in regional radiosensitivity. Radiother Oncol 2024; 199:110459. [PMID: 39069087 DOI: 10.1016/j.radonc.2024.110459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Radio(chemo)therapy (RCT) as part of the standard treatment of glioma patients, inevitably leads to radiation exposure of the tumor-surrounding normal-appearing (NA) tissues. The effect of radiotherapy on the brain microstructure can be assessed by magnetic resonance imaging (MRI) using diffusion tensor imaging (DTI). The aim of this study was to analyze regional DTI changes of white matter (WM) structures and to determine their dose- and time-dependency. METHODS As part of a longitudinal prospective clinical study (NCT02824731), MRI data of 23 glioma patients treated with proton or photon beam therapy were acquired at three-monthly intervals until 36 months following irradiation. Mean, radial and axial diffusivity (MD, RD, AD) as well as fractional anisotropy (FA) were investigated in the NA tissue of 15 WM structures and their dependence on radiation dose, follow-up time and distance to the clinical target volume (CTV) was analyzed in a multivariate linear regression model. Due to the small and non-comparable patient numbers for proton and photon beam irradiation, a separate assessment of the findings per treatment modality was not performed. RESULTS Four WM structures (i.e., internal capsule, corona radiata, posterior thalamic radiation, and superior longitudinal fasciculus) showed statistically significantly decreased RD and MD after RT, whereas AD decrease and FA increase occurred less frequently. The posterior thalamic radiation showed the most pronounced changes after RCT [i.e., ΔRD = -8.51 % (p = 0.012), ΔMD = -6.14 % (p = 0.012)]. The DTI changes depended significantly on mean dose and time. CONCLUSION Significant changes in DTI for WM substructures were found even at low radiation doses. These findings may prompt new radiation dose constraints sparing the vulnerable structures from damage and subsequent side-effects.
Collapse
Affiliation(s)
- Katharina Witzmann
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Felix Raschke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Tim Wesemann
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Fabian Funer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jennifer Linn
- Institute of Diagnostic and Interventional Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Esther G C Troost
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universitat Dresden; Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
10
|
Mun SH, Jang HS, Choi BO, Kim SW, Song JH. Recurrence pattern of glioblastoma treated with intensity-modulated radiation therapy versus three-dimensional conformal radiation therapy. Radiat Oncol J 2024; 42:218-227. [PMID: 39354825 PMCID: PMC11467484 DOI: 10.3857/roj.2024.00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024] Open
Abstract
PURPOSE To evaluate recurrence patterns of and survival outcomes in glioblastoma treated with intensity-modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3D-CRT). MATERIALS AND METHODS We retrospectively examined 91 patients with glioblastoma treated with either IMRT (n = 60) or 3D-CRT (n = 31) between January 2013 and December 2019. Magnetic resonance imaging showing tumor recurrence and planning computed tomography scans were fused for analyzing recurrence patterns categorized as in-field, marginal, and out-of-field based on their relation to the initial radiation field. RESULTS The median overall survival (OS) was 18.9 months, with no significant difference between the groups. The median progression-free survival (PFS) was 9.4 months, with no significant difference between the groups. Patients who underwent gross total resection (GTR) had higher OS and PFS than those who underwent less extensive surgery. Among 78 relapse cases, 67 were of in-field; 5, marginal; and 19, out-of-field recurrence. Among 3D-CRT-treated cases, 24 were of in-field; 1, marginal; and 9, out-of-field recurrence. Among IMRT-treated cases, 43 were of in-field; 4, marginal; and 10, out-of-field recurrence. In partial tumor removal or biopsy cases, out-of-field recurrence was less frequent in the IMRT (16.2%) than in the 3D-CRT (36.3%) group, with marginal significance (p = 0.079). CONCLUSION IMRT and 3D-CRT effectively managed glioblastoma with no significant differences in OS and PFS. The survival benefit with GTR underscored the importance of maximal surgical resection. The reduced rate of out-of-field recurrence in IMRT-treated patients with partial resection highlights its potential utility in cases with unfeasible complete tumor removal.
Collapse
Affiliation(s)
- So Hwa Mun
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hong Seok Jang
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Byung Ok Choi
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Shin Woo Kim
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Ho Song
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
11
|
Li J, Han Z, Ma C, Chi H, Jia D, Zhang K, Feng Z, Han B, Qi M, Li G, Li X, Xue H. Intraoperative rapid molecular diagnosis aids glioma subtyping and guides precise surgical resection. Ann Clin Transl Neurol 2024; 11:2176-2187. [PMID: 38924338 PMCID: PMC11330232 DOI: 10.1002/acn3.52138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/15/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE The molecular era of glioma diagnosis and treatment has arrived, and a single rapid histopathology is no longer sufficient for surgery. This study sought to present an automatic integrated gene detection system (AIGS), which enables rapid intraoperative detection of IDH/TERTp mutations. METHODS A total of 78 patients with gliomas were included in this study. IDH/TERTp mutations were detected intraoperatively using AIGS in 41 of these patients, and they were guided to surgical resection (AIGS detection group). The remaining 37 underwent histopathology-guided conventional surgical resection (non-AIGS detection group). The clinical utility of this technique was evaluated by comparing the accuracy of glioma subtype diagnosis before and after TERTp mutation results were obtained by pathologists and the extent of resection (EOR) and patient prognosis for molecular pathology-guided glioma surgery. RESULTS With NGS/Sanger sequencing and chromosome detection as the gold standard, the accuracy of AIGS results was 100%. And the timing was well matched to the intraoperative rapid pathology report. After obtaining the TERTp mutation detection results, the accuracy of the glioma subtype diagnosis made by the pathologists increased by 19.51%. Molecular pathology-guided surgical resection of gliomas significantly increased EOR (99.06% vs. 93.73%, p < 0.0001) and also improved median OS (26.77 vs. 13.47 months, p = 0.0289) and median PFS (15.90 vs. 10.57 months, p = 0.0181) in patients with glioblastoma. INTERPRETATION Using AIGS intraoperatively to detect IDH/TERTp mutations to accurately diagnose glioma subtypes can help achieve maximum safe resection of gliomas, which in turn improves the survival prognosis of patients.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Zhe Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Caizhi Ma
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Huizhong Chi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Deze Jia
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Kailiang Zhang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Zichao Feng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Bo Han
- Department of PathologyShandong University Qilu HospitalJinanShandongChina
- Department of PathologyShandong University School of Basic Medical SciencesJinanShandongChina
| | - Mei Qi
- Department of PathologyShandong University Qilu HospitalJinanShandongChina
- Department of PathologyShandong University School of Basic Medical SciencesJinanShandongChina
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| | - Xueen Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
- Shandong Key Laboratory of Brain Function RemodelingJinanShandongChina
| |
Collapse
|
12
|
Yilmaz MT, Kahvecioglu A, Yedekci FY, Yigit E, Ciftci GC, Kertmen N, Zorlu F, Yazici G. Comparison of different target volume delineation strategies based on recurrence patterns in adjuvant radiotherapy for glioblastoma. Neurooncol Pract 2024; 11:275-283. [PMID: 38737611 PMCID: PMC11085836 DOI: 10.1093/nop/npae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024] Open
Abstract
Background Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC) recommendations are commonly used guidelines for adjuvant radiotherapy in glioblastoma. In our institutional protocol, we delineate T2-FLAIR alterations as gross target volume (GTV) with reduced clinical target volume (CTV) margins. We aimed to present our oncologic outcomes and compare the recurrence patterns and planning parameters with EORTC and RTOG delineation strategies. Methods Eighty-one patients who received CRT between 2014 and 2021 were evaluated retrospectively. EORTC and RTOG delineations performed on the simulation computed tomography and recurrence patterns and planning parameters were compared between delineation strategies. Statistical Package for the Social Sciences (SPSS) version 23.0 (IBM, Armonk, NY, USA) was utilized for statistical analyses. Results Median overall survival and progression-free survival were 21 months and 11 months, respectively. At a median 18 month follow-up, of the 48 patients for whom recurrence pattern analysis was performed, recurrence was encompassed by only our institutional protocol's CTV in 13 (27%) of them. For the remaining 35 (73%) patients, recurrence was encompassed by all separate CTVs. In addition to the 100% rate of in-field recurrence, the smallest CTV and lower OAR doses were obtained by our protocol. Conclusions The current study provides promising results for including the T2-FLAIR alterations to the GTV with smaller CTV margins with impressive survival outcomes without any marginal recurrence. The fact that our protocol did not result in larger irradiated brain volume is further encouraging in terms of toxicity.
Collapse
Affiliation(s)
- Melek Tugce Yilmaz
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Alper Kahvecioglu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Fazli Yagiz Yedekci
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ecem Yigit
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gokcen Coban Ciftci
- Radiology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Neyran Kertmen
- Department of Medical Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Faruk Zorlu
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Gozde Yazici
- Department of Radiation Oncology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
14
|
Trifiletti DM, Milano MT, Redmond KJ, Pollom EL, Hattangadi-Gluth JA, Kim MM. Treatment Planning Expansions in Glioblastoma: How Less Can Be More. Int J Radiat Oncol Biol Phys 2023; 117:293-296. [PMID: 37652602 DOI: 10.1016/j.ijrobp.2023.03.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 09/02/2023]
Affiliation(s)
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, California
| | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
15
|
Nishioka K, Takahashi S, Mori T, Uchinami Y, Yamaguchi S, Kinoshita M, Yamashina M, Higaki H, Maebayashi K, Aoyama H. The need of radiotherapy optimization for glioblastomas considering immune responses. Jpn J Radiol 2023; 41:1062-1071. [PMID: 37071249 PMCID: PMC10543135 DOI: 10.1007/s11604-023-01434-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
Glioblastoma is the most common of malignant primary brain tumors and one of the tumors with the poorest prognosis for which the overall survival rate has not significantly improved despite recent advances in treatment techniques and therapeutic drugs. Since the emergence of immune checkpoint inhibitors, the immune response to tumors has attracted increasing attention. Treatments affecting the immune system have been attempted for various tumors, including glioblastomas, but little has been shown to be effective. It has been found that the reason for this is that glioblastomas have a high ability to evade attacks from the immune system, and that the lymphocyte depletion associated with treatment can reduce its immune function. Currently, research to elucidate the resistance of glioblastomas to the immune system and development of new immunotherapies are being vigorously carried out. Targeting of radiation therapy for glioblastomas varies among guidelines and clinical trials. Based on early reports, target definitions with wide margins are common, but there are also reports that narrowing the margins does not make a significant difference in treatment outcome. It has also been suggested that a large number of lymphocytes in the blood are irradiated by the irradiation treatment to a wide area in a large number of fractionations, which may reduce the immune function, and the blood is being recognized as an organ at risk. Recently, a randomized phase II trial comparing two types of target definition in radiotherapy for glioblastomas was conducted, and it was reported that the overall survival and progression-free survival were significantly better in a small irradiation field group. We review recent findings on the immune response and the immunotherapy to glioblastomas and the novel role of radiotherapy and propose the need to develop an optimal radiotherapy that takes radiation effects on the immune function into account.
Collapse
Affiliation(s)
- Kentaro Nishioka
- Department of Radiation Oncology, Hokkaido University Hospital, North-15, West-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Shuhei Takahashi
- Department of Radiation Oncology, Hokkaido University Hospital, North-15, West-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takashi Mori
- Department of Radiation Oncology, Hokkaido University Hospital, North-15, West-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yusuke Uchinami
- Department of Radiation Oncology, Hokkaido University Hospital, North-15, West-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Shigeru Yamaguchi
- Department of Neurosurgery, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Manabu Kinoshita
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Masaaki Yamashina
- Department of Radiology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Hajime Higaki
- Department of Radiation Oncology, Hokkaido University Hospital, North-15, West-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Katsuya Maebayashi
- Division of Radiation Oncology, Nippon Medical School Hospital, Tokyo, Japan
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Hokkaido University Hospital, North-15, West-7, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
16
|
Park DJ, Persad AR, Yoo KH, Marianayagam NJ, Yener U, Tayag A, Ustrzynski L, Emrich SC, Chuang C, Pollom E, Soltys SG, Meola A, Chang SD. Stereotactic Radiosurgery for Contrast-Enhancing Satellite Nodules in Recurrent Glioblastoma: A Rare Case Series From a Single Institution. Cureus 2023; 15:e44455. [PMID: 37664337 PMCID: PMC10470661 DOI: 10.7759/cureus.44455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Glioblastoma (GBM) is the most common malignant adult brain tumor and is invariably fatal. The standard treatment for GBM involves resection where possible, followed by chemoradiation per Stupp's protocol. We frequently use stereotactic radiosurgery (SRS) as a single-fraction treatment for small (volume ≤ 1cc) nodular recurrent GBM to the contrast-enhancing target on T1 MRI scan. In this paper, we aimed to evaluate the safety and efficacy of SRS for patients with contrast-enhancing satellite nodules in recurrent GBM. Methods This retrospective study analyzed the clinical and radiological outcomes of five patients who underwent CyberKnife (Accuray Inc., Sunnyvale, California) SRS at the institute between 2013 and 2022. Results From 96 patients receiving SRS for GBM, five (four males, one female; median age 53) had nine distinct new satellite lesions on MRI, separate from their primary tumor beds. Those nine lesions were treated with a median margin dose of 20 Gy in a single fraction. The three-, six, and 12-month local tumor control rates were 77.8%, 66.7%, and 26.7%, respectively. Median progression-free survival (PFS) was seven months, median overall survival following SRS was 10 months, and median overall survival (OS) was 35 months. Interestingly, the only lesion that did not show radiological progression was separate from the T2-fluid attenuated inversion recovery (FLAIR) signal of the main tumor. Conclusion Our SRS treatment outcomes for recurrent GBM satellite lesions are consistent with existing findings. However, in a unique case, a satellite nodule distinct from the primary tumor's T2-FLAIR signal and treated with an enlarged target volume showed promising control until the patient's demise. This observation suggests potential research avenues, given the limited strategies for 'multicentric' GBM lesions.
Collapse
Affiliation(s)
- David J Park
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Amit R Persad
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Kelly H Yoo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | | | - Ulas Yener
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Armine Tayag
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Louisa Ustrzynski
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Sara C Emrich
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Cynthia Chuang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Erqi Pollom
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, USA
| | - Antonio Meola
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Steven D Chang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| |
Collapse
|
17
|
Niyazi M, Andratschke N, Bendszus M, Chalmers AJ, Erridge SC, Galldiks N, Lagerwaard FJ, Navarria P, Munck Af Rosenschöld P, Ricardi U, van den Bent MJ, Weller M, Belka C, Minniti G. ESTRO-EANO guideline on target delineation and radiotherapy details for glioblastoma. Radiother Oncol 2023; 184:109663. [PMID: 37059335 DOI: 10.1016/j.radonc.2023.109663] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND AND PURPOSE Target delineation in glioblastoma is still a matter of extensive research and debate. This guideline aims to update the existing joint European consensus on delineation of the clinical target volume (CTV) in adult glioblastoma patients. MATERIAL AND METHODS The ESTRO Guidelines Committee identified 14 European experts in close interaction with the ESTRO clinical committee and EANO who discussed and analysed the body of evidence concerning contemporary glioblastoma target delineation, then took part in a two-step modified Delphi process to address open questions. RESULTS Several key issues were identified and are discussed including i) pre-treatment steps and immobilisation, ii) target delineation and the use of standard and novel imaging techniques, and iii) technical aspects of treatment including planning techniques and fractionation. Based on the EORTC recommendation focusing on the resection cavity and residual enhancing regions on T1-sequences with the addition of a reduced 15 mm margin, special situations are presented with corresponding potential adaptations depending on the specific clinical situation. CONCLUSIONS The EORTC consensus recommends a single clinical target volume definition based on postoperative contrast-enhanced T1 abnormalities, using isotropic margins without the need to cone down. A PTV margin based on the individual mask system and IGRT procedures available is advised; this should usually be no greater than 3 mm when using IGRT.
Collapse
Affiliation(s)
- Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany.
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Sara C Erridge
- Edinburgh Centre for Neuro-Oncology, University of Edinburgh, Western General Hospital, Edinburgh EH4 1EU, UK
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany; Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany
| | - Frank J Lagerwaard
- Department of Radiation Oncology, Amsterdam UMC location Vrije Universiteit Amsterdam, the Netherlands
| | - Pierina Navarria
- Radiotherapy and Radiosurgery Department, IRCCS, Humanitas Research Hospital, Rozzano, MI, Italy
| | - Per Munck Af Rosenschöld
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, and Lund University, Lund, Sweden
| | | | | | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Giuseppe Minniti
- Dept. of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy; IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| |
Collapse
|
18
|
Yan O, Teng H, Jiang C, He L, Xiao S, Li Y, Wu W, Zhao Q, Ye X, Liu W, Fan C, Wu X, Liu F. Comparative dosimetric study of radiotherapy in high-grade gliomas based on the guidelines of EORTC and NRG-2019 target delineation. Front Oncol 2023; 13:1108587. [PMID: 37287919 PMCID: PMC10242041 DOI: 10.3389/fonc.2023.1108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 05/05/2023] [Indexed: 06/09/2023] Open
Abstract
Purpose Radiotherapy is one of the most important treatments for high-grade glioma (HGG), but the best way to delineate the target areas for radiotherapy remains controversial, so our aim was to compare the dosimetric differences in radiation treatment plans generated based on the European Organization for Research and Treatment of Cancer (EORTC) and National Research Group (NRG) consensus to provide evidence for optimal target delineation for HGG. Methods We prospectively enrolled 13 patients with a confirmed HGG from our hospital and assessed dosimetric differences in radiotherapy treatment plans generated according to the EORTC and NRG-2019 guidelines. For each patient, two treatment plans were generated. Dosimetric parameters were compared by dose-volume histograms for each plan. Results The median volume for planning target volume (PTV) of EORTC plans, PTV1 of NRG-2019 plans, and PTV2 of NRG-2019 plans were 336.6 cm3 (range, 161.1-511.5 cm3), 365.3 cm3 (range, 123.4-535.0 cm3), and 263.2 cm3 (range, 116.8-497.7 cm3), respectively. Both treatment plans were found to have similar efficiency and evaluated as acceptable for patient treatment. Both treatment plans showed well conformal index and homogeneity index and were not statistically significantly different (P = 0.397 and P = 0.427, respectively). There was no significant difference in the volume percent of brain irradiated to 30, 46, and 60 Gy according to different target delineations (P = 0.397, P = 0.590, and P = 0.739, respectively). These two plans also showed no significant differences in the doses to the brain stem, optic chiasm, left and right optic nerves, left and right lens, left and right eyes, pituitary, and left and right temporal lobes (P = 0.858, P = 0.858, P = 0.701 and P = 0.794, P = 0.701 and P = 0.427, P = 0.489 and P = 0.898, P = 0.626, and P = 0.942 and P = 0.161, respectively). Conclusion The NRG-2019 project did not increase the dose of organs at risk (OARs) radiation. This is a significant finding that further lays the groundwork for the application of the NRG-2019 consensus in the treatment of patients with HGGs. Clinical trial registration The effect of radiotherapy target area and glial fibrillary acidic protein (GFAP) on the prognosis of high-grade glioma and its mechanism, number ChiCTR2100046667. Registered 26 May 2021.
Collapse
Affiliation(s)
- Ouying Yan
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Haibo Teng
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Cuihong Jiang
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lili He
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuai Xiao
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yanxian Li
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wenqiong Wu
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Qi Zhao
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xu Ye
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wen Liu
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Changgen Fan
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiangwei Wu
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Feng Liu
- Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
19
|
Dejonckheere CS, Thelen A, Simon B, Greschus S, Köksal MA, Schmeel LC, Wilhelm-Buchstab T, Leitzen C. Impact of Postoperative Changes in Brain Anatomy on Target Volume Delineation for High-Grade Glioma. Cancers (Basel) 2023; 15:2840. [PMID: 37345177 DOI: 10.3390/cancers15102840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/14/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
High-grade glioma has a poor prognosis, and radiation therapy plays a crucial role in its management. Every step of treatment planning should thus be optimised to maximise survival chances and minimise radiation-induced toxicity. Here, we compare structures needed for target volume delineation between an immediate postoperative magnetic resonance imaging (MRI) and a radiation treatment planning MRI to establish the need for the latter. Twenty-eight patients were included, with a median interval between MRIs (range) of 19.5 (8-50) days. There was a mean change in resection cavity position (range) of 3.04 ± 3.90 (0-22.1) mm, with greater positional changes in skull-distant (>25 mm) resection cavity borders when compared to skull-near (≤25 mm) counterparts (p < 0.001). The mean differences in resection cavity and surrounding oedema and FLAIR hyperintensity volumes were -32.0 ± 29.6% and -38.0 ± 25.0%, respectively, whereas the mean difference in midline shift (range) was -2.64 ± 2.73 (0-11) mm. These data indicate marked short-term volumetric changes and support the role of an MRI to aid in target volume delineation as close to radiation treatment start as possible. Planning adapted to the actual anatomy at the time of radiation limits the risk of geographic miss and might thus improve outcomes in patients undergoing adjuvant radiation for high-grade glioma.
Collapse
Affiliation(s)
| | - Anja Thelen
- Faculty of Medicine, University Bonn, 53127 Bonn, Germany
| | - Birgit Simon
- Department of Radiology, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Mümtaz Ali Köksal
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | | | | - Christina Leitzen
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| |
Collapse
|
20
|
Mendoza MG, Azoulay M, Chang SD, Gibbs IC, Hancock SL, Pollom EL, Adler JR, Harraher C, Li G, Gephart MH, Nagpal S, Thomas RP, Recht LD, Jacobs LR, Modlin LA, Wynne J, Seiger K, Fujimoto D, Usoz M, von Eyben R, Choi CYH, Soltys SG. Patterns of Progression in Patients With Newly Diagnosed Glioblastoma Treated With 5-mm Margins in a Phase 1/2 Trial of 5-Fraction Stereotactic Radiosurgery With Concurrent and Adjuvant Temozolomide. Pract Radiat Oncol 2023; 13:e239-e245. [PMID: 36736621 DOI: 10.1016/j.prro.2023.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE In patients with newly diagnosed glioblastoma (GBM), tumor margins of at least 20 mm are the standard of care. We sought to determine the pattern of tumor progression in patients treated with 5-fraction stereotactic radiosurgery with 5-mm margins. METHODS AND MATERIALS Thirty adult patients with newly diagnosed GBM were treated with 5-fraction stereotactic radiosurgery in escalated doses from 25 to 40 Gy with a 5-mm total treatment margin. Progression was scored as "in-field" if the recurrent tumor was within or contiguous with the 5-mm margin, "marginal" if between 5 and 20 mm, and "distant" if entirely occurring greater than 20 mm. As geometric patterns of progression do not reflect the biologic dose received, we calculated the minimum equi-effective dose in 2 Gy (EQD2) per day at the site of tumor recurrence. Progression was "dosimetrically in-field" if covered by a minimum EQD2 per day of 48 Gy10. RESULTS From 2010 to 2016, 27 patients had progressed. Progression was in-field in 17 (63%), marginal in 3 (11%), and distant in 7 (26%) patients. In the 3 patients with marginal progression, the minimum EQD2 to recurrent tumor were 48 Gy10, 56 Gy10 (both considered dosimetrically in-field), and 7 Gy10 (ie, dosimetrically out-of-field). Median overall survival was 12.1 months for in-field (95% confidence interval [CI], 8.9-17.6), 15.1 months (95% CI, 10.1 to not achieved) for marginal, and 21.4 months (95% CI, 11.2-33.5) for distant progression. Patients with radiation necrosis were less likely to have in-field progression (1 of 7; 14%) compared with those without radiation necrosis (16 of 20; 80%; P = .003); those with necrosis had a median overall survival of 27.2 months (95% CI, 11.2-48.3) compared with 11.7 months (95% CI, 8.9-17.6) for patients with no necrosis (P = .077). CONCLUSIONS In patients with newly diagnosed GBM treated with a 5-mm clinical target volume margin, 3 patients (11%) had marginal progression within 5 to 20 mm; only 1 patient (4%) may have dosimetrically benefitted from conventional 20-mm margins. Radiation necrosis was associated with in-field tumor control.
Collapse
Affiliation(s)
- Maria G Mendoza
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Melissa Azoulay
- Department of Radiation Oncology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Steven D Chang
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Iris C Gibbs
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Steven L Hancock
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Erqi L Pollom
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - John R Adler
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Ciara Harraher
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Gordon Li
- Department of Neurosurgery, Stanford University, Stanford, California
| | | | - Seema Nagpal
- Department of Neurology, Stanford University, Stanford, California
| | - Reena P Thomas
- Department of Neurology, Stanford University, Stanford, California
| | - Lawrence D Recht
- Department of Neurology, Stanford University, Stanford, California
| | - Lisa R Jacobs
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Leslie A Modlin
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Jacob Wynne
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Kira Seiger
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Dylann Fujimoto
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Melissa Usoz
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Clara Y H Choi
- Department of Radiation Oncology, Santa Clara Valley Medical Center, San Jose, California
| | - Scott G Soltys
- Department of Radiation Oncology, Stanford University, Stanford, California.
| |
Collapse
|
21
|
Minniti G, Tini P, Giraffa M, Capone L, Raza G, Russo I, Cinelli E, Gentile P, Bozzao A, Paolini S, Esposito V. Feasibility of clinical target volume reduction for glioblastoma treated with standard chemoradiation based on patterns of failure analysis. Radiother Oncol 2023; 181:109435. [PMID: 36529439 DOI: 10.1016/j.radonc.2022.11.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/02/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE To analyze recurrence patterns in patients with glioblastoma (GBM) after standard chemoradiation according to different target volume delineation strategies. METHODS AND MATERIALS Two hundred seven patients with GBM who recurred after standard chemoradiation were evaluated. According to ESTRO target volume delineation guideline, the CTV was generated by adding a 2-cm margin to the GTV, defined as the resection cavity plus residual tumor. Patterns of failure were analyzed using dose-volume histogram. Recurrent lesions were defined as in-field, marginal, or distant if > 80 %, 20-80 %, or < 20 % of the intersecting volume was included in the 95 % isodose line.For each patient, a theoretical plan consisting of reduced 1-cm GTV-to-CTV margin was created to compare patterns of failure and radiation doses to normal brain. RESULTS Median overall survival and progression-free survival times were 15.3 months and 7.8 months, respectively, from the date of surgery. Recurrences were in-field in 180, marginal in 5, and distant in 22 patients. According to MGMT promoter methylation, distant recurrences occurred in 18.6 % of methylated and 6 % of unmethylated tumors (p = 0.0046). Following replanning with 1-cm reduced margin, dosimetric analysis showed similar patterns of failure. Recurrences were in-field, marginal, and distant in 177, 3, and 27 plans, respectively, although radiation doses to the healthy brain and hippocampi were significantly lower compared with standard target delineation (p = 0.0001). CONCLUSION Current provide the rationale for evaluating GTV-to-CTV margin reduction in future clinical trials with the aim of limiting the cognitive sequelae of GBM irradiation while maintaining survival benefits of standard chemoradiation.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy; IRCCS Neuromed, 86077 Pozzilli, IS, Italy.
| | - Paolo Tini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - Martina Giraffa
- UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Luca Capone
- UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Giorgio Raza
- UPMC Hillman Cancer Center, San Pietro Hospital FBF, Rome, Italy
| | - Ivana Russo
- UPMC Hillman Cancer Center, Villa Maria, Mirabella Eclano, AV, Italy
| | - Elisa Cinelli
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | | | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy
| | | | | |
Collapse
|
22
|
Martino T. Novel baseline biomarkers should predict recurrence of glioblastoma. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023; 51:571-573. [PMID: 36893042 DOI: 10.1002/jcu.23401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/18/2023]
Affiliation(s)
- Tommaso Martino
- Neuroscience Department (Head of Department: Dr. Ciro Mundi), Policlinico Riuniti of Foggia, S.C. Ospedaliera di Neurologia, Foggia, Italy
| |
Collapse
|
23
|
Liu H, Zhang L, Tan Y, Jiang Y, Lu H. Observation of the delineation of the target volume of radiotherapy in adult-type diffuse gliomas after temozolomide-based chemoradiotherapy: analysis of recurrence patterns and predictive factors. Radiat Oncol 2023; 18:16. [PMID: 36691100 PMCID: PMC9872393 DOI: 10.1186/s13014-023-02203-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/10/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Radiation therapy is the cornerstone of treatment for adult-type diffuse gliomas, but recurrences are inevitable. Our study assessed the prognosis and recurrence pattern of different radiotherapy volumes after temozolomide-based chemoradiation in our institution. METHODS The treatment plans were classified into two groups, the plan 1 intentionally involved the entire edema area while plan 2 did not. Retrospectively investigate the differences in outcomes of 118 adult-type diffuse gliomas patients between these two treatment plans. Then, patients who underwent relapse were selected to analyze their recurrence patterns. Continuous dynamic magnetic resonance images (MRI) were collected to categorized the recurrence patterns into central, in-field, marginal, distant, and cerebrospinal fluid dissemination (CSF-d) recurrence. Finally, the clinical and molecular characteristics which influenced progression were analyzed. RESULTS Plan 1 (n = 63) showed a median progression-free survival (PFS) and overall survival (OS) of 9.5 and 26.4 months while plan 2 (n = 55) showed a median PFS and OS of 9.4 and 36.5 months (p = 0.418; p = 0.388). Treatment target volume had no effect on the outcome in patients with adult-type diffuse gliomas. And there was no difference in radiation toxicity (p = 0.388). Among the 90 relapsed patients, a total of 58 (64.4%) patients had central recurrence, 10 (11.1%) patients had in-field recurrence, 3 (3.3%) patients had marginal recurrence, 11 (12.2.%) patients had distant recurrence, and 8 (8.9%) patients had CSF-d recurrence. By treatment plans, the recurrence patterns were similar and there was no significant difference in survival. Reclassifying the progression pattern into local and non-local groups, we observed that oligodendroglioma (n = 10) all relapsed in local and no difference in PFS and OS between the two groups (p > 0.05). Multivariable analysis showed that subventricular zone (SVZ) involvement was the independent risk factor for non-local recurrence in patients with GBM (p < 0.05). CONCLUSION In our study, deliberately including or not the entire edema had no impact on prognosis and recurrence. Patients with varied recurrence patterns had diverse clinical and genetic features.
Collapse
Affiliation(s)
- Hongbo Liu
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Tan
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanxia Jiang
- grid.412521.10000 0004 1769 1119Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haijun Lu
- grid.412521.10000 0004 1769 1119Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
24
|
Romano A, Palizzi S, Romano A, Moltoni G, Di Napoli A, Maccioni F, Bozzao A. Diffusion Weighted Imaging in Neuro-Oncology: Diagnosis, Post-Treatment Changes, and Advanced Sequences-An Updated Review. Cancers (Basel) 2023; 15:cancers15030618. [PMID: 36765575 PMCID: PMC9913305 DOI: 10.3390/cancers15030618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
DWI is an imaging technique commonly used for the assessment of acute ischemia, inflammatory disorders, and CNS neoplasia. It has several benefits since it is a quick, easily replicable sequence that is widely used on many standard scanners. In addition to its normal clinical purpose, DWI offers crucial functional and physiological information regarding brain neoplasia and the surrounding milieu. A narrative review of the literature was conducted based on the PubMed database with the purpose of investigating the potential role of DWI in the neuro-oncology field. A total of 179 articles were included in the study.
Collapse
Affiliation(s)
- Andrea Romano
- NESMOS Department, U.O.C. Neuroradiology, “Sant’Andrea” University Hospital, 00189 Rome, Italy
| | - Serena Palizzi
- NESMOS Department, U.O.C. Neuroradiology, “Sant’Andrea” University Hospital, 00189 Rome, Italy
| | - Allegra Romano
- NESMOS Department, U.O.C. Neuroradiology, “Sant’Andrea” University Hospital, 00189 Rome, Italy
| | - Giulia Moltoni
- NESMOS Department, U.O.C. Neuroradiology, “Sant’Andrea” University Hospital, 00189 Rome, Italy
- Correspondence: ; Tel.: +39-3347906958
| | - Alberto Di Napoli
- NESMOS Department, U.O.C. Neuroradiology, “Sant’Andrea” University Hospital, 00189 Rome, Italy
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Francesca Maccioni
- Department of Radiology, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Alessandro Bozzao
- NESMOS Department, U.O.C. Neuroradiology, “Sant’Andrea” University Hospital, 00189 Rome, Italy
| |
Collapse
|
25
|
Chiesa S, Russo R, Beghella Bartoli F, Palumbo I, Sabatino G, Cannatà MC, Gigli R, Longo S, Tran HE, Boldrini L, Dinapoli N, Votta C, Cusumano D, Pignotti F, Lupattelli M, Camilli F, Della Pepa GM, D’Alessandris GQ, Olivi A, Balducci M, Colosimo C, Gambacorta MA, Valentini V, Aristei C, Gaudino S. MRI-derived radiomics to guide post-operative management of glioblastoma: Implication for personalized radiation treatment volume delineation. Front Med (Lausanne) 2023; 10:1059712. [PMID: 36744131 PMCID: PMC9892450 DOI: 10.3389/fmed.2023.1059712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The glioblastoma's bad prognosis is primarily due to intra-tumor heterogeneity, demonstrated from several studies that collected molecular biology, cytogenetic data and more recently radiomic features for a better prognostic stratification. The GLIFA project (GLIoblastoma Feature Analysis) is a multicentric project planned to investigate the role of radiomic analysis in GB management, to verify if radiomic features in the tissue around the resection cavity may guide the radiation target volume delineation. MATERIALS AND METHODS We retrospectively analyze from three centers radiomic features extracted from 90 patients with total or near total resection, who completed the standard adjuvant treatment and for whom we had post-operative images available for features extraction. The Manual segmentation was performed on post gadolinium T1w MRI sequence by 2 radiation oncologists and reviewed by a neuroradiologist, both with at least 10 years of experience. The Regions of interest (ROI) considered for the analysis were: the surgical cavity ± post-surgical residual mass (CTV_cavity); the CTV a margin of 1.5 cm added to CTV_cavity and the volume resulting from subtracting the CTV_cavity from the CTV was defined as CTV_Ring. Radiomic analysis and modeling were conducted in RStudio. Z-score normalization was applied to each radiomic feature. A radiomic model was generated using features extracted from the Ring to perform a binary classification and predict the PFS at 6 months. A 3-fold cross-validation repeated five times was implemented for internal validation of the model. RESULTS Two-hundred and seventy ROIs were contoured. The proposed radiomic model was given by the best fitting logistic regression model, and included the following 3 features: F_cm_merged.contrast, F_cm_merged.info.corr.2, F_rlm_merged.rlnu. A good agreement between model predicted probabilities and observed outcome probabilities was obtained (p-value of 0.49 by Hosmer and Lemeshow statistical test). The ROC curve of the model reported an AUC of 0.78 (95% CI: 0.68-0.88). CONCLUSION This is the first hypothesis-generating study which applies a radiomic analysis focusing on healthy tissue ring around the surgical cavity on post-operative MRI. This study provides a preliminary model for a decision support tool for a customization of the radiation target volume in GB patients in order to achieve a margin reduction strategy.
Collapse
Affiliation(s)
- S. Chiesa
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - R. Russo
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Institute of Radiology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - F. Beghella Bartoli
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - I. Palumbo
- Radiation Oncology Section, University of Perugia, Perugia, Italy
- Perugia General Hospital, Perugia, Italy
| | - G. Sabatino
- Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
- Department of Neurosurgery, Agostino Gemelli University Polyclinic (IRCCS), Rome, Italy
| | - M. C. Cannatà
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - R. Gigli
- Medical Physics, Mater Olbia Hospital, Olbia, Italy
| | - S. Longo
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - H. E. Tran
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - L. Boldrini
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - N. Dinapoli
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - C. Votta
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - D. Cusumano
- Medical Physics, Mater Olbia Hospital, Olbia, Italy
| | - F. Pignotti
- Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
- Department of Neurosurgery, Agostino Gemelli University Polyclinic (IRCCS), Rome, Italy
| | | | - F. Camilli
- Radiation Oncology Section, University of Perugia, Perugia, Italy
| | - G. M. Della Pepa
- Department of Neurosurgery, Agostino Gemelli University Polyclinic (IRCCS), Rome, Italy
| | - G. Q. D’Alessandris
- Department of Neurosurgery, Agostino Gemelli University Polyclinic (IRCCS), Rome, Italy
| | - A. Olivi
- Department of Neurosurgery, Agostino Gemelli University Polyclinic (IRCCS), Rome, Italy
| | - M. Balducci
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - C. Colosimo
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Institute of Radiology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - M. A. Gambacorta
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - V. Valentini
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - C. Aristei
- Radiation Oncology Section, University of Perugia, Perugia, Italy
- Perugia General Hospital, Perugia, Italy
| | - S. Gaudino
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Institute of Radiology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
26
|
Popp I, Oehlke O, Nieder C, Grosu AL. Brain Gliomas of Adulthood. TARGET VOLUME DEFINITION IN RADIATION ONCOLOGY 2023:1-20. [DOI: 10.1007/978-3-031-45489-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Huang Y, Ding H, Luo M, Li Z, Li S, Xie C, Zhong Y. A new approach to delineating clinical target volume for radiotherapy of glioblastoma: A phase II trial. Front Oncol 2022; 12:931436. [PMID: 36338715 PMCID: PMC9626993 DOI: 10.3389/fonc.2022.931436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose No consensus has currently been reached regarding the optimal radiation volume for radiotherapy of glioblastoma. Here, we have proposed a new delineation approach to delineating clinical target volume based on the relationship between the growth patterns of glioblastoma and neural pathways. Its safety and efficacy were evaluated in a phase II clinical trial. Methods A total of 69 patients with histologically confirmed glioblastoma were enrolled. All patients underwent tumor resection, followed by focal radiotherapy and concomitant temozolomide (TMZ), and then received six cycles of adjuvant TMZ. The gross tumor volume (GTV) was defined as the surgical resection cavity plus any residual enhancing tumor, on contrast enhanced T1-weighted MRI. The clinical target volume (CTV) was delineated through our new approach. Results The median recurrence-free survival (RFS) and overall survival (OS) were 11.4 months and 18.2 months, which were better than the previous reports. Relapse was found in 47 patients, of whom 41 patients (87.2%) failed in central, two patients (4.3%) failed in field, and four patients (8.5%) failed in distance. No marginal recurrence was found. Our regimen showed a trend of lower rates of marginal recurrence, and the brain volume of high-dose radiation fields in our regimen was similar to that of EORTC (p = 0.257). Conclusions We have proposed a novel method for the delineation of clinical target volume by referencing the nerve fiber bundles for radiotherapy of glioblastoma. The results of the present phase II clinical trial suggest that this approach may be feasible and effective.
Collapse
Affiliation(s)
- Yong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, China
| | - Haixia Ding
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, China
| | - Min Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, China
| | - Yahua Zhong
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
- Hubei Cancer Clinical Study Center, Wuhan University, Wuhan, China
- *Correspondence: Yahua Zhong,
| |
Collapse
|
28
|
Peritumor Edema Serves as an Independent Predictive Factor of Recurrence Patterns and Recurrence-Free Survival for High-Grade Glioma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9547166. [PMID: 35936378 PMCID: PMC9348930 DOI: 10.1155/2022/9547166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Objective. This study is aimed at analyzing the factors affecting the recurrence patterns and recurrence-free survival (RFS) of high-grade gliomas (HGG). Methods. Eligible patients admitted to the Affiliated Hospital of Xuzhou Medical University were selected. Subsequently, the effects of some clinical data including age, gender, WHO pathological grades, tumor site, tumor size, clinical treatments, and peritumoral edema (PTE) area and molecular markers (Ki-67, MGMT, IDH-1, and p53) on HGG patients’ recurrence patterns and RFS were analyzed. Results. A total number of 77 patients were enrolled into this study. After analyzing all the cases, it was determined that tumor size and tumor site had a significant influence on the recurrent patterns of HGG, and PTE was an independent predict factor of recurrence patterns. Specifically, when the PTE was mild (<1 cm), the recurrence pattern tended to be local; in contrast, HGG was more likely to progress to marginal recurrence and distant recurrence. Furthermore, age and PTE were significantly associated with RFS; the median RFS of the population with
(23.60 months) was obviously longer than the population with
(5.00 months). Conclusions. PTE is an independent predictor of recurrence patterns and RFS for HGG. Therefore, preoperative identification of PTE in HGG patients is crucially important, which is helpful to accurately estimate the recurrence pattern and RFS.
Collapse
|
29
|
Mansouri A, Lai C, Scales D, Pirouzmand F. A phase II pilot randomized controlled trial to assess the feasibility of the "supra-marginal" surgical resection of malignant glioma (G-SUMIT: Glioma supra marginal incision trial) study protocol. Pilot Feasibility Stud 2022; 8:138. [PMID: 35791008 PMCID: PMC9254510 DOI: 10.1186/s40814-022-01104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Background High-grade gliomas are the most common primary malignant brain tumor in adults having a median survival of only 13–16 months. This is despite the current standard of maximal safe surgical resection followed by fractionated radiotherapy and chemotherapy. Extending the tumor resection limit beyond the gadolinium (GAD)-enhancing margin (i.e., supra-marginal resection) could in principle provide an added survival benefit as it has been shown that > 80% of post-operative tumor recurrence is within a 2-cm region surrounding the original GAD-enhancing margin. However, this must be weighed against the risk of potential damage to functional brain tissue. Methods In this phase II pilot randomized control trial (RCT), we aim to assess the feasibility of “supra-marginal” resection extending 1 cm beyond the enhancing tumor in adults with radiographic evidence of GAD-enhancing intra-axial tumor consistent with high-grade glioma in a safe anatomical location and a Karnofsky Performance Score > 60. With six academic institutions with established neurosurgical oncology practices in participation, we aim to enroll 72 patients over 2 years. Primary outcomes include evaluating the feasibility of performing a large-scale trial with regard to recruitment, allocation, and outcome documentation as well as safety data. Secondary outcomes include determining if there is an increased survival benefit with supra-marginal resection and impact on quality of life (Modified Rankin Scale (mRS), EuroQol-5D (ED-5D), 30-day all-cause mortality). Discussion Recent studies have revealed survival advantages comparing supra-marginal resection to standard attempt at gross total resection (GTR) with no additional perioperative surgical risk; however, the current quality of evidence is low and under-powered. Therefore, there are no current practice guidelines, and the philosophy of surgical resection is guided by individual surgeon preferences on an individual patient basis. This creates additional uncertainty and is potentially detrimental to our patients. This clinical equipoise supports the need for an adequately powered RCT to determine whether a supra-marginal resection can have a positive impact on survival for patients with HGGs. Our pilot RCT will test the feasibility of comparing the standard gross total resection of GAD-enhancing tumors and supra-marginal resection to prepare for a larger definitive multicenter RCT. Trial registration ClinicalTrials.gov, NCT04737577. Registered on February 4, 2021 Supplementary Information The online version contains supplementary material available at 10.1186/s40814-022-01104-1.
Collapse
Affiliation(s)
- Alireza Mansouri
- Department of Neurosurgery, Penn State University, State College, USA.
| | - Carolyn Lai
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Damon Scales
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Farhad Pirouzmand
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
30
|
Li S, Guo F, Wang X, Zeng J, Hong J. Timing of radiotherapy in glioblastoma based on IMRT and STUPP chemo-radiation: may be no need to rush. Clin Transl Oncol 2022; 24:2146-2154. [PMID: 35753023 DOI: 10.1007/s12094-022-02867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/27/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To investigate the effect of surgery to radiotherapy interval (SRI) on the prognosis of patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma. METHODS Retrospective analysis of the relationship between SRI and prognosis of patients with IDH wild-type glioblastoma who received postoperative intensity modulated radiotherapy (IMRT) in our center from July 2013 to July 2019. The patients were divided into SRI ≤ 42 days (regular group) and SRI > 42 days (delay group). Kaplan-Meier univariate analysis and Cox proportional hazard model were used to analyze whether SRI was an independent factor influencing the prognosis. RESULTS A total of 102 IDH wild-type glioblastoma were enrolled. Median follow-up was 35.9 months. The 1-, 2- and 3-year OS of "regular group" were 69.5%, 34.8%, 19.1%, and "delay group" were 69.8%, 26.1% and 13.4% respectively. Multivariate analysis showed that extent of resection (p = 0.041) was an independent prognostic factor for OS. SRI (p = 0.347), gender (p = 0.159), age (p = 0. 921), maximum diameter (p = 0.637) MGMT promoter methylation status (P = 0.630) and ki-67 expression (P = 0.974) had no effect on OS. Univariate analysis (p = 0.483) and multivariate analysis (p = 0.373) also showed that SRI had no effect on OS in glioblastoma who received gross total resection. CONCLUSION Appropriate extension in SRI has no negative effect on the OS of IDH wild-type glioblastoma. It is suggested that radiotherapy should be started after a good recovery from surgery. This conclusion needs further confirmed by long-term follow-up of a large sample.
Collapse
Affiliation(s)
- Shan Li
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China.,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Feibao Guo
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China
| | - Jiang Zeng
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, No.20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China. .,Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
31
|
Pinarbasi-Degirmenci N, Sur-Erdem I, Akcay V, Bolukbasi Y, Selek U, Solaroglu I, Bagci-Onder T. Chronically Radiation-Exposed Survivor Glioblastoma Cells Display Poor Response to Chk1 Inhibition under Hypoxia. Int J Mol Sci 2022; 23:ijms23137051. [PMID: 35806055 PMCID: PMC9266388 DOI: 10.3390/ijms23137051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma is the most malignant primary brain tumor, and a cornerstone in its treatment is radiotherapy. However, tumor cells surviving after irradiation indicates treatment failure; therefore, better understanding of the mechanisms regulating radiotherapy response is of utmost importance. In this study, we generated clinically relevant irradiation-exposed models by applying fractionated radiotherapy over a long time and selecting irradiation-survivor (IR-Surv) glioblastoma cells. We examined the transcriptomic alterations, cell cycle and growth rate changes and responses to secondary radiotherapy and DNA damage response (DDR) modulators. Accordingly, IR-Surv cells exhibited slower growth and partly retained their ability to resist secondary irradiation. Concomitantly, IR-Surv cells upregulated the expression of DDR-related genes, such as CHK1, ATM, ATR, and MGMT, and had better DNA repair capacity. IR-Surv cells displayed downregulation of hypoxic signature and lower induction of hypoxia target genes, compared to naïve glioblastoma cells. Moreover, Chk1 inhibition alone or in combination with irradiation significantly reduced cell viability in both naïve and IR-Surv cells. However, IR-Surv cells’ response to Chk1 inhibition markedly decreased under hypoxic conditions. Taken together, we demonstrate the utility of combining DDR inhibitors and irradiation as a successful approach for both naïve and IR-Surv glioblastoma cells as long as cells are refrained from hypoxic conditions.
Collapse
Affiliation(s)
- Nareg Pinarbasi-Degirmenci
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey; (N.P.-D.); (V.A.)
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
| | - Ilknur Sur-Erdem
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey; (N.P.-D.); (V.A.)
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
- Correspondence: (I.S.-E.); (T.B.-O.)
| | - Vuslat Akcay
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey; (N.P.-D.); (V.A.)
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
| | - Yasemin Bolukbasi
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul 34010, Turkey; (Y.B.); (U.S.)
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ugur Selek
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul 34010, Turkey; (Y.B.); (U.S.)
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ihsan Solaroglu
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
- Department of Neurosurgery, Koç University School of Medicine, Istanbul 34010, Turkey
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey; (N.P.-D.); (V.A.)
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey;
- Correspondence: (I.S.-E.); (T.B.-O.)
| |
Collapse
|
32
|
Stewart J, Sahgal A, Chan AKM, Soliman H, Tseng CL, Detsky J, Myrehaug S, Atenafu EG, Helmi A, Perry J, Keith J, Jane Lim-Fat M, Munoz DG, Zadeh G, Shultz DB, Das S, Coolens C, Alcaide-Leon P, Maralani PJ. Pattern of Recurrence of Glioblastoma Versus Grade 4 IDH-Mutant Astrocytoma Following Chemoradiation: A Retrospective Matched-Cohort Analysis. Technol Cancer Res Treat 2022; 21:15330338221109650. [PMID: 35762826 PMCID: PMC9247382 DOI: 10.1177/15330338221109650] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose: To quantitatively compare the recurrence
patterns of glioblastoma (isocitrate dehydrogenase-wild type) versus grade 4
isocitrate dehydrogenase-mutant astrocytoma (wild type isocitrate dehydrogenase
and mutant isocitrate dehydrogenase, respectively) following primary
chemoradiation. Materials and Methods: A retrospective matched
cohort of 22 wild type isocitrate dehydrogenase and 22 mutant isocitrate
dehydrogenase patients were matched by sex, extent of resection, and corpus
callosum involvement. The recurrent gross tumor volume was compared to the
original gross tumor volume and clinical target volume contours from
radiotherapy planning. Failure patterns were quantified by the incidence and
volume of the recurrent gross tumor volume outside the gross tumor volume and
clinical target volume, and positional differences of the recurrent gross tumor
volume centroid from the gross tumor volume and clinical target volume.
Results: The gross tumor volume was smaller for wild type
isocitrate dehydrogenase patients compared to the mutant isocitrate
dehydrogenase cohort (mean ± SD: 46.5 ± 26.0 cm3 vs
72.2 ± 45.4 cm3, P = .026). The recurrent gross
tumor volume was 10.7 ± 26.9 cm3 and 46.9 ± 55.0 cm3
smaller than the gross tumor volume for the same groups
(P = .018). The recurrent gross tumor volume extended outside
the gross tumor volume in 22 (100%) and 15 (68%) (P= .009) of
wild type isocitrate dehydrogenase and mutant isocitrate dehydrogenase patients,
respectively; however, the volume of recurrent gross tumor volume outside the
gross tumor volume was not significantly different (12.4 ± 16.1 cm3
vs 8.4 ± 14.2 cm3, P = .443). The recurrent gross
tumor volume centroid was within 5.7 mm of the closest gross tumor volume edge
for 21 (95%) and 22 (100%) of wild type isocitrate dehydrogenase and mutant
isocitrate dehydrogenase patients, respectively. Conclusion: The
recurrent gross tumor volume extended beyond the gross tumor volume less often
in mutant isocitrate dehydrogenase patients possibly implying a differential
response to chemoradiotherapy and suggesting isocitrate dehydrogenase status
might be used to personalize radiotherapy. The results require validation in
prospective randomized trials.
Collapse
Affiliation(s)
- James Stewart
- Department of Radiation Oncology, Sunnybrook 151192Odette Cancer Centre, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook 151192Odette Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, 7938University of Toronto, Toronto, Ontario, Canada
| | - Aimee K M Chan
- Department of Medical Imaging, 7938University of Toronto, 71545Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook 151192Odette Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, 7938University of Toronto, Toronto, Ontario, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook 151192Odette Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, 7938University of Toronto, Toronto, Ontario, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook 151192Odette Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, 7938University of Toronto, Toronto, Ontario, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook 151192Odette Cancer Centre, Toronto, Ontario, Canada.,Department of Radiation Oncology, 7938University of Toronto, Toronto, Ontario, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, 7938University of Toronto, 7989University Health Network, Toronto, Ontario, Canada
| | - Ali Helmi
- Department of Medical Imaging, 7938University of Toronto, 71545Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - James Perry
- Division of Neurology, 7938University of Toronto, 71545Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Julia Keith
- Department of Laboratory Medicine & Pathobiology, 7938University of Toronto, 71545Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Mary Jane Lim-Fat
- Division of Neurology, 7938University of Toronto, 71545Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - David G Munoz
- Department of Pathology, 7938University of Toronto, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, 7989University Health Network, Toronto, Ontario, Canada
| | - David B Shultz
- Department of Radiation Oncology, 7938University of Toronto, Toronto, Ontario, Canada.,Department of Radiation Oncology, 7989University Health Network, Toronto, Ontario, Canada
| | - Sunit Das
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Catherine Coolens
- Department of Radiation Oncology, 7938University of Toronto, Toronto, Ontario, Canada.,Department of Radiation Oncology, 7989University Health Network, Toronto, Ontario, Canada
| | - Paula Alcaide-Leon
- Department of Medical Imaging, 7938University of Toronto, 7989University Health Network, Toronto, Ontario, Canada
| | - Pejman Jabehdar Maralani
- Department of Medical Imaging, 7938University of Toronto, 71545Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| |
Collapse
|
33
|
Antoni D, Feuvret L, Biau J, Robert C, Mazeron JJ, Noël G. Radiation guidelines for gliomas. Cancer Radiother 2021; 26:116-128. [PMID: 34953698 DOI: 10.1016/j.canrad.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Gliomas are the most frequent primary brain tumour. The proximity of organs at risk, the infiltrating nature, and the radioresistance of gliomas have to be taken into account in the choice of prescribed dose and technique of radiotherapy. The management of glioma patients is based on clinical factors (age, KPS) and tumour characteristics (histology, molecular biology, tumour location), and strongly depends on available and associated treatments, such as surgery, radiation therapy, and chemotherapy. The knowledge of molecular biomarkers is currently essential, they are increasingly evolving as additional factors that facilitate diagnostics and therapeutic decision-making. We present the update of the recommendations of the French society for radiation oncology on the indications and the technical procedures for performing radiation therapy in patients with gliomas.
Collapse
Affiliation(s)
- D Antoni
- Service de radiothérapie, institut cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg cedex, France.
| | - L Feuvret
- Service de radiothérapie, CHU Pitié-Salpêtrière, Assistance publique-hôpitaux de Paris (AP-HP), 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - J Biau
- Département universitaire de radiothérapie, centre Jean-Perrin, Unicancer, 58, rue Montalembert, BP 392, 63011 Clermont-Ferrand cedex 01, France
| | - C Robert
- Département de radiothérapie, institut de cancérologie Gustave-Roussy, 39, rue Camille-Desmoulin, 94800 Villejuif, France
| | - J-J Mazeron
- Service de radiothérapie, CHU Pitié-Salpêtrière, Assistance publique-hôpitaux de Paris (AP-HP), 47-83, boulevard de l'Hôpital, 75013 Paris, France
| | - G Noël
- Service de radiothérapie, institut cancérologie Strasbourg Europe (ICANS), 17, rue Albert-Calmette, 67200 Strasbourg cedex, France
| |
Collapse
|
34
|
Pasquini L, Napolitano A, Lucignani M, Tagliente E, Dellepiane F, Rossi-Espagnet MC, Ritrovato M, Vidiri A, Villani V, Ranazzi G, Stoppacciaro A, Romano A, Di Napoli A, Bozzao A. AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well? Front Oncol 2021; 11:601425. [PMID: 34888226 PMCID: PMC8649764 DOI: 10.3389/fonc.2021.601425] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2021] [Indexed: 12/30/2022] Open
Abstract
Radiomic models outperform clinical data for outcome prediction in high-grade gliomas (HGG). However, lack of parameter standardization limits clinical applications. Many machine learning (ML) radiomic models employ single classifiers rather than ensemble learning, which is known to boost performance, and comparative analyses are lacking in the literature. We aimed to compare ML classifiers to predict clinically relevant tasks for HGG: overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor vIII (EGFR) amplification, and Ki-67 expression, based on radiomic features from conventional and advanced magnetic resonance imaging (MRI). Our objective was to identify the best algorithm for each task. One hundred fifty-six adult patients with pathologic diagnosis of HGG were included. Three tumoral regions were manually segmented: contrast-enhancing tumor, necrosis, and non-enhancing tumor. Radiomic features were extracted with a custom version of Pyradiomics and selected through Boruta algorithm. A Grid Search algorithm was applied when computing ten times K-fold cross-validation (K=10) to get the highest mean and lowest spread of accuracy. Model performance was assessed as AUC-ROC curve mean values with 95% confidence intervals (CI). Extreme Gradient Boosting (xGB) obtained highest accuracy for OS (74,5%), Adaboost (AB) for IDH mutation (87.5%), MGMT methylation (70,8%), Ki-67 expression (86%), and EGFR amplification (81%). Ensemble classifiers showed the best performance across tasks. High-scoring radiomic features shed light on possible correlations between MRI and tumor histology.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Neuroradiology Unit, Neuroscience, Mental Health and Sensory Organs (NESMOS) Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Emanuela Tagliente
- Medical Physics Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Francesco Dellepiane
- Neuroradiology Unit, Neuroscience, Mental Health and Sensory Organs (NESMOS) Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Neuroscience, Mental Health and Sensory Organs (NESMOS) Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Matteo Ritrovato
- Unit of Health Technology Assessment (HTA), Biomedical Technology Risk Manager, Bambino Gesù Children’s Hospital, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging Department, Regina Elena National Cancer Institute, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Veronica Villani
- Neuro-Oncology Unit, Regina Elena National Cancer Institute, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Rome, Italy
| | - Giulio Ranazzi
- Department of Clinical and Molecular Medicine, Surgical Pathology Units, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Antonella Stoppacciaro
- Department of Clinical and Molecular Medicine, Surgical Pathology Units, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, Neuroscience, Mental Health and Sensory Organs (NESMOS) Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alberto Di Napoli
- Neuroradiology Unit, Neuroscience, Mental Health and Sensory Organs (NESMOS) Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
- Radiology Department, Castelli Romani Hospital, Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, Neuroscience, Mental Health and Sensory Organs (NESMOS) Department, Sant’Andrea Hospital, La Sapienza University, Rome, Italy
| |
Collapse
|
35
|
Clinicopathologic analysis of microscopic tumor extension in glioma for external beam radiotherapy planning. BMC Med 2021; 19:269. [PMID: 34784919 PMCID: PMC8597244 DOI: 10.1186/s12916-021-02143-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/27/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND There is no consensus regarding the clinical target volume (CTV) margins in radiotherapy for glioma. In this study, we aimed to perform a complete macropathologic analysis examining microscopic tumor extension (ME) to more accurately define the CTV in glioma. METHODS Thirty-eight supra-total resection specimens of glioma patients were examined on histologic sections. The ME distance, defined as the maximum linear distance from the tumor border to the invasive tumor cells, was measured at each section. We defined the CTV based on the relationships between ME distance and clinicopathologic features. RESULTS Between February 2016 and July 2020, a total of 814 slides were examined, corresponding to 162 slides for low-grade glioma (LGG) and 652 slides for high-grade glioma (HGG). The ME value was 0.69 ± 0.43 cm for LGG and 1.29 ± 0.54 cm for HGG (P < 0.001). After multivariate analysis, tumor grade, O6-methylguanine-DNA-methyltransferase promoter methylated status (MGMTm), isocitrate dehydrogenase wild-type status (IDHwt), and 1p/19q non-co-deleted status (non-codel) were positively correlated with ME distance (all P < 0.05). We defined the CTV of glioma based on tumor grade. To take into account approximately 95% of the ME, a margin of 1.00 cm, 1.50 cm, and 2.00 cm were chosen for grade II, grade III, and grade IV glioma, respectively. Paired analysis of molecularly defined patients confirmed that tumors that had all three molecular alterations (i.e., MGMTm/IDHwt/non-codel) were the most aggressive subgroups (all P < 0.05). For these patients, the margin could be up to 1.50 cm, 2.00 cm, and 2.50 cm for grade II, grade III, and grade IV glioma, respectively, to cover the subclinical lesions in 95% of cases. CONCLUSIONS The ME was different between the grades of gliomas. It may be reasonable to recommend 1.00 cm, 1.50 cm, and 2.00 cm CTV margins for grade II, grade III, and grade IV glioma, respectively. Considering the highly aggressive nature of MGMTm/IDHwt/non-codel tumors, for these patients, the margin could be further expanded by 0.5 cm. These recommendations would encompass microscopic disease extension in 95% of cases. TRIAL REGISTRATION The trial was registered with Chinese Clinical Trial Registry ( ChiCTR2100049376 ).
Collapse
|
36
|
Kumar N, Elangovan A, Madan R, Dracham C, Khosla D, Tripathi M, Gupta K, Kapoor R. Impact of Immunohistochemical profiling of Glioblastoma multiforme on clinical outcomes: Real-world scenario in resource limited setting. Clin Neurol Neurosurg 2021; 207:106726. [PMID: 34116459 DOI: 10.1016/j.clineuro.2021.106726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 02/09/2023]
Abstract
OBJECTIVE Intuition into the molecular pathways of glioblastoma multiforme (GBM) has changed the diagnostic, prognostic, and therapeutic approaches. We investigated the influence of various clinical and molecular prognostic factors on survival outcomes in radically treated GBM patients. METHODS Medical records of 160 GBM patients treated between January-2012 and December-2018 with surgery followed by post-operative external beam radiotherapy (EBRT) with/without temozolomide (TMZ) were reviewed. Immunohistochemical (IHC) assays were performed for IDH1mutation, ATRX loss, TP53 overexpression and Ki-67% index. Apart from disease and treatment-related factors' influence on clinical outcomes, the impact of IHC markers in prognostication was analyzed using appropriate statistical tests. RESULTS The median overall survival (OS) was 14 months. EBRT with concurrent TMZ was given to 60% of patients and 42.5% completed the standard Stupp-protocol. Significant improvements in OS was observed in patients aged ≤ 50years (2-year OS: 22.1% vs. 12.5%, p = 0.001), those who underwent gross total resection (2-year OS: 21.8% vs. 12.8%, p = 0.002), received concurrent TMZ (21.9% vs. 12.5%, p = 0.005), completed the entire Stupp-protocol (2-year OS: 23.4% vs. 6.5%, p = 0.000), and with Ki-67 index <20% (2-year OS: 23.3% vs. 11.6%, p = 0.015). On multivariate analysis, IDH1 mutation, ATRX loss, TP53 expression, and Ki-67 ≤ 20% were significant prognosticators of outcomes. CONCLUSION GBM patients treated with concurrent chemoradiation and those who completed the full Stupp-protocol experienced better survival outcomes. Molecular biology significantly impacts clinical outcomes and plays a key deterministic role in newer management strategies.
Collapse
Affiliation(s)
- Narendra Kumar
- Department of Radiotherapy& Oncology, PGIMER, Chandigarh, India.
| | - Arun Elangovan
- Department of Radiotherapy& Oncology, PGIMER, Chandigarh, India.
| | - Renu Madan
- Department of Radiotherapy& Oncology, PGIMER, Chandigarh, India.
| | | | - Divya Khosla
- Department of Radiotherapy& Oncology, PGIMER, Chandigarh, India.
| | | | - Kirti Gupta
- Department of Pathology, PGIMER, Chandigarh, India.
| | - Rakesh Kapoor
- Department of Radiotherapy& Oncology, PGIMER, Chandigarh, India.
| |
Collapse
|
37
|
Pasquini L, Di Napoli A, Napolitano A, Lucignani M, Dellepiane F, Vidiri A, Villani V, Romano A, Bozzao A. Glioblastoma radiomics to predict survival: Diffusion characteristics of surrounding nonenhancing tissue to select patients for extensive resection. J Neuroimaging 2021; 31:1192-1200. [PMID: 34231927 DOI: 10.1111/jon.12903] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Glioblastoma (GBM) is an aggressive primary CNS neoplasm with poor overall survival (OS) despite standard of care. On MRI, GBM is usually characterized by an enhancing portion (CET) (surgery target) and a nonenhancing surrounding (NET). Extent of resection is a long debated issue in GBM, with recent evidence suggesting that both CET and NET should be resected in <65 years old patients, regardless of other risk factors (i.e., molecular biomarkers). Our aim was to test a radiomic model for patient survival stratification in <65 years old patients, by analyzing MRI features of NET, to aid tumor resection. METHODS Sixty-eight <65 years old GBM patients, with extensive CET resection, were selected. Resection was evaluated by manually segmenting CET on volumetric T1-weighted MRI pre and postsurgery (within 72 h). All patients underwent the same treatment protocol including chemoradiation. NET radiomic features were extracted with a custom version of Pyradiomics. Feature selection was performed with principal component analysis (PCA) and its effect on survival tested with Cox regression model. Twelve months OS discrimination was tested by t-test followed by logistic regression. Statistical significance was set at p<0.05. The most relevant features were identified from the component matrix. RESULTS Five PCA components (PC1-5) explained 90% of the variance. PC5 resulted significant in the Cox model (p = 0.002; exp(B) = 0.686), at t-test (p = 0.002) and logistic regression analysis (p = 0.006). Apparent diffusion coefficient (ADC)-based features were the most significant for patient survival stratification. CONCLUSIONS ADC radiomic features on NET predict survival after standard therapy and could be used to improve patient selection for more extensive surgery.
Collapse
Affiliation(s)
- Luca Pasquini
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, USA.,Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alberto Di Napoli
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy.,Radiology Department, Castelli Romani Hospital, Rome, Italy
| | - Antonio Napolitano
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Martina Lucignani
- Medical Physics Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Dellepiane
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy
| | - Antonello Vidiri
- Radiology and Diagnostic Imaging Department, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Veronica Villani
- Neuro-Oncology Unit, Regina Elena National Cancer Institute, IRCCS, Rome, Italy
| | - Andrea Romano
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy
| | - Alessandro Bozzao
- Neuroradiology Unit, NESMOS Department, Sant'Andrea Hospital, La Sapienza University, Rome, Italy
| |
Collapse
|
38
|
Sipos D, László Z, Tóth Z, Kovács P, Tollár J, Gulybán A, Lakosi F, Repa I, Kovács A. Additional Value of 18F-FDOPA Amino Acid Analog Radiotracer to Irradiation Planning Process of Patients With Glioblastoma Multiforme. Front Oncol 2021; 11:699360. [PMID: 34295825 PMCID: PMC8290215 DOI: 10.3389/fonc.2021.699360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/11/2021] [Indexed: 01/25/2023] Open
Abstract
PURPOSE To investigate the added value of 6-(18F]-fluoro-L-3,4-dihydroxyphenylalanine (FDOPA) PET to radiotherapy planning in glioblastoma multiforme (GBM). METHODS From September 2017 to December 2020, 17 patients with GBM received external beam radiotherapy up to 60 Gy with concurrent and adjuvant temozolamide. Target volume delineations followed the European guideline with a 2-cm safety margin clinical target volume (CTV) around the contrast-enhanced lesion+resection cavity on MRI gross tumor volume (GTV). All patients had FDOPA hybrid PET/MRI followed by PET/CT before radiotherapy planning. PET segmentation followed international recommendation: T/N 1.7 (BTV1.7) and T/N 2 (BTV2.0) SUV thresholds were used for biological target volume (BTV) delineation. For GTV-BTVs agreements, 95% of the Hausdorff distance (HD95%) from GTV to the BTVs were calculated, additionally, BTV portions outside of the GTV and coverage by the 95% isodose contours were also determined. In case of recurrence, the latest MR images were co-registered to planning CT to evaluate its location relative to BTVs and 95% isodose contours. RESULTS Average (range) GTV, BTV1.7, and BTV2.0 were 46.58 (6-182.5), 68.68 (9.6-204.1), 42.89 (3.8-147.6) cm3, respectively. HD95% from GTV were 15.5 mm (7.9-30.7 mm) and 10.5 mm (4.3-21.4 mm) for BTV1.7 and BTV2.0, respectively. Based on volumetric assessment, 58.8% (28-100%) of BTV1.7 and 45.7% of BTV2.0 (14-100%) were outside of the standard GTV, still all BTVs were encompassed by the 95% dose. All recurrences were confirmed by follow-up imaging, all occurred within PTV, with an additional outfield recurrence in a single case, which was not DOPA-positive at the beginning of treatment. Good correlation was found between the mean and median values of PET/CT and PET/MRI segmented volumes relative to corresponding brain-accumulated enhancement (r = 0.75; r = 0.72). CONCLUSION 18FFDOPA PET resulted in substantial larger tumor volumes compared to MRI; however, its added value is unclear as vast majority of recurrences occurred within the prescribed dose level. Use of PET/CT signals proved to be feasible in the absence of direct segmentation possibilities of PET/MR in TPS. The added value of 18FFDOPA may be better exploited in the context of integrated dose escalation.
Collapse
Affiliation(s)
- David Sipos
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Kaposvár, Hungary
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Zoltan László
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Kaposvár, Hungary
| | - Zoltan Tóth
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
- MEDICOPUS Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Peter Kovács
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Kaposvár, Hungary
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Jozsef Tollár
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Neurology, Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | - Akos Gulybán
- Medical Physics Department, Institut Jules Bordet, Bruxelles, Belgium
| | - Ferenc Lakosi
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Kaposvár, Hungary
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
| | - Imre Repa
- Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, “Moritz Kaposi” Teaching Hospital, Kaposvár, Hungary
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
| | - Arpad Kovács
- Doctoral School of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Medical Imaging, Faculty of Health Sciences, University of Pécs, Pécs, Hungary
- Department of Oncoradiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
39
|
Palmieri G, Cofano F, Salvati LF, Monticelli M, Zeppa P, Perna GD, Melcarne A, Altieri R, La Rocca G, Sabatino G, Barbagallo GM, Tartara F, Zenga F, Garbossa D. Fluorescence-Guided Surgery for High-Grade Gliomas: State of the Art and New Perspectives. Technol Cancer Res Treat 2021; 20:15330338211021605. [PMID: 34212784 PMCID: PMC8255554 DOI: 10.1177/15330338211021605] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-grade gliomas are aggressive tumors that require multimodal management and gross total resection is considered to be the first crucial step of treatment. Because of their infiltrative nature, intraoperative differentiation of neoplastic tissue from normal parenchyma can be challenging. For these reasons, in the recent years, neurosurgeons have increasingly performed this surgery under the guidance of tissue fluorescence. Sodium fluoresceine and 5-aminolevulinic acid represent the 2 main compounds that allow real-time identification of residual malignant tissue and have been associated with improved gross total resection and radiological outcomes. Though presenting different profiles of sensitivity and specificity and further investigations concerning cost-effectiveness are need, Sodium fluoresceine, 5-aminolevulinic acid and new phluorophores, such as Indocyanine green, represent some of the most important tools in the neurosurgeon’s hands to achieve gross total resection.
Collapse
Affiliation(s)
- Giuseppe Palmieri
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Fabio Cofano
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy.,Neurosurgery/Spine Surgery, Humanitas Gradenigo Hospital, Turin, Italy
| | - Luca Francesco Salvati
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Matteo Monticelli
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Pietro Zeppa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Giuseppe Di Perna
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Antonio Melcarne
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Roberto Altieri
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Irccs, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Giuseppe Maria Barbagallo
- Department of Medical and Surgical Sciences and Advanced Technologies (G.F. Ingrassia), Neurological Surgery, Policlinico "G. Rodolico-San Marco" University Hospital, University of Catania, Italy
| | - Fulvio Tartara
- Unit of Neurosurgery, Istituto Clinico Città Studi, Milan, Italy
| | - Francesco Zenga
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| | - Diego Garbossa
- Unit of Neurosurgery, Department of Neuroscience "Rita Levi Montalcini," University of Turin, Turin, Italy
| |
Collapse
|
40
|
Tu Z, Xiong H, Qiu Y, Li G, Wang L, Peng S. Limited recurrence distance of glioblastoma under modern radiotherapy era. BMC Cancer 2021; 21:720. [PMID: 34154559 PMCID: PMC8218451 DOI: 10.1186/s12885-021-08467-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The optimal treatment volume for Glioblastoma multiforme (GBM) is still a subject of debate worldwide. The current study was aimed to determine the distances between recurring tumors and the edge of primary lesions, and thereby provide evidence for accurate target area delineation. METHODS Between October 2007 and March 2019, 68 recurrent patients with GBM were included in our study. We measured the distance from the initial tumor to the recurrent lesion of GBM patients by expanding the initial gross tumor volume (GTV) to overlap the center of recurrent lesion, with the help of the Pinnacle Treatment Planning System. RESULTS Recurrences were local in 47(69.1%) patients, distant in 12(17.7%) patients, and both in 9(13.2%) patients. Factors significantly influencing local recurrence were age (P = 0.049), sex (P = 0.049), and the size of peritumoral edema (P = 0.00). A total number of 91 recurrent tumors were analyzed. All local recurrences occurred within 2 cm and 94.8% (55/58) occurred within 1 cm of the original GTV based on T1 enhanced imaging. All local recurrences occurred within 1.5 cm and 98.3%(57/58) occurred within 0.5 cm of the original GTV based on T2-FLAIR imaging. 90.9% (30/33) and 81.8% (27/33) distant recurrences occurred >3 cm of T1 enhanced and T2-Flair primary tumor margins, respectively. CONCLUSIONS The 1 cm margin from T1 enhanced lesions and 0.5 cm margin from T2-Flair abnormal lesions could cover 94.8 and 98.3% local recurrences respectively, which deserves further prospective study as a limited but effective target area.
Collapse
Affiliation(s)
- Ziwei Tu
- NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), 519 East Beijing Road, Nanchang, 330029, China
| | - Huifen Xiong
- NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), 519 East Beijing Road, Nanchang, 330029, China
| | - Yang Qiu
- NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), 519 East Beijing Road, Nanchang, 330029, China
| | - Guoqing Li
- NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), 519 East Beijing Road, Nanchang, 330029, China
| | - Li Wang
- Department of Radiotherapy, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Shiyi Peng
- NHC Key Laboratory of Personalized Diagnosis and Treatment of Nasopharyngeal Carcinoma (Jiangxi Cancer Hospital of Nanchang University), 519 East Beijing Road, Nanchang, 330029, China.
| |
Collapse
|
41
|
Nie S, Zhu Y, Yang J, Xin T, Xue S, Zhang X, Sun J, Mu D, Gao Y, Chen Z, Ding X, Yu J, Hu M. Determining optimal clinical target volume margins in high-grade glioma based on microscopic tumor extension and magnetic resonance imaging. Radiat Oncol 2021; 16:97. [PMID: 34098965 PMCID: PMC8186169 DOI: 10.1186/s13014-021-01819-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 11/22/2022] Open
Abstract
Introduction In this study, we performed a consecutive macropathologic analysis to assess microscopic extension (ME) in high-grade glioma (HGG) to determine appropriate clinical target volume (CTV) margins for radiotherapy. Materials and methods The study included HGG patients with tumors located in non-functional areas, and supratotal resection was performed. The ME distance from the edge of the tumor to the microscopic tumor cells surrounding brain tissue was measured. Associations between the extent of ME and clinicopathological characteristics were evaluated by multivariate linear regression (MVLR) analysis. An ME predictive model was developed based on the MVLR model. Results Between June 2017 and July 2019, 652 pathologic slides obtained from 30 HGG patients were analyzed. The mean ME distance was 1.70 cm (range, 0.63 to 2.87 cm). The MVLR analysis identified that pathologic grade, subventricular zone (SVZ) contact and O6-methylguanine-DNA methyltransferase (MGMT) methylation, isocitrate dehydrogenase (IDH) mutation and 1p/19q co-deletion status were independent variables predicting ME (all P < 0.05). A multivariable prediction model was developed as follows: YME = 0.672 + 0.513XGrade + 0.380XSVZ + 0.439XMGMT + 0.320XIDH + 0.333X1p/19q. The R-square value of goodness of fit was 0.780. The receiver operating characteristic curve proved that the area under the curve was 0.964 (P < 0.001). Conclusion ME was heterogeneously distributed across different grades of gliomas according to the tumor location and molecular marker status, which indicated that CTV delineation should be individualized. The model could predict the ME of HGG, which may help clinicians determine the CTV for individual patients. Trial registration The trial was registered with Chinese Clinical Trial Registry (ChiCTR2100046106). Registered 4 May 2021-Retrospectively registered. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01819-0.
Collapse
Affiliation(s)
- Shulun Nie
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao Road 6699, Jinan, 250117, Shandong, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China
| | - Yufang Zhu
- Department of Neurosurgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Jia Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China
| | - Tao Xin
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Song Xue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China
| | - Xianbin Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Dianbin Mu
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Yongsheng Gao
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Zhaoqiu Chen
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xingchen Ding
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao Road 6699, Jinan, 250117, Shandong, People's Republic of China. .,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China.
| | - Man Hu
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Qingdao Road 6699, Jinan, 250117, Shandong, People's Republic of China. .,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jiyan Road 440, Jinan, 250117, Shandong, People's Republic of China.
| |
Collapse
|
42
|
Zhang M, Ye F, Su M, Cui M, Chen H, Ma X. The Prognostic Role of Peritumoral Edema in Patients with Newly Diagnosed Glioblastoma: A Retrospective Analysis. J Clin Neurosci 2021; 89:249-257. [PMID: 34119276 DOI: 10.1016/j.jocn.2021.04.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Previous studies on glioblastomas (GBMs) have not reached a consensus on peritumoral edema (PTE)'s influence on survival. This study evaluated the PTE index's prognostic role in newly diagnosed GBMs using a well-designed method. METHODS Selected patients were reviewed after a rigorous screening process. Their general information was obtained from electronic medical records. The imaging metrics (MTD, TTM, TTE) representing tumor diameter, laterality, and PTE extent were obtained by manual measurement in Syngo FastView software. The PTE index was a ratio of TTE to MTD. Multiple variables were evaluated using analysis of variance and Cox regression model. RESULTS Of 143 patients, 62 were included in this study. MGMT promoter methylation and tumor laterality were both independent prognostic factors (p = 0.020, 0.042; HR = 0.272, 2.630). The lateral tumors' index was higher than that of the medial tumors (57.7% vs. 42.6%, p = 0.027). Low-index tumors were located in relatively medial positions compared with high-index tumors (TTM, 4.9 vs. 12.8, p = 0.032). This finding indicated that the PTE index tended to increase with tumor laterality. Moreover, the patients with low-index tumors had a significant survival disadvantage in the univariate analysis but not in the multivariate analysis (p = 0.023, 0.220). However, further analysis found that the combination of tumor laterality and PTE statistically stratified the survival outcome. The patients with lateral high-index tumors survived significantly longer (p = 0.022, HR = 1.927). CONCLUSIONS In contrast with the previous studies, this study recommends combining PTE and tumor laterality for survival stratification in newly diagnosed GBMs.
Collapse
Affiliation(s)
- Meng Zhang
- The Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China; The Department of Neurosurgery, The Second Hospital of Southern District of Chinese Navy, Sanya Bay Road 82, Tianya District, Sanya 572000, China.
| | - Fuyue Ye
- The Department of Neurosurgery, The First Affiliated Hospital of Hainan Medical University, Longhua Road 31, Longhua District, Haikou 570102, China
| | - Meng Su
- The Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China
| | - Meng Cui
- The Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China
| | - Hongzun Chen
- The Department of Neurosurgery, The Second Hospital of Southern District of Chinese Navy, Sanya Bay Road 82, Tianya District, Sanya 572000, China
| | - Xiaodong Ma
- The Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing 100853, China.
| |
Collapse
|
43
|
Drumm MR, Dixit KS, Grimm S, Kumthekar P, Lukas RV, Raizer JJ, Stupp R, Chheda MG, Kam KL, McCord M, Sachdev S, Kruser T, Steffens A, Javier R, McCortney K, Horbinski C. Extensive brainstem infiltration, not mass effect, is a common feature of end-stage cerebral glioblastomas. Neuro Oncol 2021; 22:470-479. [PMID: 31711239 DOI: 10.1093/neuonc/noz216] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Progress in extending the survival of glioblastoma (GBM) patients has been slow. A better understanding of why patient survival remains poor is critical to developing new strategies. Postmortem studies on GBM can shed light on why patients are dying. METHODS The brains of 33 GBM patients were autopsied and examined for gross and microscopic abnormalities. Clinical-pathologic correlations were accomplished through detailed chart reviews. Data were compared with older published autopsy GBM studies that predated newer treatment strategies, such as more extensive surgical resection and adjuvant temozolomide. RESULTS In older GBM autopsy series, mass effect was observed in 72% of brains, with herniation in 50% of all cases. Infiltration of tumor into the brainstem was noted in only 21% of those older cases. In the current series, only 10 of 33 (30%) GBMs showed mass effect (P = 0.0003), and only 1 (3%) showed herniation (P < 0.0001). However, extensive GBM infiltration of the brainstem was present in 22 cases (67%, P < 0.0001), with accompanying destruction of the pons and white matter tracts. There was a direct correlation between longer median patient survival and the presence of brainstem infiltration (16.1 mo in brainstem-invaded cases vs 9.0 mo in cases lacking extensive brainstem involvement; P = 0.0003). CONCLUSIONS With improving care, severe mass effect appears to be less common in GBM patients today, whereas dissemination, including life-threatening brainstem invasion, is now more pronounced. This has major implications regarding preclinical GBM models, as well as the design of clinical trials aimed at further improving patient survival.
Collapse
Affiliation(s)
- Michael R Drumm
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Karan S Dixit
- Department of Neurology, Northwestern University, Chicago, Illinois
| | - Sean Grimm
- Department of Neurology, Northwestern University, Chicago, Illinois
| | - Priya Kumthekar
- Department of Neurology, Northwestern University, Chicago, Illinois
| | - Rimas V Lukas
- Department of Neurology, Northwestern University, Chicago, Illinois
| | - Jeffrey J Raizer
- Department of Neurology, Northwestern University, Chicago, Illinois
| | - Roger Stupp
- Department of Neurology, Northwestern University, Chicago, Illinois
| | - Milan G Chheda
- Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Kwok-Ling Kam
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Matthew McCord
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Sean Sachdev
- Department of Radiation Oncology, Northwestern University, Chicago, Illinois
| | - Timothy Kruser
- Department of Radiation Oncology, Northwestern University, Chicago, Illinois
| | - Alicia Steffens
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Rodrigo Javier
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Kathleen McCortney
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois.,Department of Pathology, Northwestern University, Chicago, Illinois
| |
Collapse
|
44
|
Li Y, Kim M, Lawrence TS, Parmar H, Cao Y. Microstructure Modeling of High b-Value Diffusion-Weighted Images in Glioblastoma. ACTA ACUST UNITED AC 2021; 6:34-43. [PMID: 32280748 PMCID: PMC7138521 DOI: 10.18383/j.tom.2020.00018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apparent diffusion coefficient has limits to differentiate solid tumor from normal tissue or edema in glioblastoma (GBM). This study investigated a microstructure model (MSM) in GBM using a clinically available diffusion imaging technique. The MSM was modified to integrate with bi-polar diffusion gradient waveforms, and applied to 30 patients with newly diagnosed GBM. Diffusion-weighted (DW) images acquired on a 3 T scanner with b-values from 0 to 2500 s/mm2 were fitted in volumes of interest (VOIs) of solid tumor to obtain the apparent restriction size of intracellular water (ARS), the fractional volume of intracellular water (Vin), and extracellular (Dex) water diffusivity. The parameters in solid tumor were compared with those of other tissue types by Students’ t test. For comparison, DW images were fitted by conventional mono-exponential and bi-exponential models. ARS, Dex, and Vin from the MSM in tumor VOIs were significantly greater than those in WM, GM, and edema (P values of .01–.001). ARS values in solid tumors (from 21.6 to 34.5 um) had absolutely no overlap with those in all other tissue types (from 0.9 to 3.5 um). Vin values showed a descending order from solid tumor (from 0.32 to 0.52) to WM, GM, and edema (from 0.05 to 0.25), consisting with the descending cellularity in these tissue types. The parameters from mono-exponential and bi-exponential models could not significantly differentiate solid tumor from all other tissue types, particularly from edema. Further development and histopathological validation of the MSM will warrant its role in clinical management of GBM.
Collapse
Affiliation(s)
- Yuan Li
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Michelle Kim
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Theodore S Lawrence
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Hemant Parmar
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Yue Cao
- Departments of Radiation Oncology, Radiology, and Biomedical Engineering, University of Michigan, Ann Arbor, MI
| |
Collapse
|
45
|
Zheng L, Zhou ZR, Yu Q, Shi M, Yang Y, Zhou X, Li C, Wei Q. The Definition and Delineation of the Target Area of Radiotherapy Based on the Recurrence Pattern of Glioblastoma After Temozolomide Chemoradiotherapy. Front Oncol 2021; 10:615368. [PMID: 33692942 PMCID: PMC7937883 DOI: 10.3389/fonc.2020.615368] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is an important treatment for glioblastoma (GBM), but there is no consensus on the target delineation for GBM radiotherapy. The Radiation Therapy Oncology Group (RTOG) and European Organisation for Research and Treatment of Cancer (EORTC) each have their own rules. Our center adopted a target volume delineation plan based on our previous studies. This study focuses on the recurrence pattern of GBM patients whose target delineations did not intentionally include the T2/fluid-attenuated inversion recovery (FLAIR) hyperintensity area outside of the gross tumor volume (GTV). We prospectively collected 162 GBM cases and retrospectively analysed the clinical data and continuous dynamic magnetic resonance images (MRI) of 55 patients with recurrent GBM. All patients received concurrent radiotherapy and chemotherapy with temozolomide (TMZ). The GTV that we defined includes the postoperative T1-weighted MRI enhancement area and resection cavity. Clinical target volume 1 (CTV1) and CTV2 were defined as GTVs with 1 and 2 cm margins, respectively. Planning target volume 1 (PTV1) and PTV2 were defined as CTV1 and CTV2 plus a 3 mm margin with prescribed doses of 60 and 54 Gy, respectively. The first recurrent contrast-enhanced T1-weighted MRI was introduced into the Varian Eclipse radiotherapy planning system and fused with the original planning computed tomography (CT) images to determine the recurrence pattern. The median follow-up time was 15.8 months. The median overall survival (OS) and progression-free survival (PFS) were 17.7 and 7.0 months, respectively. Among the patients, 44 had central recurrences, two had in-field recurrences, one had marginal recurrence occurred, 11 had distant recurrences, and three had subependymal recurrences. Five patients had multiple recurrence patterns. Compared to the EORTC protocol, target delineation that excludes the adjacent T2/FLAIR hyperintensity area reduces the brain volume exposed to high-dose radiation (P = 0.000) without an increased risk of marginal recurrence. Therefore, it is worthwhile to conduct a clinical trial investigating the feasibility of intentionally not including the T2/FLAIR hyperintensity region outside of the GTV.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Radiation Oncology, Taizhou Cancer Hospital, Wenling, China
| | - Zhi-Rui Zhou
- Radiation Oncology Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - QianQian Yu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Minghan Shi
- Département de l'éducation aux adultes, Cégep Saint-Jean-sur-Richelieu, Brossard, QC, Canada
| | - Yang Yang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Zhou
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Li
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
46
|
Evaluation of interim MRI changes during limited-field radiation therapy for glioblastoma and implications for treatment planning. Radiother Oncol 2021; 158:237-243. [PMID: 33587967 DOI: 10.1016/j.radonc.2021.01.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/10/2021] [Accepted: 01/29/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND PURPOSE Consensus for defining gross tumor volume (GTV) and clinical target volume (CTV) for limited-field radiation therapy (LFRT) of GBM are not well established. We leveraged a department MRI simulator to image patients before and during LFRT to address these questions. MATERIALS AND METHODS Supratentorial GBM patients receiving LFRT (46 Gy + boost to 60 Gy) underwent baseline MRI (MRI1) and interim MRI during RT (MRI2). GTV1 was defined as T1 enhancement + surgical cavity on MRI1 without routine inclusion of T2 abnormality (unless tumor did not enhance). The initial CTV margin was 15 mm from GTV1, and the boost CTV margin was 5-7 mm. The GTV1 characteristics were categorized into three groups: identical T1 and T2 abnormality (Group A), T1 only with larger T2 abnormality not included (Group B), and T2 abnormality when tumor lacked enhancement (Group C). GTV2 was contoured on MRI2 and compared with GTV1 plus 5-15 mm expansions. RESULTS Among 120 patients treated from 2014-2019, 29 patients (24%) underwent replanning based on MRI2. On MRI2, 84% of GTV2 were covered by GTV1 + 5 mm, 93% by GTV1 + 7 mm, and 98% by GTV1 + 15 mm. On MRI1, 43% of GTV1 could be categorized into Group A, 39% Group B, and 18% Group C. Group B's patterns of failure, local control, or progression-free survival were similar to Group A/C. CONCLUSIONS Initial CTV margin of 15 mm followed by a boost CTV margin of 7 mm is a reasonable approach for LFRT of GBM. Omitting routine inclusion of T2 abnormality from GTV delineation may not jeopardize disease control.
Collapse
|
47
|
Engwer C, Wenske M. Estimating the extent of glioblastoma invasion : Approximate stationalization of anisotropic advection-diffusion-reaction equations in the context of glioblastoma invasion. J Math Biol 2021; 82:10. [PMID: 33496806 PMCID: PMC7838148 DOI: 10.1007/s00285-021-01563-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 11/11/2020] [Accepted: 12/07/2020] [Indexed: 12/02/2022]
Abstract
Glioblastoma Multiforme is a malignant brain tumor with poor prognosis. There have been numerous attempts to model the invasion of tumorous glioma cells via partial differential equations in the form of advection–diffusion–reaction equations. The patient-wise parametrization of these models, and their validation via experimental data has been found to be difficult, as time sequence measurements are mostly missing. Also the clinical interest lies in the actual (invisible) tumor extent for a particular MRI/DTI scan and not in a predictive estimate. Therefore we propose a stationalized approach to estimate the extent of glioblastoma (GBM) invasion at the time of a given MRI/DTI scan. The underlying dynamics can be derived from an instationary GBM model, falling into the wide class of advection-diffusion-reaction equations. The stationalization is introduced via an analytic solution of the Fisher-KPP equation, the simplest model in the considered model class. We investigate the applicability in 1D and 2D, in the presence of inhomogeneous diffusion coefficients and on a real 3D DTI-dataset.
Collapse
Affiliation(s)
- Christian Engwer
- Institut für Numerische und Angewandte Mathematik, WWU Münster, Münster, Germany
| | - Michael Wenske
- Institut für Numerische und Angewandte Mathematik, WWU Münster, Münster, Germany.
| |
Collapse
|
48
|
Teyateeti A, Geno CS, Stafford SS, Mahajan A, Yan ES, Merrell KW, Laack NN, Parney IF, Brown PD, Jethwa KR. Does the dural resection bed need to be irradiated? Patterns of recurrence and implications for postoperative radiotherapy for temporal lobe gliomas. Neurooncol Pract 2020; 8:190-198. [PMID: 33898052 DOI: 10.1093/nop/npaa073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Patterns of recurrence and survival with different surgical and radiotherapy (RT) techniques were evaluated to guide RT target volumes for patients with temporal lobe glioma. Methods and Materials This retrospective cohort study included patients with World Health Organization grades II to IV temporal lobe glioma treated with either partial (PTL) or complete temporal lobectomy (CTL) followed by RT covering both the parenchymal and dural resection bed (whole-cavity radiotherapy [WCRT]) or the parenchymal resection bed only (partial-cavity radiotherapy [PCRT]). Patterns of recurrence, progression-free survival (PFS) and overall survival (OS) were evaluated. Results Fifty-one patients were included and 84.3% of patients had high-grade glioma (HGG). CTL and PTL were performed for 11 (21.6%) and 40 (78.4%) patients, respectively. Median RT dose was 60 Gy (range, 40-76 Gy). There were 82.4% and 17.6% of patients who received WCRT and PCRT, respectively. Median follow-up time was 18.4 months (range, 4-161 months). Forty-six patients (90.2%) experienced disease recurrence, most commonly at the parenchymal resection bed (76.5%). No patients experienced an isolated dural recurrence. The median PFS and OS for the PCRT and WCRT cohorts were 8.6 vs 10.8 months (P = .979) and 19.9 vs 18.6 months (P = .859), respectively. PCRT was associated with a lower RT dose to the brainstem, optic, and ocular structures, hippocampus, and pituitary. Conclusion We identified no isolated dural recurrence and similar PFS and OS regardless of postoperative RT volume, whereas PCRT was associated with dose reduction to critical structures. Omission of dural RT may be considered a reasonable alternative approach. Further validation with larger comparative studies is warranted.
Collapse
Affiliation(s)
- Achiraya Teyateeti
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US.,Division of Radiation Oncology, Department of Radiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Connie S Geno
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, US
| | - Scott S Stafford
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Elizabeth S Yan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Kenneth W Merrell
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Nadia N Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota, US
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US
| | - Krishan R Jethwa
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, US.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, US
| |
Collapse
|
49
|
Jiang H, Yu K, Li M, Cui Y, Ren X, Yang C, Zhao X, Lin S. Classification of Progression Patterns in Glioblastoma: Analysis of Predictive Factors and Clinical Implications. Front Oncol 2020; 10:590648. [PMID: 33251147 PMCID: PMC7673412 DOI: 10.3389/fonc.2020.590648] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Background This study was designed to explore the progression patterns of IDH-wildtype glioblastoma (GBM) at first recurrence after chemoradiotherapy. Methods Records from 247 patients who underwent progression after diagnosis of IDH-wildtype GBM was retrospectively reviewed. Progression patterns were classified as either local, distant, subependymal or leptomeningeal dissemination based on the preoperative and serial postoperative radiographic images. The clinical and molecular characteristics of different progression patterns were analyzed. Results A total of 186 (75.3%) patients had local progression, 15 (6.1%) patients had distant progression, 33 (13.3%) patients had subependymal dissemination, and 13 (5.3%) patients had leptomeningeal dissemination. The most favorable survival occurred in patients with local progression, while no significant difference of survival was found among patients with distant progression, subependymal or leptomeningeal dissemination who were thereby reclassified into non-local group. Multivariable analysis showed that chemotherapy was a protective factor for non-local progression, while gender of male, subventricular zone (SVZ) involvement and O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation were confirmed as risk factors for non-local progression (P < 0.05). Based on the factors screened by multivariable analysis, a nomogram was constructed which conferred high accuracy in predicting non-local progression. Patients in non-local group could be divided into long- and short-term survivors who differed in the rates of SVZ involvement, MGMT promoter methylation and reirradiation (P < 0.05), and a nomogram integrating these factors showed high accuracy in predicting long-term survivors. Conclusion Patients harboring different progression patterns conferred distinct clinical and molecular characteristics. Our nomograms could provide theoretical references for physicians to make more personalized and precise treatment decisions.
Collapse
Affiliation(s)
- Haihui Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Kefu Yu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Yong Cui
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Xiaohui Ren
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Chuanwei Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Xuzhe Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, China
| |
Collapse
|
50
|
Stewart J, Sahgal A, Lee Y, Soliman H, Tseng CL, Detsky J, Husain Z, Ho L, Das S, Maralani PJ, Lipsman N, Stanisz G, Perry J, Chen H, Atenafu EG, Campbell M, Lau AZ, Ruschin M, Myrehaug S. Quantitating Interfraction Target Dynamics During Concurrent Chemoradiation for Glioblastoma: A Prospective Serial Imaging Study. Int J Radiat Oncol Biol Phys 2020; 109:736-746. [PMID: 33068687 DOI: 10.1016/j.ijrobp.2020.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Magnetic resonance image (MRI) guided radiation therapy has the potential to improve outcomes for glioblastoma by adapting to tumor changes during radiation therapy. This study quantifies interfraction dynamics (tumor size, position, and geometry) based on sequential magnetic resonance imaging scans obtained during standard 6-week chemoradiation. METHODS AND MATERIALS Sixty-one patients were prospectively imaged with gadolinium-enhanced T1 (T1c) and T2/FLAIR axial sequences at planning (Fx0), fraction 10 (Fx10), fraction 20 (Fx20), and 1 month after the final fraction of chemoradiation therapy (P1M). Gross tumor volumes (GTVs) and clinical target volumes (CTVs) were contoured at all time points. Target dynamics were quantified by absolute volume (V), volume relative to Fx0 (Vrel), and the migration distance (dmigrate; the linear displacement of the GTV or CTV relative to Fx0). Temporal changes were assessed using a linear mixed-effects model. RESULTS Median volumes at Fx0, Fx10, Fx20, and P1M for the GTV were 18.4 cm3 (range, 1.1-110.5 cm3), 14.7 cm3 (range, 0.9-115.1 cm3), 13.7 cm3 (range, 0.6-174.2 cm3), and 13.0 cm3 (range, 0.9-76.3 cm3), respectively, with corresponding median Vrel of 0.88 at Fx10, 0.77 at Fx20, and 0.71 at P1M relative to Fx0 (P < .001 for all). The GTV (CTV) migration distances were greater than 5 mm in 46% (54%) of patients at Fx10, 50% (58%) of patients at Fx20, and 52% (57%) of patients at P1M. Dynamic tumor morphologic changes were observed, with 40% of patients exhibiting a decreased GTV (Vrel ≤1) with a dmigrate >5 mm during chemoradiation therapy. CONCLUSIONS Clinically meaningful tumor dynamics were observed during chemoradiation therapy for glioblastoma, supporting evaluation of daily MRI guided radiation therapy and treatment plan adaptation.
Collapse
Affiliation(s)
- James Stewart
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Young Lee
- Department of Radiation Oncology, University of Toronto, Toronto, Canada; Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Hany Soliman
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Chia-Lin Tseng
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jay Detsky
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Zain Husain
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Ling Ho
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Sunit Das
- Division of Neurosurgery and Centre for Ethics, St. Michael's Hospital, Toronto, Canada; The Arthur and Sonia Labatt Brain Tumour Research Centre, SickKids Hospital, Toronto, Canada; Division of Neurosurgery, University of Toronto, Toronto, Canada
| | - Pejman Jabehdar Maralani
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Nir Lipsman
- Division of Neurosurgery, University of Toronto, Toronto, Canada; Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Canada; Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Greg Stanisz
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics University of Toronto, Toronto, Canada; Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| | - James Perry
- Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Canada
| | - Hanbo Chen
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Eshetu G Atenafu
- Department of Biostatistics, University Health Network, University of Toronto, Toronto, Canada
| | - Mikki Campbell
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada
| | - Angus Z Lau
- Department of Physical Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics University of Toronto, Toronto, Canada
| | - Mark Ruschin
- Department of Radiation Oncology, University of Toronto, Toronto, Canada; Department of Medical Physics, Sunnybrook Odette Cancer Centre, Toronto, Ontario, Canada
| | - Sten Myrehaug
- Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Canada.
| |
Collapse
|