1
|
Skrabalak I, Rajtak A, Malachowska B, Skrzypczak N, Skalina KA, Guha C, Kotarski J, Okla K. Therapy resistance: Modulating evolutionarily conserved heat shock protein machinery in cancer. Cancer Lett 2025; 616:217571. [PMID: 39986370 DOI: 10.1016/j.canlet.2025.217571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/24/2025]
Abstract
Therapy resistance is a major barrier to achieving a cure in cancer patients, often resulting in relapses and mortality. Heat shock proteins (HSPs) are a group of evolutionarily conserved proteins that play a prominent role in the progression of cancer and drug resistance. HSP synthesis is upregulated in cancer cells, facilitating adaptation to various tumor microenvironment (TME) stressors, including nutrient deprivation, exposure to DNA-damaging agents, hypoxia, and immune responses. In this review, we present background information about HSP-mediated cancer therapy resistance. Within this context, we emphasize recent progress in the understanding of HSP machinery, exploring the therapeutic potential of HSPs in cancer treatment.
Collapse
Affiliation(s)
- Ilona Skrabalak
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Alicja Rajtak
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland; IOA, 3 Lotnicza St, 20-322 Lublin, Poland
| | - Beata Malachowska
- Department of Radiation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Natalia Skrzypczak
- Department of Pathology and Clinical Laboratories, University of Michigan, Ann Arbor, MI, USA
| | - Karin A Skalina
- Department of Radiation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Jan Kotarski
- The First Department of Oncologic Gynecology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Karolina Okla
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Center of Excellence for Cancer Immunology and Immunotherapy, University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; IOA, 3 Lotnicza St, 20-322 Lublin, Poland.
| |
Collapse
|
2
|
Geyer F, Geyer M, Reuning U, Klapproth S, Wolff KD, Nieberler M. CHD4 acts as a prognostic factor and drives radioresistance in HPV negative HNSCC. Sci Rep 2024; 14:8286. [PMID: 38594331 PMCID: PMC11003975 DOI: 10.1038/s41598-024-58958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Despite great efforts in improving existing therapies, the outcome of patients with advanced radioresistant HPV-negative head and neck squamous cell carcinoma (HNSCC) remains poor. The chromatin remodeler Chromodomain helicase DNA binding protein 4 (CHD4) is involved in different DNA-repair mechanisms, but the role and potential in HNSCC has not been explored yet. In the present study, we evaluated the prognostic significance of CHD4 expression using in silico analysis of the pan-cancer dataset. Furthermore, we established a monoclonal HNSCC CHD4 knockdown cell clone utilizing the CRISPR/Cas9 system. Effects of lower CHD4 expression on radiosensitivity after increasing doses of ionizing radiation were characterized using clonogenic assays and cell numbers. The in silico analysis revealed that high CHD4 expression is associated with significant poorer overall survival of HPV-negative HNSCC patients. Additionally, the knockdown of CHD4 significantly increased the radiosensitivity of HNSCC cells. Therefore, CHD4 might be involved in promoting radioresistance in hard-to-treat HPV-negative HNSCC entities. We conclude that CHD4 could serve as a prognostic factor in HPV-negative HNSCC tumors and is a potential target protein overcoming radioresistance in HNSCC. Our results and the newly established cell clone laid the foundation to further characterize the underlying mechanisms and ultimately use CHD4 in HNSCC therapies.
Collapse
Affiliation(s)
- Fabian Geyer
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany.
| | - Maximilian Geyer
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675, Munich, Germany
| | - Sarah Klapproth
- Institute of Experimental Hematology, School of Medicine, Technische Universität München, 81675, Munich, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany
| |
Collapse
|
3
|
Huo Q, Wang J, Xie N. High HSPB1 expression predicts poor clinical outcomes and correlates with breast cancer metastasis. BMC Cancer 2023; 23:501. [PMID: 37268925 DOI: 10.1186/s12885-023-10983-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Heat shock protein beta-1 (HSPB1) is a crucial biomarker for pathological processes in various cancers. However, the clinical value and function of HSPB1 in breast cancer has not been extensively explored. Therefore, we adopted a systematic and comprehensive approach to investigate the correlation between HSPB1 expression and clinicopathological features of breast cancer, as well as determine its prognostic value. We also examined the effects of HSPB1 on cell proliferation, invasion, apoptosis, and metastasis. METHODS We investigated the expression of HSPB1 in patients with breast cancer using The Cancer Genome Atlas and immunohistochemistry. Chi-squared test and Wilcoxon signed-rank test were used to examine the relationship between HSPB1 expression and clinicopathological characteristics. RESULTS We observed that HSPB1 expression was significantly correlated with the stage N, pathologic stages, as well as estrogen and progesterone receptors. Furthermore, high HSPB1 expression resulted in a poor prognosis for overall survival, relapse-free survival, and distant metastasis-free survival. Multivariable analysis showed that patients with poor survival outcomes had higher tumor, node, metastasis, and pathologic stages. Pathway analysis of HSPB1 and the altered neighboring genes suggested that HSPB1 is involved in the epithelial-to-mesenchymal transition. Functional analysis revealed showed that transient knockdown of HSPB1 inhibited the cell migration/invasion ability and promoted apoptosis. CONCLUSIONS HSPB1 may be involved in breast cancer metastasis. Collectively, our study demonstrated that HSPB1 has prognostic value for clinical outcomes and may serve as a therapeutic biomarker for breast cancer.
Collapse
Affiliation(s)
- Qin Huo
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, 518035, Shenzhen, China
| | - Juan Wang
- Department of General Practice, Army Medical Center of PLA, Chongqing, 400042, China
| | - Ni Xie
- Biobank, Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen University, 518035, Shenzhen, China.
| |
Collapse
|
4
|
Singer D, Ressel V, Stope MB, Bekeschus S. Heat Shock Protein 27 Affects Myeloid Cell Activation and Interaction with Prostate Cancer Cells. Biomedicines 2022; 10:biomedicines10092192. [PMID: 36140293 PMCID: PMC9496253 DOI: 10.3390/biomedicines10092192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Heat shock proteins are cytoprotective molecules induced by environmental stresses. The small heat shock protein 27 (Hsp27) is highly expressed under oxidative stress conditions, mediating anti-oxidative effects and blocking apoptosis. Since medical gas plasma treatment subjects cancer cells to a multitude of reactive oxygen species (ROS), inducing apoptosis and immunomodulation, probable effects of Hsp27 should be investigated. To this end, we quantified the extracellular Hsp27 in two prostate cancer cell lines (LNCaP, PC-3) after gas plasma-induced oxidative stress, showing a significantly enhanced release. To investigate immunomodulatory effects, two myeloid cell lines (THP-1 and HL-60) were also exposed to Hsp27. Only negligible effects on viability, intracellular oxidative milieu, and secretion profiles of the myeloid cells were found when cultured alone. Interestingly, prostate cancer-myeloid cell co-cultures showed altered secretion profiles with a significant decrease in vascular endothelial growth factor (VEGF) release. Furthermore, the myeloid surface marker profiles were changed, indicating an enhanced differentiation in co-culture upon Hsp27 treatment. Finally, we investigated morphological changes, proliferation, and interaction with prostate cancer cells, and found significant alterations in the myeloid cells, supporting the tendency to differentiate. Collectively, our results suggest an ambiguous effect of Hsp27 on myeloid cells in the presence of prostate cancer cells which needs to be further investigated.
Collapse
Affiliation(s)
- Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Verena Ressel
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Clinic and Policlinic for Urology, Greifswald University Medical Center, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence:
| |
Collapse
|
5
|
Efficient Heat Shock Response Affects Hyperthermia-Induced Radiosensitization in a Tumor Spheroid Control Probability Assay. Cancers (Basel) 2021; 13:cancers13133168. [PMID: 34201993 PMCID: PMC8269038 DOI: 10.3390/cancers13133168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Hyperthermia (HT) combined with irradiation is a well-known concept to improve the curative potential of radiotherapy. Technological progress has opened new avenues for thermoradiotherapy, even for recurrent head and neck squamous cell carcinomas (HNSCC). Preclinical evaluation of the curative radiosensitizing potential of various HT regimens remains ethically, economically, and technically challenging. One key objective of our study was to refine an advanced 3-D assay setup for HT + RT research and treatment testing. For the first time, HT-induced radiosensitization was systematically examined in two differently radioresponsive HNSCC spheroid models using the unique in vitro "curative" analytical endpoint of spheroid control probability. We further investigated the cellular stress response mechanisms underlying the HT-related radiosensitization process with the aim to unravel the impact of HT-induced proteotoxic stress on the overall radioresponse. HT disrupted the proteome's thermal stability, causing severe proteotoxic stress. It strongly enhanced radiation efficacy and affected paramount survival and stress response signaling networks. Transcriptomics, q-PCR, and western blotting data revealed that HT + RT co-treatment critically triggers the heat shock response (HSR). Pre-treatment with chemical chaperones intensified the radiosensitizing effect, thereby suppressing HT-induced Hsp27 expression. Our data suggest that HT-induced radiosensitization is adversely affected by the proteotoxic stress response. Hence, we propose the inhibition of particular heat shock proteins as a targeting strategy to improve the outcome of combinatorial HT + RT.
Collapse
|
6
|
Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing. Cancers (Basel) 2021; 13:cancers13051102. [PMID: 33806538 PMCID: PMC7961562 DOI: 10.3390/cancers13051102] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Some regions of aggressive malignancies experience hypoxia due to inadequate blood supply. Cancer cells adapting to hypoxic conditions somehow become more resistant to radiation exposure and this decreases the efficacy of radiotherapy toward hypoxic tumors. The present review article helps clarify two intriguing points: why hypoxia-adapted cancer cells turn out radioresistant and how they can be rendered more radiosensitive. The critical molecular targets associated with intratumoral hypoxia and various approaches are here discussed which may be used for sensitizing hypoxic tumors to radiotherapy. Abstract Within aggressive malignancies, there usually are the “hypoxic zones”—poorly vascularized regions where tumor cells undergo oxygen deficiency through inadequate blood supply. Besides, hypoxia may arise in tumors as a result of antiangiogenic therapy or transarterial embolization. Adapting to hypoxia, tumor cells acquire a hypoxia-resistant phenotype with the characteristic alterations in signaling, gene expression and metabolism. Both the lack of oxygen by itself and the hypoxia-responsive phenotypic modulations render tumor cells more radioresistant, so that hypoxic tumors are a serious challenge for radiotherapy. An understanding of causes of the radioresistance of hypoxic tumors would help to develop novel ways for overcoming this challenge. Molecular targets for and various approaches to radiosensitizing hypoxic tumors are considered in the present review. It is here analyzed how the hypoxia-induced cellular responses involving hypoxia-inducible factor-1, heat shock transcription factor 1, heat shock proteins, glucose-regulated proteins, epigenetic regulators, autophagy, energy metabolism reprogramming, epithelial–mesenchymal transition and exosome generation contribute to the radioresistance of hypoxic tumors or may be inhibited for attenuating this radioresistance. The pretreatments with a multitarget inhibition of the cancer cell adaptation to hypoxia seem to be a promising approach to sensitizing hypoxic carcinomas, gliomas, lymphomas, sarcomas to radiotherapy and, also, liver tumors to radioembolization.
Collapse
|
7
|
Krawczyk MA, Pospieszynska A, Styczewska M, Bien E, Sawicki S, Marino Gammazza A, Fucarino A, Gorska-Ponikowska M. Extracellular Chaperones as Novel Biomarkers of Overall Cancer Progression and Efficacy of Anticancer Therapy. APPLIED SCIENCES 2020; 10:6009. [DOI: 10.3390/app10176009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Exosomal heat shock proteins (Hsps) are involved in intercellular communication both in physiological and pathological conditions. They play a role in key processes of carcinogenesis including immune system regulation, cell differentiation, vascular homeostasis and metastasis formation. Thus, exosomal Hsps are emerging biomarkers of malignancies and possible therapeutic targets. Adolescents and young adults (AYAs) are patients aged 15–39 years. This age group, placed between pediatric and adult oncology, pose a particular challenge for cancer management. New biomarkers of cancer growth and progression as well as prognostic factors are desperately needed in AYAs. In this review, we attempted to summarize the current knowledge on the role of exosomal Hsps in selected solid tumors characteristic for the AYA population and/or associated with poor prognosis in this age group. These included malignant melanoma, brain tumors, and breast, colorectal, thyroid, hepatocellular, lung and gynecological tract carcinomas. The studies on exosomal Hsps in these tumors are limited; however; some have provided promising results. Although further research is needed, there is potential for future clinical applications of exosomal Hsps in AYA cancers, both as novel biomarkers of disease presence, progression or relapse, or as therapeutic targets or tools for drug delivery.
Collapse
|
8
|
Iglesia RP, Fernandes CFDL, Coelho BP, Prado MB, Melo Escobar MI, Almeida GHDR, Lopes MH. Heat Shock Proteins in Glioblastoma Biology: Where Do We Stand? Int J Mol Sci 2019; 20:E5794. [PMID: 31752169 PMCID: PMC6888131 DOI: 10.3390/ijms20225794] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022] Open
Abstract
Heat shock proteins (HSPs) are evolutionary conserved proteins that work as molecular chaperones and perform broad and crucial roles in proteostasis, an important process to preserve the integrity of proteins in different cell types, in health and disease. Their function in cancer is an important aspect to be considered for a better understanding of disease development and progression. Glioblastoma (GBM) is the most frequent and lethal brain cancer, with no effective therapies. In recent years, HSPs have been considered as possible targets for GBM therapy due their importance in different mechanisms that govern GBM malignance. In this review, we address current evidence on the role of several HSPs in the biology of GBMs, and how these molecules have been considered in different treatments in the context of this disease, including their activities in glioblastoma stem-like cells (GSCs), a small subpopulation able to drive GBM growth. Additionally, we highlight recent works that approach other classes of chaperones, such as histone and mitochondrial chaperones, as important molecules for GBM aggressiveness. Herein, we provide new insights into how HSPs and their partners play pivotal roles in GBM biology and may open new therapeutic avenues for GBM based on proteostasis machinery.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marilene Hohmuth Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; (R.P.I.); (C.F.d.L.F.); (B.P.C.); (M.B.P.); (M.I.M.E.); (G.H.D.R.A.)
| |
Collapse
|
9
|
Chine VB, Au NPB, Ma CHE. Therapeutic benefits of maintaining mitochondrial integrity and calcium homeostasis by forced expression of Hsp27 in chemotherapy-induced peripheral neuropathy. Neurobiol Dis 2019; 130:104492. [DOI: 10.1016/j.nbd.2019.104492] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 01/24/2023] Open
|
10
|
Enguix-Riego MDV, Cacicedo J, Delgado León BD, Nieto-Guerrero Gómez JM, Herrero Rivera D, Perez M, Praena-Fernández JM, Sanchez Carmona G, Rivin Del Campo E, Ortiz Gordillo MJ, Lopez Guerra JL. The single nucleotide variant rs2868371 associates with the risk of mortality in non-small cell lung cancer patients: A multicenter prospective validation. Radiother Oncol 2019; 136:29-36. [PMID: 31015126 DOI: 10.1016/j.radonc.2019.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Definitive radiation therapy (RT) with or without chemotherapy has become the standard treatment for non-metastatic unresectable non-small cell lung cancer (NSCLC). However, treatment outcomes can differ substantially and patients' genetic background could play a crucial role. Potential associations between single-nucleotide polymorphisms (SNP) in Heat shock protein beta-1 (HSPB1) and survival have been reported in prior single-institution retrospective reports. MATERIALS AND METHODS The current assay aims to validate such connection in a prospective multicenter study in a European cohort including 181 NSCLC patients. Median follow-up time for all patients was 13 months (range, 3-57 months). RESULTS The results obtained show an association between the rs2868371 GG genotype and better overall survival (HR: 0.35; 95%CI: 0.13-0.96; p = 0.042) in multivariate analysis. Two-year overall survival rate was 72% for patients carrying the rs2868371 GG genotype versus 36% for those patients harboring the rs2868371 CC/CG genotypes (p = 0.013). Additionally, the rs2868371 GG genotype was found to be associated with better disease-free survival in the multivariate analysis (HR: 0.36; 95%CI: 0.13-0.99; p = 0.048). In silico analysis of the potential functional SNP suggested significant difference in the affinity of the Glucocorticoid Receptor binding site between alternative allelic variants, confirmed by chromatin immunoprecipitation analysis displaying stronger affinity for the risk allele (C). Furthermore, our findings indicate that the rs2868371 influences (mRNA) HSPB1 expression, offering insight into the regulation of HSPB1 transcription. CONCLUSION The functional HSPB1 rs2868371 promoter variant may affect lung cancer survival by regulation of HSPB1 expression levels through glucocorticoid receptor interaction.
Collapse
Affiliation(s)
- María Del Valle Enguix-Riego
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Spain
| | - Jon Cacicedo
- Departament of Radiation Oncology, Cruces University Hospital, Barakaldo, Spain
| | | | | | - Daniel Herrero Rivera
- Department of Medical Oncology, University Hospital Virgen del Rocío, Seville, Spain
| | - Marco Perez
- Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Spain
| | | | | | | | - María José Ortiz Gordillo
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Spain
| | - Jose Luis Lopez Guerra
- Department of Radiation Oncology, University Hospital Virgen del Rocío, Seville, Spain; Instituto de Biomedicina de Sevilla (IBIS/HUVR/CSIC/Universidad de Sevilla), Spain.
| |
Collapse
|
11
|
Jella KK, Moriarty R, McClean B, Byrne HJ, Lyng FM. Reactive oxygen species and nitric oxide signaling in bystander cells. PLoS One 2018; 13:e0195371. [PMID: 29621312 PMCID: PMC5886541 DOI: 10.1371/journal.pone.0195371] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 03/21/2018] [Indexed: 12/16/2022] Open
Abstract
It is now well accepted that radiation induced bystander effects can occur in cells exposed to media from irradiated cells. The aim of this study was to follow the bystander cells in real time following addition of media from irradiated cells and to determine the effect of inhibiting these signals. A human keratinocyte cell line, HaCaT cells, was irradiated (0.005, 0.05 and 0.5 Gy) with γ irradiation, conditioned medium was harvested after one hour and added to recipient bystander cells. Reactive oxygen species, nitric oxide, Glutathione levels, caspase activation, cytotoxicity and cell viability was measured after the addition of irradiated cell conditioned media to bystander cells. Reactive oxygen species and nitric oxide levels in bystander cells treated with 0.5Gy ICCM were analysed in real time using time lapse fluorescence microscopy. The levels of reactive oxygen species were also measured in real time after the addition of extracellular signal-regulated kinase and c-Jun amino-terminal kinase pathway inhibitors. ROS and glutathione levels were observed to increase after the addition of irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). Caspase activation was found to increase 4 hours after irradiated cell conditioned media treatment (0.005, 0.05 and 0.5 Gy ICCM) and this increase was observed up to 8 hours and there after a reduction in caspase activation was observed. A decrease in cell viability was observed but no major change in cytotoxicity was found in HaCaT cells after treatment with irradiated cell conditioned media (0.005, 0.05 and 0.5 Gy ICCM). This study involved the identification of key signaling molecules such as reactive oxygen species, nitric oxide, glutathione and caspases generated in bystander cells. These results suggest a clear connection between reactive oxygen species and cell survival pathways with persistent production of reactive oxygen species and nitric oxide in bystander cells following exposure to irradiated cell conditioned media.
Collapse
Affiliation(s)
- Kishore Kumar Jella
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Roisin Moriarty
- Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin, Ireland
| | | | - Hugh J. Byrne
- Focas Institute, Dublin Institute of Technology, Dublin, Ireland
| | - Fiona M. Lyng
- Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin, Ireland
- School of Physics, Dublin Institute of Technology, Dublin, Ireland
| |
Collapse
|
12
|
A comparison of cell survival and heat shock protein expression after radiation in normal dermal fibroblasts, microvascular endothelial cells, and different head and neck squamous carcinoma cell lines. Clin Oral Investig 2018; 22:2251-2262. [PMID: 29307045 DOI: 10.1007/s00784-017-2323-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Head and neck squamous cell carcinoma (HNSCC) shows increased radioresistance due to the manipulation of homeostatic mechanisms like the heat shock response. This study intended to comparatively analyze effects of ionizing radiation on different HNSCC cell lines (PCI) and normal human dermal fibroblasts (NHFs) and human dermal microvascular endothelial cells (HDMECs) to uncover differences in radiation coping strategies. MATERIALS AND METHODS Proliferation (BrdU assay), apoptosis (caspase 3/7) and intracellular protein expression of heat shock protein (HSP)-70, and phosphorylated and total HSP27, determined by enzyme-linked immunosorbent assay (ELISA), were analyzed after exposure to increasing doses of ionizing radiation (2, 6, and 12 Gray, Gy). RESULTS Cell count decreased dose-dependently, but PCI cell lines consistently showed higher numbers compared to NHF and HDMEC. Likewise, high doses reduced cell proliferation, but low-dose radiation (2 Gy) instead increased proliferation in PCI 9 and 52. Apoptosis was not detectable in PCI cell lines. Basic HSP70 expression was high in PCI cells with little additional increase by irradiation. PCI cells yielded high basic total HSP27 concentrations but irradiation dose-dependently increased HSP27 in HDMEC, NHF, and PCI cells. Phosphorylated HSP27 concentrations were highest in NHF. CONCLUSION PCI cell lines showed higher resistance to dose-dependent reduction in cell number, proliferation, and protection from apoptosis compared to NHF and HDMEC. In parallel, we observed a high basic and radiation-induced expression of intracellular HSP70 leading to the assumption that the radioresistance of PCI cells is conferred by HSP70. CLINICAL RELEVANCE HNSCC use HSP to escape radiation-induced apoptosis and certain subtypes might increase proliferation after low-dose irradiation.
Collapse
|
13
|
Karam J, Fadous-Khalifé MC, Tannous R, Fakhreddine S, Massoud M, Hadchity J, Aftimos G, Hadchity E. Role of Krüppel-like factor 4 and heat shock protein 27 in cancer of the larynx. Mol Clin Oncol 2017; 7:808-814. [PMID: 29181170 DOI: 10.3892/mco.2017.1412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022] Open
Abstract
Late detection and lack of standard treatment strategies in larynx cancer patients result in high levels of mortality and poor prognosis. Prognostic stratification of larynx cancer patients based on molecular prognostic tumor biomarkers may lead to more efficient clinical management. Krüppel-like factor 4 (KLF4) and Heat Shock Protein 27 (HSP27) have an important role in tumorigenesis and are considered promising candidate biomarkers for various types of cancer. However, their role in larynx carcinoma remains to be elucidated. The present study aimed to determine KLF4 and HSP27 expression profiles in laryngeal tumors. The protein and mRNA expression levels of KLF4 and HSP27 were evaluated by immunohistochemical and reverse transcription-polymerase chain reaction analyses in 44 larynx carcinoma samples and 21 normal tissue samples, and then correlated with clinical characteristics. A differential expression of KLF4 and HSP27 was observed between normal and tumor tissues. The protein and mRNA expression levels of KLF4 were significantly decreased in larynx squamous cell carcinoma (LSCC) compared with normal tissue, whereas HSP27 was significantly overexpressed in tumor tissues compared with normal tissues, at the protein and mRNA levels. KLF4 expression decreased gradually with tumor progression whereas HSP27 expression increased. A significant difference was observed between stages I and IV. KLF4 and HSP27 exhibit opposite functions and roles in the carcinogenic process of LSCC. Their role in laryngeal cancer initiation and progression emphasizes their use as potential future targets for prognosis and treatment. KLF4 and HSP27 expression levels may act as potential biomarkers in patients with cancer of the larynx.
Collapse
Affiliation(s)
- Jihad Karam
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon
| | - Marie Claude Fadous-Khalifé
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon.,Notre Dame de Secours University Hospital, Jbeil 1401, Lebanon
| | - Rita Tannous
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon
| | - Sally Fakhreddine
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon
| | - Marcel Massoud
- Notre Dame de Secours University Hospital, Jbeil 1401, Lebanon
| | - Joseph Hadchity
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon.,Department of Surgery, St. Therese Hospital, Hadat 1003, Lebanon
| | | | - Elie Hadchity
- Anti-Tumor Therapeutic Targeting Laboratory, Faculty of Sciences, Lebanese University, Hadat 1003, Lebanon
| |
Collapse
|
14
|
Hwang SY, Kwak SY, Kwon Y, Lee YS, Na Y. Synthesis and biological effect of chrom-4-one derivatives as functional inhibitors of heat shock protein 27. Eur J Med Chem 2017; 139:892-900. [PMID: 28869891 DOI: 10.1016/j.ejmech.2017.08.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 06/21/2017] [Accepted: 08/29/2017] [Indexed: 11/24/2022]
Abstract
Heat Shock Protein 27 (HSP27) is a member of small heat shock proteins with a highly-conserved α-crystalline domain. It inhibits aggregation of damaged proteins through a complex structural systems of phosphorylation-dependent oligomerization and self-assembly. It has been demonstrated that HSP27 is involved in a variety of pathophysiological pathways with negative or positive protective activities. In this study, we synthesized six chromone analogs possessing thiiran-2-ylmethoxy or oxyran-2-ylmethoxy substituents and evaluated their biological activities against HSP27 protein. Compounds YK598-2, J4 and J2 induced significant abnormal HSP27 dimer formation in NCI-H460, a human lung cancer cell line. In synergistic anticancer activity test, the compounds effectively producing abnormal HSP27 cross-linking remarkably enhanced the antiproliferative activity of 17-AAG, a HSP90 inhibitor. Target specificity test using the HSP27-silenced cells (shHSP27) showed that compounds YK598-2, J4, and J2 significantly lost their cross-linking activity only under conditions when HSP27 was deprived of. In the evaluation of cancer cell sensitization with cisplatin, cisplatin-induced lung cancer cell growth inhibition was sensitized with statistical significance by J4 and J2 as compared to compound alone treatment. These results suggest that abnormal HSP27 dimerization can be an efficient control point for cancer cell proliferation and chromone compounds might have potential as anticancer agents that modulate abnormal HSP27 dimerization.
Collapse
Affiliation(s)
- Soo-Yeon Hwang
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Soo Yeon Kwak
- College of Pharmacy, CHA University, Pocheon, 487-010, South Korea
| | - Youngjoo Kwon
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Yun-Sil Lee
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, South Korea.
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, 487-010, South Korea.
| |
Collapse
|
15
|
Rajesh Y, Biswas A, Mandal M. Glioma progression through the prism of heat shock protein mediated extracellular matrix remodeling and epithelial to mesenchymal transition. Exp Cell Res 2017; 359:299-311. [PMID: 28844885 DOI: 10.1016/j.yexcr.2017.08.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/09/2023]
Abstract
Glial tumor is one of the intrinsic brain tumors with high migratory and infiltrative potential. This essentially contributes to the overall poor prognosis by circumvention of conventional treatment regimen in glioma. The underlying mechanism in gliomagenesis is bestowed by two processes- Extracellular matrix (ECM) Remodeling and Epithelial to mesenchymal transition (EMT). Heat Shock Family of proteins (HSPs), commonly known as "molecular chaperons" are documented to be upregulated in glioma. A positive correlation also exists between elevated expression of HSPs and invasive capacity of glial tumor. HSPs overexpression leads to mutational changes in glioma, which ultimately drive cells towards EMT, ECM modification, malignancy and invasion. Differential expression of HSPs - a factor providing cytoprotection to glioma cells, also contributes towards its radioresistance /chemoresistance. Various evidences also display upregulation of EMT and ECM markers by various heat shock inducing proteins e.g. HSF-1. The aim of this review is to study in detail the role of HSPs in EMT and ECM leading to radioresistance/chemoresistance of glioma cells. The existing treatment regimen for glioma could be enhanced by targeting HSPs through immunotherapy, miRNA and exosome mediated strategies. This could be envisaged by better understanding of molecular mechanisms underlying glial tumorigenesis in relation to EMT and ECM remodeling under HSPs influence. Our review might showcase fresh potential for the development of next generation therapeutics for effective glioma management.
Collapse
Affiliation(s)
- Y Rajesh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Angana Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
16
|
Yun KL, Wang ZY. Target/signalling pathways of natural plant-derived radioprotective agents from treatment to potential candidates: A reverse thought on anti-tumour drugs. Biomed Pharmacother 2017; 91:1122-1151. [DOI: 10.1016/j.biopha.2017.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/15/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
|
17
|
Arrigo AP. Mammalian HspB1 (Hsp27) is a molecular sensor linked to the physiology and environment of the cell. Cell Stress Chaperones 2017; 22:517-529. [PMID: 28144778 PMCID: PMC5465029 DOI: 10.1007/s12192-017-0765-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/11/2017] [Accepted: 01/14/2017] [Indexed: 12/11/2022] Open
Abstract
Constitutively expressed small heat shock protein HspB1 regulates many fundamental cellular processes and plays major roles in many human pathological diseases. In that regard, this chaperone has a huge number of apparently unrelated functions that appear linked to its ability to recognize many client polypeptides that are subsequently modified in their activity and/or half-life. A major parameter to understand how HspB1 is dedicated to interact with particular clients in defined cellular conditions relates to its complex oligomerization and phosphorylation properties. Indeed, HspB1 structural organization displays dynamic and complex rearrangements in response to changes in the cellular environment or when the cell physiology is modified. These structural modifications probably reflect the formation of structural platforms aimed at recognizing specific client polypeptides. Here, I have reviewed data from the literature and re-analyzed my own studies to describe and discuss these fascinating changes in HspB1 structural organization.
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, 28 rue Laennec, Lyon, 69008, France.
| |
Collapse
|
18
|
Shi L, Chevolot Y, Souteyrand E, Laurenceau E. Autoantibodies against heat shock proteins as biomarkers for the diagnosis and prognosis of cancer. Cancer Biomark 2017; 18:105-116. [DOI: 10.3233/cbm-160117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Kriegsmann M, Casadonte R, Kriegsmann J, Dienemann H, Schirmacher P, Hendrik Kobarg J, Schwamborn K, Stenzinger A, Warth A, Weichert W. Reliable Entity Subtyping in Non-small Cell Lung Cancer by Matrix-assisted Laser Desorption/Ionization Imaging Mass Spectrometry on Formalin-fixed Paraffin-embedded Tissue Specimens. Mol Cell Proteomics 2016; 15:3081-3089. [PMID: 27473201 PMCID: PMC5054336 DOI: 10.1074/mcp.m115.057513] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 07/27/2016] [Indexed: 12/24/2022] Open
Abstract
Histopathological subtyping of non-small cell lung cancer (NSCLC) into adenocarcinoma (ADC), and squamous cell carcinoma (SqCC) is of utmost relevance for treatment stratification. However, current immunohistochemistry (IHC) based typing approaches on biopsies are imperfect, therefore novel analytical methods for reliable subtyping are needed. We analyzed formalin-fixed paraffin-embedded tissue cores of NSCLC by Matrix-assisted laser desorption/ionization (MALDI) imaging on tissue microarrays to identify and validate discriminating MALDI imaging profiles for NSCLC subtyping. 110 ADC and 98 SqCC were used to train a Linear Discriminant Analysis (LDA) model. Results were validated on a separate set of 58 ADC and 60 SqCC. Selected differentially expressed proteins were identified by tandem mass spectrometry and validated by IHC. The LDA classification model incorporated 339 m/z values. In the validation cohort, in 117 cases (99.1%) MALDI classification on tissue cores was in accordance with the pathological diagnosis made on resection specimen. Overall, three cases in the combined cohorts were discordant, after reevaluation two were initially misclassified by pathology whereas one was classified incorrectly by MALDI. Identification of differentially expressed peptides detected well-known IHC discriminators (CK5, CK7), but also less well known differentially expressed proteins (CK15, HSP27). In conclusion, MALDI imaging on NSCLC tissue cores as small biopsy equivalents is capable to discriminate lung ADC and SqCC with a very high accuracy. In addition, replacing multislide IHC by an one-slide MALDI approach may also save tissue for subsequent predictive molecular testing. We therefore advocate to pursue routine diagnostic implementation strategies for MALDI imaging in solid tumor typing.
Collapse
Affiliation(s)
- Mark Kriegsmann
- From the ‡Institute of Pathology, University Heidelberg, 69120 Heidelberg, Germany;
| | | | - Jörg Kriegsmann
- §Proteopath GmbH, 54296 Trier, Germany; ¶Center for Histology, Cytology and Molecular Diagnostics, 54296 Trier, Germany
| | - Hendrik Dienemann
- ‖Department of Thoracic Surgery, Thoraxklinik at Heidelberg University, 69126 Heidelberg, Germany
| | - Peter Schirmacher
- From the ‡Institute of Pathology, University Heidelberg, 69120 Heidelberg, Germany
| | | | - Kristina Schwamborn
- ‡‡Institute of Pathology, Technical University Munich (TUM), 81675 Munich, Germany
| | - Albrecht Stenzinger
- From the ‡Institute of Pathology, University Heidelberg, 69120 Heidelberg, Germany; §§German Cancer Consortium (DKTK)
| | - Arne Warth
- From the ‡Institute of Pathology, University Heidelberg, 69120 Heidelberg, Germany; ¶¶Translational Lung Research Centre Heidelberg, Member of the German Centre for Lung Research
| | - Wilko Weichert
- From the ‡Institute of Pathology, University Heidelberg, 69120 Heidelberg, Germany; ‡‡Institute of Pathology, Technical University Munich (TUM), 81675 Munich, Germany; §§German Cancer Consortium (DKTK); ‖‖National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| |
Collapse
|
20
|
Advances in HSP27 and HSP90-targeting strategies for glioblastoma. J Neurooncol 2016; 127:209-19. [PMID: 26842818 DOI: 10.1007/s11060-016-2070-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/26/2016] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. There is a critical need for novel strategies to abolish the molecular mechanisms that support GBM growth, invasion and treatment resistance. The heat shock proteins, HSP27 and HSP90, serve these pivotal roles in tumor cells and have been identified as effective targets for developing therapeutics. Natural and synthetic inhibitors have been evaluated in clinical trials for several forms of systemic cancer but none as yet for GBM. This topic review summarizes the current preclinical evidence and rationale to define the potential of HSP27 and HSP90 inhibitors in GBM management.
Collapse
|
21
|
Zhang ZJ, Bulur PA, Dogan A, Gastineau DA, Dietz AB, Lin Y. Immune independent crosstalk between lymphoma and myeloid suppressor CD14 +HLA-DR low/neg monocytes mediates chemotherapy resistance. Oncoimmunology 2015; 4:e996470. [PMID: 26137410 PMCID: PMC4485750 DOI: 10.1080/2162402x.2014.996470] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 11/05/2022] Open
Abstract
We have previously reported a novel phenotype of myeloid suppressors in lymphoma patients characterized by a loss of HLA-DR expression on monocytes, CD14+HLA-DRlow/neg. These cells were directly immunosuppressive and were associated with poor clinical outcome. In this study, we found that lymphoma tumors could have more than 30% of their tumor occupied by CD14+ cells. This intimate spatial connection suggested substantial cell–cell communication. We examined cross talk between monocytes from healthy volunteers (normal) and lymphoma cells in co-culture to identify the mechanisms and consequences of these interactions. Normal CD14+HLA-DR+ monocytes lost their HLA-DR expression after co-culture with lymphoma cells. Lymphoma-converted CD14+HLA-DRlow/neg cells exhibited similar immunosuppressive functions as CD14+HLA-DRlow/neg monocytes from lymphoma patients. Unexpectedly monocyte additions to lymphoma cell cultures protected lymphoma from cytotoxic killing by chemotherapy drug doxorubicin (DOX). Monocyte mediated resistance to DOX killing was associated with decreased Caspase-3 activity and increased anti-apoptotic heat shock protein-27 (Hsp27) expression. Soluble Hsp27 was detected in supernatant and patient plasma. Increased Hsp27 in plasma correlated with increased proportion of CD14+HLA-DRlow/neg monocytes in patient blood and was associated with lack of clinical response to DOX. This is the first report to describe a non-immune function of CD14+HLA-DRlow/neg monocytes: enhanced lymphoma resistance to chemotherapy. It is also the first report in lymphoma of Hsp27 as a potential mediator of lymphoma and monocyte crosstalk and chemotherapy resistance. Together with previous reports of the prevalence of these myeloid suppressors in other cancers, our findings identify this pathway and these interactions as a potential novel therapeutic target.
Collapse
Affiliation(s)
| | - Peggy A Bulur
- Division of Transfusion Medicine; Mayo Clinic ; Rochester, MN; USA
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine; Memorial Sloan Kettering Cancer Center ; New York, NY, USA
| | - Dennis A Gastineau
- Division of Hematology; Mayo Clinic ; Rochester, MN, USA ; Division of Transfusion Medicine; Mayo Clinic ; Rochester, MN; USA
| | - Allan B Dietz
- Division of Transfusion Medicine; Mayo Clinic ; Rochester, MN; USA ; Division of Experimental Pathology; Mayo Clinic ; Rochester, MN USA
| | - Yi Lin
- Division of Hematology; Mayo Clinic ; Rochester, MN, USA
| |
Collapse
|
22
|
Wu TT, Zhou SH. Nanoparticle-based targeted therapeutics in head-and-neck cancer. Int J Med Sci 2015; 12:187-200. [PMID: 25589895 PMCID: PMC4293184 DOI: 10.7150/ijms.10083] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 12/30/2014] [Indexed: 12/17/2022] Open
Abstract
Head-and-neck cancer is a major form of the disease worldwide. Treatment consists of surgery, radiation therapy and chemotherapy, but these have not resulted in improved survival rates over the past few decades. Versatile nanoparticles, with selective tumor targeting, are considered to have the potential to improve these poor outcomes. Application of nanoparticle-based targeted therapeutics has extended into many areas, including gene silencing, chemotherapeutic drug delivery, radiosensitization, photothermal therapy, and has shown much promise. In this review, we discuss recent advances in the field of nanoparticle-mediated targeted therapeutics for head-and-neck cancer, with an emphasis on the description of targeting points, including future perspectives.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, China
| | - Shui-Hong Zhou
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 310003, China
| |
Collapse
|
23
|
Azad AA, Zoubeidi A, Gleave ME, Chi KN. Targeting heat shock proteins in metastatic castration-resistant prostate cancer. Nat Rev Urol 2014; 12:26-36. [DOI: 10.1038/nrurol.2014.320] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Daniele S, Zappelli E, Natali L, Martini C, Trincavelli ML. Modulation of A1 and A2B adenosine receptor activity: a new strategy to sensitise glioblastoma stem cells to chemotherapy. Cell Death Dis 2014; 5:e1539. [PMID: 25429616 PMCID: PMC4260745 DOI: 10.1038/cddis.2014.487] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 12/19/2022]
Abstract
Therapies that target the signal transduction and biological characteristics of cancer stem cells (CSCs) are innovative strategies that are used in combination with conventional chemotherapy and radiotherapy to effectively reduce the recurrence and significantly improve the treatment of glioblastoma multiforme (GBM). The two main strategies that are currently being exploited to eradicate CSCs are (a) chemotherapeutic regimens that specifically drive CSCs toward cell death and (b) those that promote the differentiation of CSCs, thereby depleting the tumour reservoir. Extracellular purines, particularly adenosine triphosphate, have been implicated in the regulation of CSC formation, but currently, no data on the role of adenosine and its receptors in the biological processes of CSCs are available. In this study, we investigated the role of adenosine receptor (AR) subtypes in the survival and differentiation of CSCs isolated from human GBM cells. Stimulation of A1AR and A2BAR had a prominent anti-proliferative/pro-apoptotic effect on the CSCs. Notably, an A1AR agonist also promoted the differentiation of CSCs toward a glial phenotype. The differential effects of the two AR agonists on the survival and/or differentiation of CSCs may be ascribed to their distinct regulation of the kinetics of ERK/AKT phosphorylation and the expression of hypoxia-inducible factors. Most importantly, the AR agonists sensitised CSCs to the genotoxic activity of temozolomide (TMZ) and prolonged its effects, most likely through different mechanisms, are as follows: (i) by A2BAR potentiating the pro-apoptotic effects of TMZ and (ii) by A1AR driving cells toward a differentiated phenotype that is more sensitive to TMZ. Taken together, the results of this study suggested that the purinergic system is a novel target for a stem cell-oriented therapy that could reduce the recurrence of GBM and improve the survival rate of GBM patients.
Collapse
Affiliation(s)
- S Daniele
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - E Zappelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - L Natali
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - C Martini
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | | |
Collapse
|
25
|
Miladi I, Aloy MT, Armandy E, Mowat P, Kryza D, Magné N, Tillement O, Lux F, Billotey C, Janier M, Rodriguez-Lafrasse C. Combining ultrasmall gadolinium-based nanoparticles with photon irradiation overcomes radioresistance of head and neck squamous cell carcinoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:247-57. [PMID: 24983891 DOI: 10.1016/j.nano.2014.06.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 06/02/2014] [Accepted: 06/20/2014] [Indexed: 01/12/2023]
Abstract
Gadolinium based nanoparticles (GBNs, diameter 2.9±0.2nm), have promising biodistribution properties for theranostic use in-vivo. We aimed at demonstrating the radiosensitizing effect of these GBNs in experimental radioresistant human head and neck squamous cell carcinoma (SQ20B, FaDu and Cal33 cell lines). Combining 0.6mM GBNs with 250kV photon irradiation significantly decreased SQ20B cell survival, associated with an increase in non-reparable DNA double-strand breaks, the shortening of G2/M phase blockage, and the inhibition of cell proliferation, each contributing to the commitment of late apoptosis. Similarly, radiation resistance was overcome for SQ20B stem-like cells, as well as for FaDu and Cal33 cell lines. Using a SQ20B tumor-bearing mouse model, combination of GBNs with 10Gy irradiation significantly delayed tumor growth with an increase in late apoptosis and a decrease in cell proliferation. These results suggest that GBNs could be envisioned as adjuvant to radiotherapy for HNSCC tumors.
Collapse
Affiliation(s)
- Imen Miladi
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France
| | - Marie-Thérèse Aloy
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Université de Lyon, Université Lyon 1, Oullins, France
| | - Emma Armandy
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Université de Lyon, Université Lyon 1, Oullins, France
| | - Pierre Mowat
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France
| | - David Kryza
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France; IMTHERNAT, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Nicolas Magné
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Université de Lyon, Université Lyon 1, Oullins, France
| | - Olivier Tillement
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France
| | - François Lux
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France
| | - Claire Billotey
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France; IMTHERNAT, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Marc Janier
- Institut Lumière Matière, UMR 5306 CNRS, Université de Lyon, Université Lyon 1, Villeurbanne cedex, France; IMTHERNAT, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Claire Rodriguez-Lafrasse
- Laboratoire de Radiobiologie Cellulaire et Moléculaire, EMR3738, Faculté de Médecine Lyon-Sud, Université de Lyon, Université Lyon 1, Oullins, France; Unité Médicale d'Oncologie Moléculaire et Transfert, Hospices Civils de Lyon, Laboratoire de Biochimie et Biologie Moléculaire, Centre Hospitalier Lyon-Sud, Pierre Bénite, France.
| |
Collapse
|
26
|
Arrigo AP, Gibert B. HspB1, HspB5 and HspB4 in Human Cancers: Potent Oncogenic Role of Some of Their Client Proteins. Cancers (Basel) 2014; 6:333-65. [PMID: 24514166 PMCID: PMC3980596 DOI: 10.3390/cancers6010333] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/03/2014] [Accepted: 01/17/2014] [Indexed: 12/20/2022] Open
Abstract
Human small heat shock proteins are molecular chaperones that regulate fundamental cellular processes in normal unstressed cells as well as in many cancer cells where they are over-expressed. These proteins are characterized by cell physiology dependent changes in their oligomerization and phosphorylation status. These structural changes allow them to interact with many different client proteins that subsequently display modified activity and/or half-life. Nowdays, the protein interactomes of small Hsps are under intense investigations and will represent, when completed, key parameters to elaborate therapeutic strategies aimed at modulating the functions of these chaperones. Here, we have analyzed the potential pro-cancerous roles of several client proteins that have been described so far to interact with HspB1 (Hsp27) and its close members HspB5 (αB-crystallin) and HspB4 (αA-crystallin).
Collapse
Affiliation(s)
- André-Patrick Arrigo
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Claude Bernard University Lyon 1, Lyon 69008, France.
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Claude Bernard University Lyon 1, Lyon 69008, France.
| |
Collapse
|
27
|
Cho DY, Lin SZ, Yang WK, Lee HC, Hsu DM, Lin HL, Chen CC, Liu CL, Lee WY, Ho LH. Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell Transplant 2014; 22:731-9. [PMID: 23594862 DOI: 10.3727/096368912x655136] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) in glioblastoma multiforme (GBM) are radioresistant and chemoresistant, which eventually results in tumor recurrence. Targeting CSCs for treatment is the most crucial issue. There are five methods for targeting the CSCs of GBM. One is to develop a new chemotherapeutic agent specific to CSCs. A second is to use a radiosensitizer to enhance the radiotherapy effect on CSCs. A third is to use immune cells to attack the CSCs. In a fourth method, an agent is used to promote CSCs to differentiate into normal cells. Finally, ongoing gene therapy may be helpful. New therapeutic agents for targeting a signal pathway, such as epidermal growth factor (EGF) and vascular epidermal growth factor (VEGF) or protein kinase inhibitors, have been used for GBM but for CSCs the effects still require further evaluation. Nonsteroidal anti-inflammatory drugs (NSAIDs) such as cyclooxygenase-2 (Cox-2) inhibitors have proven to be effective for increasing radiation sensitivity of CSCs in culture. Autologous dendritic cells (DCs) are one of the promising immunotherapeutic agents in clinical trials and may provide another innovative method for eradication of CSCs. Bone-morphogenetic protein 4 (BMP4) is an agent used to induce CSCs to differentiate into normal glial cells. Research on gene therapy by viral vector is also being carried out in clinical trials. Targeting CSCs by eliminating the GBM tumor may provide an innovative way to reduce tumor recurrence by providing a synergistic effect with conventional treatment. The combination of conventional surgery, chemotherapy, and radiotherapy with stem cell-orientated therapy may provide a new promising treatment for reducing GBM recurrence and improving the survival rate.
Collapse
Affiliation(s)
- Der-Yang Cho
- Department of Neurosurgery, Neuropsychiatry Center, China Medical University Hospital, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Xu GF, Xie WF. Effect of ERBB2 expression on invasiveness of glioma TJ905 cells. ASIAN PAC J TROP MED 2013; 6:964-7. [DOI: 10.1016/s1995-7645(13)60172-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/15/2013] [Accepted: 11/15/2013] [Indexed: 11/16/2022] Open
|
29
|
Rhee JS, Kim BM, Kim RO, Seo JS, Kim IC, Lee YM, Lee JS. Co-expression of antioxidant enzymes with expression of p53, DNA repair, and heat shock protein genes in the gamma ray-irradiated hermaphroditic fish Kryptolebias marmoratus larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:58-67. [PMID: 23765029 DOI: 10.1016/j.aquatox.2013.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/04/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
To investigate effects of gamma ray irradiation in the hermaphroditic fish, Kryptolebias marmoratus larvae, we checked expression of p53, DNA repair, and heat shock protein genes with several antioxidant enzyme activities by quantitative real-time RT-PCR and biochemical methods in response to different doses of gamma radiation. As a result, the level of gamma radiation-induced DNA damage was initiated after 4Gy of radiation, and biochemical and molecular damage became substantial from 8Gy. In particular, several DNA repair mechanism-related genes were significantly modulated in the 6Gy gamma radiation-exposed fish larvae, suggesting that upregulation of such DNA repair genes was closely associated with cell survival after gamma irradiation. The mRNA expression of p53 and most hsps was also significantly upregulated at high doses of gamma radiation related to cellular damage. This finding indicates that gamma radiation can induce oxidative stress with associated antioxidant enzyme activities, and linked to modulation of the expression of DNA repair-related genes as one of the defense mechanisms against radiation damage. This study provides a better understanding of the molecular mode of action of defense mechanisms upon gamma radiation in fish larvae.
Collapse
Affiliation(s)
- Jae-Sung Rhee
- Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Kepenekian V, Aloy MT, Magné N, Passot G, Armandy E, Decullier E, Sayag-Beaujard A, Gilly FN, Glehen O, Rodriguez-Lafrasse C. Impact of hyperthermic intraperitoneal chemotherapy on Hsp27 protein expression in serum of patients with peritoneal carcinomatosis. Cell Stress Chaperones 2013; 18:623-30. [PMID: 23508575 PMCID: PMC3745255 DOI: 10.1007/s12192-013-0415-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 01/31/2023] Open
Abstract
Despite the strong rationale for combining cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with peritoneal carcinomatosis, thermotolerance and chemoresistance might result from heat shock protein overexpression. The aim of the present study was thus to determine whether the heat shock protein 27 (Hsp27), a potential factor in resistance to treatment, could have a higher level in serum from patients under this combined therapy. Patients receiving CRS plus HIPEC for peritoneal carcinomatosis (group 1), patients with cancer or a history of cancer undergoing abdominal surgery (group 2), and patients without malignancies undergoing abdominal surgery (group 3) were included. Hsp27 serum levels were determined before and at different times following CRS and HIPEC using enzyme-linked immunosorbent assay. In group 1 (n = 25), the high Hsp27 levels, observed at the end of surgery compared with before (p < 0.0001), decreased during HIPEC, but remained significantly higher than before surgery (p < 0.0005). In groups 2 (n = 11) and 3 (n = 15), surgery did not significantly increase Hsp27 levels. A targeted molecular strategy, inhibiting Hsp27 expression in tumor tissue, could significantly reduce resistance to the combined CRS plus HIPEC treatment. This approach should be further assessed in a clinical phase I trial.
Collapse
Affiliation(s)
- Vahan Kepenekian
- />EMR3738, Faculté de Médecine Lyon-Sud, Université Lyon 1, BP12 69921, Oullins Cedex, France
- />Department of Surgery, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Marie-Thérèse Aloy
- />EMR3738, Faculté de Médecine Lyon-Sud, Université Lyon 1, BP12 69921, Oullins Cedex, France
| | - Nicolas Magné
- />EMR3738, Faculté de Médecine Lyon-Sud, Université Lyon 1, BP12 69921, Oullins Cedex, France
| | - Guillaume Passot
- />EMR3738, Faculté de Médecine Lyon-Sud, Université Lyon 1, BP12 69921, Oullins Cedex, France
- />Department of Surgery, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Emma Armandy
- />EMR3738, Faculté de Médecine Lyon-Sud, Université Lyon 1, BP12 69921, Oullins Cedex, France
| | - Evelyne Decullier
- />Medical Information, Evaluation, Research Pole (IMER Pole), Hospices Civils de Lyon, Lyon, France
| | - Annie Sayag-Beaujard
- />EMR3738, Faculté de Médecine Lyon-Sud, Université Lyon 1, BP12 69921, Oullins Cedex, France
- />Department of Surgery, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - François-Noël Gilly
- />EMR3738, Faculté de Médecine Lyon-Sud, Université Lyon 1, BP12 69921, Oullins Cedex, France
- />Department of Surgery, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Olivier Glehen
- />EMR3738, Faculté de Médecine Lyon-Sud, Université Lyon 1, BP12 69921, Oullins Cedex, France
- />Department of Surgery, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Claire Rodriguez-Lafrasse
- />EMR3738, Faculté de Médecine Lyon-Sud, Université Lyon 1, BP12 69921, Oullins Cedex, France
- />Laboratory of Molecular Oncology and Transfer, Department of Biochemistry and Molecular Biology, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| |
Collapse
|
31
|
Zeng L, Tan J, Lu W, Lu T, Hu Z. The potential role of small heat shock proteins in mitochondria. Cell Signal 2013; 25:2312-9. [PMID: 23917209 DOI: 10.1016/j.cellsig.2013.07.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 01/10/2023]
Abstract
Mitochondria play a central role in cellular metabolism, calcium homeostasis, redox signaling and cell fates. Mitochondrial homeostasis is tightly regulated, and mitochondrial dysfunction is frequently associated with severe human pathologies. Small heat shock proteins are molecular chaperones that play major roles in development, stress responses, and diseases, and have been envisioned as targets for therapy. The mechanisms that lie behind the cytoprotection of small heat shock proteins are related to the regulation of mitochondrial functions. This review recapitulates the current knowledge of the expression of various small heat shock proteins in mitochondria and discusses their implication in the role of mitochondria and their regulation. Based on their involvement in mitochondrial normal physiology and pathology, a better understanding of their roles and regulation will pave the way for innovative approaches for the successful treatment of a range of stress-related syndromes whose etiology is based upon dysfunction of mitochondria.
Collapse
Affiliation(s)
- Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | | | | | | | | |
Collapse
|
32
|
Inhibition of Hsp27 radiosensitizes head-and-neck cancer by modulating deoxyribonucleic acid repair. Int J Radiat Oncol Biol Phys 2013; 87:168-75. [PMID: 23849696 DOI: 10.1016/j.ijrobp.2013.05.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 05/07/2013] [Accepted: 05/15/2013] [Indexed: 11/23/2022]
Abstract
PURPOSE To present a novel method of tumor radiosensitization through Hsp27 knockdown using locked nucleic acid (LNA) and to investigate the role of Hsp27 in DNA double strand break (DSB) repair. METHODS AND MATERIALS Clonogenic survival assays, immunoblotting, the proximity ligation assay, and γH2AX foci analysis were conducted in SQ20B and FaDu human head-and-neck cancer cell lines treated with Hsp27 LNA and Hsp27 short hairpin RNA (shRNA). Additionally, nude mice with FaDu flank tumors were treated with fractionated radiation therapy after pretreatment with Hsp27 LNA and monitored for tumor growth. RESULTS Hsp27 LNA and Hsp27 shRNA radiosensitized head-and-neck cancer cell lines in an Hsp27-dependent manner. Ataxia-Telangectasia Mutated-mediated DNA repair signaling was impaired in irradiated cells with Hsp27 knockdown. ATM kinase inhibition abrogated the radiosensitizing effect of Hsp27. Furthermore, Hsp27 LNA and shRNA both attenuated DNA repair kinetics after radiation, and Hsp27 was found to colocalize with ATM in both untreated and irradiated cells. Last, combined radiation and Hsp27 LNA treatment in tumor xenografts in nude mice suppressed tumor growth compared with either treatment alone. CONCLUSIONS These results support a radiosensitizing property of Hsp27 LNA in vitro and in vivo, implicate Hsp27 in double strand break repair, and suggest that Hsp27 LNA might eventually serve as an effective clinical agent in the radiotherapy of head-and-neck cancer.
Collapse
|
33
|
Arrigo AP, Gibert B. Protein interactomes of three stress inducible small heat shock proteins: HspB1, HspB5 and HspB8. Int J Hyperthermia 2013; 29:409-22. [DOI: 10.3109/02656736.2013.792956] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
34
|
Arrigo AP. Human small heat shock proteins: Protein interactomes of homo- and hetero-oligomeric complexes: An update. FEBS Lett 2013; 587:1959-69. [DOI: 10.1016/j.febslet.2013.05.011] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 10/26/2022]
|
35
|
Walker S, Danton M, Peng EWK, Lyall F. Heat shock protein 27 is increased in cyanotic tetralogy of Fallot myocardium and is associated with improved cardiac output and contraction. Cell Stress Chaperones 2013; 18:269-77. [PMID: 23080524 PMCID: PMC3631092 DOI: 10.1007/s12192-012-0379-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/26/2022] Open
Abstract
Tetralogy of Fallot (TOF) is a congenital heart condition in which the right ventricle is exposed to cyanosis and pressure overload. Patients have an increased risk of right ventricle dysfunction following corrective surgery. Whether the cyanotic myocardium is less tolerant of injury compared to non-cyanotic is unclear. Heat shock proteins (HSPs) protect against cellular stresses. The aim of this study was to examine HSP 27 expression in the right ventricle resected from TOF patients and determine its relationship with right ventricle function and clinical outcome. Ten cyanotic and ten non-cyanotic patients were studied. Western blotting was used to quantify HSP 27 in resected myocardium at (1) baseline (first 15 min of aortic cross clamp and closest representation of pre-operative status) and (2) after 15 min during ischemia until surgery was complete. The cyanotic group had significantly increased haematocrit, lower O2 saturation, thicker interventricular septal wall thickness and released more troponin-I on post-operative day 1 (p < 0.05). HSP 27 expression was significantly increased in the < 15 min cyanotic compared to the < 15 min non-cyanotic group (p = 0.03). In the cyanotic group, baseline HSP 27 expression also significantly correlated with oxygen extraction ratio (p = 0.028), post-operative basal septal velocity (p = 0.036) and mixed venous oxygen saturation (p = 0.02), markers of improved cardiac output/contraction. Increased HSP 27 expression and associated improved right ventricle function and systemic perfusion supports a cardio-protective effect of HSP 27 in cyanotic TOF.
Collapse
Affiliation(s)
- Susan Walker
- />Institute of Medical Genetics, Yorkhill, Glasgow G38SJ UK
| | - Mark Danton
- />Department of Cardiac Surgery, Royal Hospital for Sick Children, Glasgow, G38SJ UK
| | - Edward Weng Koon Peng
- />Department of Cardiac Surgery, Royal Hospital for Sick Children, Glasgow, G38SJ UK
| | - Fiona Lyall
- />Institute of Medical Genetics, Yorkhill, Glasgow G38SJ UK
| |
Collapse
|
36
|
Qin D, Tan L, You Q, Liu X. Expression of heat shock protein 27 and proliferating cell nuclear antigen in human retinoblastoma. Contemp Oncol (Pozn) 2013; 17:144-9. [PMID: 23788981 PMCID: PMC3685373 DOI: 10.5114/wo.2013.34617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/16/2012] [Accepted: 11/22/2012] [Indexed: 11/17/2022] Open
Abstract
AIM OF THE STUDY This study aimed to observe the expressions of heat shock protein 27 (HSP27) and proliferating cell nuclear antigen (PCNA) in retinoblastoma (Rb) cells and to explore the relationships of the expression with Rb differentiation and optic nerve infiltration. MATERIAL AND METHODS Heat shock protein 27 and PCNA expressions in 36 routine Rb paraffin specimens were observed using PV9000 two-stage immunohistochemical staining. The correlations of the HSP27 and PCNA expressions with Rb differentiation and optic nerve infiltration were analyzed. RESULTS Heat shock protein 27 was weakly expressed in the normal retina, specifically in the ganglion cell layer. It was extensively expressed in Rb tissues at a positive rate of 69.4%, and the positive substances were primarily located in the cytoplasm. Proliferating cell nuclear antigen was expressed weakly or not at all expressed in the normal retina and was extensively expressed in Rb tissues at a positive rate of 83.3%, and the positive substances were primarily located in the nucleus. The positive expression rates of HSP27 and PCNA in the differentiated group were significantly higher than in the undifferentiated group (p < 0.05). The positive expression rates of HSP27 and PCNA in the optic nerve-infiltrated group were significantly higher than in the non-infiltrated group (p < 0.05). Heat shock protein 27 expression was positively correlated with PCNA expression in Rb (p < 0.01). CONCLUSIONS Heat shock protein 27 and PCNA expressions are markedly correlated with cell differentiation and optic nerve infiltration in Rb.
Collapse
Affiliation(s)
- Dongju Qin
- Department of Ophthalmology, Nanhui Central Hospital of Pudong New District, Shanghai, China
| | - Luosheng Tan
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinghua You
- Department of Ophthalmology, Nanhui Central Hospital of Pudong New District, Shanghai, China
| | - Xiangping Liu
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Gibert B, Simon S, Dimitrova V, Diaz-Latoud C, Arrigo AP. Peptide aptamers: tools to negatively or positively modulate HSPB1(27) function. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120075. [PMID: 23530261 DOI: 10.1098/rstb.2012.0075] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human HSP27 (HSPB1) is a molecular chaperone sensor which, through dynamic changes in its phosphorylation and oligomerization, allows cells to adapt to changes in their physiology and/or mount a protective response to injuries. In pathological conditions, the high level of HSPB1 expression can either be beneficial, such as in diseases characterized by cellular degenerations, or be malignant in cancer cells where it promotes tumourigenesis, metastasis and anti-cancer drug resistance. Structural changes allow HSPB1 to interact with specific client protein partners in order to modulate their folding/activity and/or half-life. Therefore, the search is open for therapeutic compounds aimed at either down- or upregulating HSPB1 activity. In this respect, we have previously described two peptide aptamers (PA11 and PA50) that specifically interact with HSPB1 small oligomers and decrease its anti-apoptotic and tumourigenic activities. A novel analysis of the different HSPB1-interacting aptamers that were isolated earlier revealed that one aptamer (PA23) has the intriguing ability to stimulate the protective activity of HSPB1. We show here that this aptamer abolishes the dominant negative effect induced by the R120G mutant of αB-crystallin (HSPB5) by disrupting its interaction with HSPB1. Hence, developing structure-based interfering strategies could lead to the discovery of HSPB1-based therapeutic drugs.
Collapse
Affiliation(s)
- Benjamin Gibert
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, Centre Léon Bérard, INSERM U1052-CNRS 5238, University of Lyon, 69008 Lyon, France
| | | | | | | | | |
Collapse
|
38
|
Faiella L, Piaz FD, Bisio A, Tosco A, De Tommasi N. A chemical proteomics approach reveals Hsp27 as a target for proapoptotic clerodane diterpenes. MOLECULAR BIOSYSTEMS 2013; 8:2637-44. [PMID: 22802135 DOI: 10.1039/c2mb25171j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clerodane diterpenoids are a class of naturally occurring molecules widely distributed in the Lamiaceae family. Neo-clerodane diterpenoids from Salvia ssp were recently described as compounds inhibiting the proliferation of human cancer cell lines. To gain new insights into molecular mechanism(s) underlying the antitumor potential of this class of compounds, we used a chemical proteomics approach to analyse the cellular interactome of hardwickiic acid (HAA) selected as a representative molecule. HAA was linked to an opportune 1,1'-carbonyldiimidazole modified by 1,12-dodecanediamine and then immobilized on a matrix support. The modified beads were then used as bait for fishing the potential partners of HAA in a U937 cell lysate. We identified heat shock protein 27 (Hsp27), an ATP-independent antiapoptotic chaperone characterized for its tumorigenic and metastatic properties and now referenced as a major therapeutic target in many types of cancer, as a major HAA partner. Here, we also report the study of HAA-Hsp27 interaction by means of a panel of chemical and biological approaches, including surface plasmon resonance measurements limited proteolysis, and biochemical assays. Our data suggest that HAA could provide a potential tool to develop strategies for the discovery of Hsp27 chemical inhibitors.
Collapse
Affiliation(s)
- Laura Faiella
- Dipartimento di Scienze Farmaceutiche, Università di Pisa, via Bonanno 33, 56126 Pisa, Italy
| | | | | | | | | |
Collapse
|
39
|
Arrigo AP. Pathology-dependent effects linked to small heat shock proteins expression: an update. SCIENTIFICA 2012; 2012:185641. [PMID: 24278676 PMCID: PMC3820616 DOI: 10.6064/2012/185641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 09/17/2012] [Indexed: 06/02/2023]
Abstract
Small heat shock proteins (small Hsps) are stress-induced molecular chaperones that act as holdases towards polypeptides that have lost their folding in stress conditions or consequently of mutations in their coding sequence. A cellular protection against the deleterious effects mediated by damaged proteins is thus provided to cells. These chaperones are also highly expressed in response to protein conformational and inflammatory diseases and cancer pathologies. Through specific and reversible modifications in their phospho-oligomeric organization, small Hsps can chaperone appropriate client proteins in order to provide cells with resistance to different types of injuries or pathological conditions. By helping cells to better cope with their pathological status, their expression can be either beneficial, such as in diseases characterized by pathological cell degeneration, or deleterious when they are required for tumor cell survival. Moreover, small Hsps are actively released by cells and can act as immunogenic molecules that have dual effects depending on the pathology. The cellular consequences linked to their expression levels and relationships with other Hsps as well as therapeutic strategies are discussed in view of their dynamic structural organization required to interact with specific client polypeptides.
Collapse
Affiliation(s)
- A.-P. Arrigo
- Apoptosis Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Claude Bernard University Lyon1, 28 Rue Laennec, 69008 Lyon, France
| |
Collapse
|
40
|
Rima W, Sancey L, Aloy MT, Armandy E, Alcantara GB, Epicier T, Malchère A, Joly-Pottuz L, Mowat P, Lux F, Tillement O, Burdin B, Rivoire A, Boulé C, Anselme-Bertrand I, Pourchez J, Cottier M, Roux S, Rodriguez-Lafrasse C, Perriat P. Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles. Biomaterials 2012; 34:181-95. [PMID: 23046756 DOI: 10.1016/j.biomaterials.2012.09.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/16/2012] [Indexed: 01/23/2023]
Abstract
Over the last few decades, nanoparticles have been studied in theranostic field with the objective of exhibiting a long circulation time through the body coupled to major accumulation in tumor tissues, rapid elimination, therapeutic potential and contrast properties. In this context, we developed sub-5 nm gadolinium-based nanoparticles that possess in vitro efficient radiosensitizing effects at moderate concentration when incubated with head and neck squamous cell carcinoma cells (SQ20B). Two main cellular internalization mechanisms were evidenced and quantified: passive diffusion and macropinocytosis. Whereas the amount of particles internalized by passive diffusion is not sufficient to induce in vitro a significant radiosensitizing effect, the cellular uptake by macropinocytosis leads to a successful radiotherapy in a limited range of particles incubation concentration. Macropinocytosis processes in two steps: formation of agglomerates at vicinity of the cell followed by their collect via the lamellipodia (i.e. the "arms") of the cell. The first step is strongly dependent on the physicochemical characteristics of the particles, especially their zeta potential that determines the size of the agglomerates and their distance from the cell. These results should permit to control the quantity of particles internalized in the cell cytoplasm, promising ambitious opportunities towards a particle-assisted radiotherapy using lower radiation doses.
Collapse
Affiliation(s)
- Wael Rima
- INSA-Lyon, MATEIS CNRS UMR5510, 69621 Villeurbanne Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zoubeidi A, Gleave M. Small heat shock proteins in cancer therapy and prognosis. Int J Biochem Cell Biol 2012; 44:1646-56. [DOI: 10.1016/j.biocel.2012.04.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/27/2012] [Accepted: 04/11/2012] [Indexed: 01/05/2023]
|
42
|
Ciocca DR, Arrigo AP, Calderwood SK. Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 2012; 87:19-48. [PMID: 22885793 DOI: 10.1007/s00204-012-0918-z] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are a subset of the molecular chaperones, best known for their rapid and abundant induction by stress. HSP genes are activated at the transcriptional level by heat shock transcription factor 1 (HSF1). During the progression of many types of cancer, this heat shock transcriptional regulon becomes co-opted by mechanisms that are currently unclear, although evidently triggered in the emerging tumor cell. Concerted activation of HSF1 and the accumulation of HSPs then participate in many of the traits that permit the malignant phenotype. Thus, cancers of many histologies exhibit activated HSF1 and increased HSP levels that may help to deter tumor suppression and evade therapy in the clinic. We review here the extensive work that has been carried out and is still in progress aimed at (1) understanding the oncogenic mechanisms by which HSP genes are switched on, (2) determining the roles of HSF1/HSP in malignant transformation and (3) discovering approaches to therapy based on disrupting the influence of the HSF1-controlled transcriptome in cancer.
Collapse
Affiliation(s)
- Daniel R Ciocca
- Oncology Laboratory, Institute of Experimental Medicine and Biology of Cuyo (IMBECU), Scientific and Technological Center (CCT), CONICET, 5500 Mendoza, Argentina.
| | - Andre Patrick Arrigo
- Apoptosis Cancer and Development, Cancer Research Center of Lyon (CRCL), UMR INSERM 1052-CNRS 5286, Claude Bernard University, Lyon-1, Cheney A Building, Centre Regional Léon Bérard, 28, rue Laennec 69008 LYON, France. ;
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, MA02215
| |
Collapse
|
43
|
LEDGF gene silencing impairs the tumorigenicity of prostate cancer DU145 cells by abating the expression of Hsp27 and activation of the Akt/ERK signaling pathway. Cell Death Dis 2012; 3:e316. [PMID: 22647853 PMCID: PMC3366088 DOI: 10.1038/cddis.2012.57] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lens epithelium-derived growth factor (LEDGF) maintains survival pathways by augmenting the transcription of stress-response genes such as small heat-shock protein 27. Recently, aberrant expression of LEDGF was found in prostate cancer (PC). Herein, we showed that LEDGF overexpression upregulated Hsp27 in PC cells, DU145, PC-3 and LNCaP and promoted antiapoptotic pathways in PCs. We found that these cells had higher abundance of Hsp27, which was correlated with the levels of LEDGF expression. Transactivation assay in DU145 cells revealed that transactivation of Hsp27 was related to the magnitude of LEDGF expression. Silencing of LEDGF in DU145 cells abrogated Hsp27 expression and inhibited stimulated cell proliferation, invasiveness and migration. These cells were arrested in S and G2 phase, and failed to accumulate cyclin B1, and showed increased apoptosis. Furthermore, LEDGF-depleted DU145 cells displayed elevated Bax and cleaved caspase 9 expression and reduced levels of Bcl2, Bcl-XL. The activated survival pathway(s), ERK1/2 and Akt, were selectively decreased in these cells, which characteristically have lower tumorigenicity. Conversely, the depleted cells, when re-overexpressed with LEDGF or Hsp27, regained tumorigenic properties. Collectively, results reveal the involvement of LEDGF-mediated elevated expression of Hsp27-dependent survival pathway(s) in PC. Our findings suggest new lines of investigation aimed at developing therapies by targeting LEDGF or its aberrant expression-associated stimulated antiapoptotic pathway(s).
Collapse
|
44
|
Gibert B, Eckel B, Gonin V, Goldschneider D, Fombonne J, Deux B, Mehlen P, Arrigo AP, Clézardin P, Diaz-Latoud C. Targeting heat shock protein 27 (HspB1) interferes with bone metastasis and tumour formation in vivo. Br J Cancer 2012; 107:63-70. [PMID: 22627320 PMCID: PMC3389402 DOI: 10.1038/bjc.2012.188] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: The small stress heat shock protein 27 (Hsp27) has recently turned as a promising target for cancer treatment. Hsp27 upregulation is associated with tumour growth and resistance to chemo- and radio-therapeutic treatments, and several ongoing drugs inhibiting Hsp27 expression are under clinical trial. Hsp27 is now well described to counteract apoptosis and its elevated expression is associated with increased aggressiveness of several primary tumours. However, its role in the later stage of tumour progression and, more specifically, in the later and most deadly stage of tumour metastasis is still unclear. Methods/results: In the present study, we showed by qRT–PCR that Hsp27 gene is overexpressed in a large fraction of the metastatic breast cancer area in 53 patients. We further analysed the role of this protein in mice during bone metastasis invasion and establishment by using Hsp27 genetically depleted MDA-MB231/B02 human breast cancer cell line as a model. We demonstrate that Hsp27 silencing led to reduced cell migration and invasion in vitro and that in vivo it correlated with a decreased ability of breast cancer cells to metastasise and grow in the skeleton. Conclusion: Altogether, these data characterised Hsp27 as a potent therapeutic target in breast cancer bone metastasis and skeletal tumour growth.
Collapse
Affiliation(s)
- B Gibert
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR5534, Université Lyon 1, Université de Lyon, 43 Bd 11 Novembre 1918, 69622 Villeurbanne Cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Acunzo J, Katsogiannou M, Rocchi P. Small heat shock proteins HSP27 (HspB1), αB-crystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. Int J Biochem Cell Biol 2012; 44:1622-31. [PMID: 22521623 DOI: 10.1016/j.biocel.2012.04.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 01/17/2023]
Abstract
Hsp27, αB-crystallin and HSP22 are ubiquitous small heat shock proteins (sHsp) whose expression is induced in response to a wide variety of unfavorable physiological and environmental conditions. These sHsp protect cells from otherwise lethal conditions mainly by their involvement in cell death pathways such as necrosis, apoptosis or autophagy. At a molecular level, the mechanisms accounting for sHsp functions in cell death are (1) prevention of denatured proteins aggregation, (2) regulation of caspase activity, (3) regulation of the intracellular redox state, (4) function in actin polymerization and cytoskeleton integrity and (5) proteasome-mediated degradation of selected proteins. In cancer cells, these sHsp are often overexpressed and associated with increased tumorigenicity, cancer cells metastatic potential and resistance to chemotherapy. Altogether, these properties suggest that Hsp27, αB-crystallin and Hsp22 are appropriate targets for modulating cell death pathways. In the present, we briefly review recent reports showing molecular evidence of cell death regulation by these sHsp and co-chaperones. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.
Collapse
Affiliation(s)
- Julie Acunzo
- Centre de Recherche en Cancérologie de Marseille, UMR1068 Inserm, Institut Paoli-Calmette, Aix-Marseille Univ, Marseille, France
| | | | | |
Collapse
|
46
|
Skouri-Panet F, Michiel M, Férard C, Duprat E, Finet S. Structural and functional specificity of small heat shock protein HspB1 and HspB4, two cellular partners of HspB5: Role of the in vitro hetero-complex formation in chaperone activity. Biochimie 2012; 94:975-84. [DOI: 10.1016/j.biochi.2011.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/20/2011] [Indexed: 11/16/2022]
|
47
|
Knock down of heat shock protein 27 (HspB1) induces degradation of several putative client proteins. PLoS One 2012; 7:e29719. [PMID: 22238643 PMCID: PMC3251601 DOI: 10.1371/journal.pone.0029719] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/02/2011] [Indexed: 12/11/2022] Open
Abstract
Hsp27 belongs to the heat shock protein family and displays chaperone properties in stress conditions by holding unfolded polypeptides, hence avoiding their inclination to aggregate. Hsp27 is often referenced as an anti-cancer therapeutic target, but apart from its well-described ability to interfere with different stresses and apoptotic processes, its role in non-stressed conditions is still not well defined. In the present study we report that three polypeptides (histone deacetylase HDAC6, transcription factor STAT2 and procaspase-3) were degraded in human cancerous cells displaying genetically decreased levels of Hsp27. In addition, these proteins interacted with Hsp27 complexes of different native size. Altogether, these findings suggest that HDAC6, STAT2 and procaspase-3 are client proteins of Hsp27. Hence, in non stressed cancerous cells, the structural organization of Hsp27 appears to be a key parameter in the regulation by this chaperone of the level of specific polypeptides through client-chaperone type of interactions.
Collapse
|
48
|
Guttmann DM, Koumenis C. The heat shock proteins as targets for radiosensitization and chemosensitization in cancer. Cancer Biol Ther 2011; 12:1023-31. [PMID: 22236878 DOI: 10.4161/cbt.12.12.18374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The heat shock proteins (HSPs) represent a class of proteins which are induced under physiologic stress to promote cell survival in the face of endogenous or exogenous injury. HSPs function predominantly as molecular chaperones, maintaining their "client" proteins in the correct conformational state in order to withstand a biologic stressor. Elevated HSP expression is also found in a range of pathologic conditions, notably malignancy. Cancer cells exploit the pro-survival phenotype endowed by HSPs to bolster their proliferative potential. Consequently, developing means of abrogating HSP expression may provide a way to render cancer cells more susceptible to radiation or chemotherapy. Here, we review the members of the HSP class and their roles in malignancy. We focus on attempts to target these proteins, particularly the small HSPs, in developing potent radiation and chemotherapy sensitizers, as well as proposed mechanisms for this sensitization effect.
Collapse
Affiliation(s)
- David M Guttmann
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
49
|
Wu P, Zhang H, Qi L, Tang Q, Tang Y, Xie Z, Lv Y, Zhao S, Jiang W. Identification of ERp29 as a biomarker for predicting nasopharyngeal carcinoma response to radiotherapy. Oncol Rep 2011; 27:987-94. [PMID: 22160175 PMCID: PMC3583588 DOI: 10.3892/or.2011.1586] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 11/15/2011] [Indexed: 12/24/2022] Open
Abstract
Radioresistance continues to be a major problem in the treatment of nasopharyngeal carcinoma (NPC). This study aimed to identify novel proteins associated with NPC radio-resistance. We used a mass spectrometry driven-proteomic strategy to identify novel proteins associated with NPC radio-resistance, and differential proteins were subsequently processed by bio-informatic analysis. As a result, twelve proteins were identified with aberrant expression in radioresistant (RR) NPC tissues compare to radiosensitive (RS) NPC tissues. Among these proteins, ERp29, Mn-SOD, HSP27 and GST ω1 were found to be significantly up-regulated in RR NPC tissues, and ERp29 was selected for further validation. Immunohistochemistry analysis confirmed that ERp29 was overexpressed in RR NPC tissues compared with RS NPC tissues. To prove the role of ERp29 in the induction of NPC radioresistance, ERp29 was down-regulated in the ERp29 enriched NPC cells CNE-1 and 6-10B by specific shRNA. Radiosensitivity was measured using cell proliferation assay and clonogenic survival assay, and cell apoptosis was measured using flow cytometric analysis. We found that ERp29 knockdown attenuated CNE-1 and 6-10B cell radioresistance and enhanced cell apoptosis. These results suggest that ERp29 associates with radioresistance in NPC, and ERp29 could be a potential biomarker for predicting NPC response to radiotherapy.
Collapse
Affiliation(s)
- Ping Wu
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
HU RUICHENG, OUYANG QING, DAI AIGUO, TAN SHUANGXIANG, XIAO ZHIQIANG, TANG CENE. Heat shock protein 27 and cyclophilin A associate with the pathogenesis of COPD. Respirology 2011; 16:983-93. [DOI: 10.1111/j.1440-1843.2011.01993.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|