1
|
Liang X, Mohammadi H, Moreno KC, Beltran CJ, Holtzman AL. Heavy Ion Particle Therapy in Modern Day Radiation Oncology. Hematol Oncol Clin North Am 2025; 39:377-397. [PMID: 39694779 DOI: 10.1016/j.hoc.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Heavy ion radiotherapy is an emerging technology for treating radioresistant solid tumors. Unlike current low-linear energy transfer techniques, heavy ion radiotherapy, such as carbon ion radiotherapy, enhances the biologic effects related to cancer therapy. Prospective clinical evidence has demonstrated feasibility and efficacy in several disease sites, including head and neck, thoracic, central nervous system, gastrointestinal, pelvic tumors, and sarcomas. Although presently unavailable in the Americas, Mayo Clinic is constructing a heavy ion facility in the United States that is planned for clinical operation in 2028.
Collapse
Affiliation(s)
- Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Homan Mohammadi
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Kathryn C Moreno
- Department of Administration, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Adam L Holtzman
- Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
2
|
Zheng Z, Yang T, Li Y, Qu P, Shao Z, Wang Y, Chang W, Umar SM, Wang J, Ding N, Wang W. A future directions of renal cell carcinoma treatment: combination of immune checkpoint inhibition and carbon ion radiotherapy. Front Immunol 2024; 15:1428584. [PMID: 39091498 PMCID: PMC11291258 DOI: 10.3389/fimmu.2024.1428584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Renal cell carcinoma (RCC) is considered radio- and chemo-resistant. Immune checkpoint inhibitors (ICIs) have demonstrated significant clinical efficacy in advanced RCC. However, the overall response rate of RCC to monotherapy remains limited. Given its immunomodulatory effects, a combination of radiotherapy (RT) with immunotherapy is increasingly used for cancer treatment. Heavy ion radiotherapy, specifically the carbon ion radiotherapy (CIRT), represents an innovative approach to cancer treatment, offering superior physical and biological effectiveness compared to conventional photon radiotherapy and exhibiting obvious advantages in cancer treatment. The combination of CIRT and immunotherapy showed robust effectiveness in preclinical studies of various tumors, thus holds promise for overcoming radiation resistance of RCC and enhancing therapeutic outcomes. Here, we provide a comprehensive review on the biophysical effects of CIRT, the efficacy of combination treatment and the underlying mechanisms involved in, as well as its therapeutic potential specifically within RCC.
Collapse
Affiliation(s)
- Zhouhang Zheng
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Tianci Yang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yixuan Li
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Pei Qu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiang Shao
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Shahzad Muhammad Umar
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Siva S, Louie AV, Kotecha R, Barber MN, Ali M, Zhang Z, Guckenberger M, Kim MS, Scorsetti M, Tree AC, Slotman BJ, Sahgal A, Lo SS. Stereotactic body radiotherapy for primary renal cell carcinoma: a systematic review and practice guideline from the International Society of Stereotactic Radiosurgery (ISRS). Lancet Oncol 2024; 25:e18-e28. [PMID: 38181809 DOI: 10.1016/s1470-2045(23)00513-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 01/07/2024]
Abstract
Surgery is the standard of care for patients with primary renal cell carcinoma. Stereotactic body radiotherapy (SBRT) is a novel alternative for patients who are medically inoperable, technically high risk, or who decline surgery. Evidence for using SBRT in the primary renal cell carcinoma setting is growing, including several rigorously conducted prospective clinical trials. This systematic review was performed to assess the safety and efficacy of SBRT for primary renal cell carcinoma. Review results then formed the basis for the practice guidelines described, on behalf of the International Stereotactic Radiosurgery Society. 3972 publications were screened and 36 studies (822 patients) were included in the analysis. Median local control rate was 94·1% (range 70·0-100), 5-year progression-free survival was 80·5% (95% CI 72-92), and 5-year overall survival was 77·2% (95% CI 65-89). These practice guidelines addressed four key clinical questions. First, the optimal dose fractionation was 25-26 Gy in one fraction, or 42-48 Gy in three fractions for larger tumours. Second, routine post-treatment biopsy is not recommended as it is not predictive of patient outcome. Third, SBRT for primary renal cell carcinoma in a solitary kidney is safe and effective. Finally, guidelines for post-treatment follow-up are described, which include cross-axial imaging of the abdomen including both kidneys, adrenals, and surveillance of the chest initially every 6 months. This systematic review and practice guideline support the practice of SBRT for primary renal cell carcinoma as a safe and effective standard treatment option. Randomised trials with surgery and invasive ablative therapies are needed to further define best practice.
Collapse
Affiliation(s)
- Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| | - Alexander V Louie
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Melissa N Barber
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Muhammad Ali
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Zhenwei Zhang
- Center for Advanced Analytics, Baptist Health South Florida, Miami, FL, USA
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul, South Korea
| | - Marta Scorsetti
- Radiosurgery and Radiotherapy Department, IRCCS-Humanitas Research Hospital, Rozzano-Milan, Italy; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
| | - Alison C Tree
- Division of Radiotherapy and Imaging, The Royal Marsden NHS Foundation Trust, Sutton, UK; The Institute of Cancer Research, Sutton, UK
| | - Ben J Slotman
- Department of Radiation Oncology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Arjun Sahgal
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
4
|
Aoki J, Yamamoto Y, Horikawa A, Doiuchi T, Hino A, Kojima D, Kurihara H, Washimi K, Katoh H, Hiruma T. Fluorodeoxyglucose positron emission tomography (FDG/PET) shows the effect of carbon-ion radiotherapy (CIRT); with pathologic confirmation. Radiol Case Rep 2023; 18:1793-1795. [PMID: 36915607 PMCID: PMC10006709 DOI: 10.1016/j.radcr.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 03/06/2023] Open
Abstract
Response evaluation of carbon-ion radiotherapy poses a diagnostic challenge. Due to its functional aspects, fluorodeoxyglucose positron emission tomography (FDG/PET) has a role in the diagnosis of photon radiation therapy. In addition, several studies suggested that FDG/PET may be useful to select the optimal site for performing a diagnostic biopsy. Here, we report a 73-year-old female in which FDG/PET was effective in determining the recurrence of liposarcoma and the therapeutic effect. Based on the results of FDG/PET, we could make a pathologic definitive diagnosis and selectively performing carbon-ion radiotherapy for active tumors.
Collapse
Affiliation(s)
- Jun Aoki
- Department of Radiology and Interventional Radiology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Yayoi Yamamoto
- Department of Radiology and Interventional Radiology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Ayumi Horikawa
- Department of Radiology and Interventional Radiology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Tsunehiro Doiuchi
- Department of Radiology and Interventional Radiology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Ayako Hino
- Department of Radiology and Interventional Radiology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Daichi Kojima
- Department of Radiology and Interventional Radiology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hiroaki Kurihara
- Department of Radiology and Interventional Radiology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Kota Washimi
- Department of Pathology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Hiroyuki Katoh
- Department of Radiation Oncology, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| | - Toru Hiruma
- Department of Musculoskeletal Tumor Surgery, Kanagawa Cancer Center, Yokohama, Kanagawa, Japan
| |
Collapse
|
5
|
Ishikawa H, Hiroshima Y, Kanematsu N, Inaniwa T, Shirai T, Imai R, Suzuki H, Akakura K, Wakatsuki M, Ichikawa T, Tsuji H. Carbon-ion radiotherapy for urological cancers. Int J Urol 2022; 29:1109-1119. [PMID: 35692124 PMCID: PMC9796467 DOI: 10.1111/iju.14950] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/16/2022] [Indexed: 01/01/2023]
Abstract
Carbon-ions are charged particles with a high linear energy transfer, and therefore, they make a better dose distribution with greater biological effects on the tumors compared with photons and protons. Since prostate cancer, renal cell carcinoma, and retroperitoneal sarcomas such as liposarcoma and leiomyosarcoma are known to be radioresistant tumors, carbon-ion radiotherapy, which provides the advantageous radiobiological properties such as an increasing relative biological effectiveness toward the Bragg peak, a reduced oxygen enhancement ratio, and a reduced dependence on fractionation and cell-cycle stage, has been tested for these urological tumors at the National Institute for Radiological Sciences since 1994. To promote carbon-ion radiotherapy as a standard cancer therapy, the Japan Carbon-ion Radiation Oncology Study Group was established in 2015 to create a registry of all treated patients and conduct multi-institutional prospective studies in cooperation with all the Japanese institutes. Based on accumulating evidence of the efficacy and feasibility of carbon-ion therapy for prostate cancer and retroperitoneal sarcoma, it is now covered by the Japanese health insurance system. On the other hand, carbon-ion radiotherapy for renal cell cancer is not still covered by the insurance system, although the two previous studies showed the efficacy. In this review, we introduce the characteristics, clinical outcomes, and perspectives of carbon-ion radiotherapy and our efforts to disseminate the use of this new technology worldwide.
Collapse
Affiliation(s)
- Hitoshi Ishikawa
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Yuichi Hiroshima
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Nobuyuki Kanematsu
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Taku Inaniwa
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Toshiyuki Shirai
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Reiko Imai
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Hiroyoshi Suzuki
- Department of UrologyToho University Sakura Medical CenterChibaJapan
| | - Koichiro Akakura
- Department of UrologyJapan Community Health‐care Organization Tokyo Shinjuku Medical CenterTokyoJapan
| | - Masaru Wakatsuki
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Tomohiko Ichikawa
- Department of UrologyChiba University Graduate School of MedicineChibaJapan
| | - Hiroshi Tsuji
- QST HospitalNational Institutes for Quantum Science and TechnologyChibaJapan
| |
Collapse
|
6
|
Mollica V, Santoni M, Di Nunno V, Cimadamore A, Cheng L, Lopez-Beltran A, Battelli N, Montironi R, Massari F. Immunotherapy and Radiation Therapy in Renal Cell Carcinoma. Curr Drug Targets 2021; 21:1463-1475. [PMID: 32160846 DOI: 10.2174/1389450121666200311121540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The management of renal cell carcinoma is rapidly evolving and immunotherapy, mostly consisting of immune checkpoint inhibitors, is revolutionizing the treatment scenario of metastatic patients. Novel fractionation schedules of radiotherapy, consisting of high doses in few fractions, can overcome the radioresistance of this tumor. Localized radiotherapy is associated with a systemic effect, known as the abscopal effect. This effect mediated by the immune system can be enhanced associating radiotherapy with immunotherapy. OBJECTIVE In this review, we explore the role of radiotherapy and immunotherapy in RCC, the rationale of combining these strategies and the on-going clinical trials investigating combinations of these two treatment modalities. CONCLUSION Combining immunotherapy and radiotherapy has a strong rationale and pre-clinical studies support their association because it can overcome the immunosuppression of the tumor microenvironment and increase the anti-tumor immune response. More clinical evidence, deriving from onclinical trials, are needed to prove the efficacy and safety of these treatments combined.
Collapse
Affiliation(s)
- Veronica Mollica
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | | | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | | | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | |
Collapse
|
7
|
Rühle A, Andratschke N, Siva S, Guckenberger M. Is there a role for stereotactic radiotherapy in the treatment of renal cell carcinoma? Clin Transl Radiat Oncol 2019; 18:104-112. [PMID: 31341985 PMCID: PMC6630187 DOI: 10.1016/j.ctro.2019.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 12/23/2022] Open
Abstract
Renal cell carcinoma (RCC) has traditionally been regarded as radioresistant tumor based on preclinical data and negative clinical trials using conventional fractionated radiotherapy. However, there is emerging evidence that radiotherapy delivered in few fractions with high single-fraction and total doses may overcome RCC s radioresistance. Stereotactic radiotherapy (SRT) has been successfully used in the treatment of intra- and extracranial RCC metastases showing high local control rates accompanied by low toxicity. Although surgery is standard of care for non-metastasized RCC, a significant number of patients is medically inoperable or refuse surgery. Alternative local approaches such as radiofrequency ablation or cryoablation are invasive and often restricted to small RCC, so that there is a need for alternative local therapies such as stereotactic body radiotherapy (SBRT). Recently, both retrospective and prospective trials demonstrated that SBRT is an attractive treatment alternative for localized RCC. Here, we present a comprehensive review of the published data regarding SBRT for primary RCC. The radiobiological rationale to use higher radiation doses in few fractions is discussed, and technical aspects enabling the safe delivery of SBRT despite intra- and inter-fraction motion and the proximity to organs at risk are outlined.
Collapse
Affiliation(s)
- Alexander Rühle
- Department of Radiation Oncology, University Hospital of Zurich, University Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University Zurich, Zurich, Switzerland
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Funayama S, Onishi H, Kuriyama K, Komiyama T, Marino K, Araya M, Saito R, Aoki S, Maehata Y, Nonaka H, Tominaga L, Muramatsu J, Nakagomi H, Kamiyama M, Takeda M. Renal Cancer is Not Radioresistant: Slowly but Continuing Shrinkage of the Tumor After Stereotactic Body Radiation Therapy. Technol Cancer Res Treat 2019; 18:1533033818822329. [PMID: 30803362 PMCID: PMC6373992 DOI: 10.1177/1533033818822329] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose: To evaluate the safety and efficacy of stereotactic body radiation therapy for primary lesion of renal cell carcinoma with long-term and regular follow-up of tumor size and renal function. Methods: This prospective study included 13 patients treated with stereotactic body radiation therapy for primary lesion of stage I renal cell carcinoma between August 2007 and June 2016 in our institution. Diagnosis of renal cell carcinoma was made by 2 radiologists using computed tomography or magnetic resonance imaging. A dosage of 60 Gy in 10 fractions or 70 Gy in 10 fractions was prescribed. The higher dose was selected if dose constraints were satisfied. Tumor response on imaging examination, local progression-free rate, overall survival, and toxicity were assessed. Results: The mean follow-up period was 48.3 months (range: 11-108 months). The tumors showed very slow but continuous response during long-term follow-up. Three cases (23.1%) showed transient progression during the short follow-up. The mean duration until the day on which partial response was confirmed among the partial or complete response cases was 22.6 months (95% confidence interval, 15.3-30.0 months). Local progression-free rate was 92.3% for 3 years and overall survival rate 91.7% for 2 years and 71.3% for 3 years. Twelve cases (92.3%) had impaired renal function at baseline. Renal function decreased slowly and mildly in most of the cases, but 2 cases of solitary kidney showed grade 4 or 5 renal dysfunction. Conclusion: All renal tumors decreased in size slowly but continuously for years after stereotactic body radiation therapy. Renal cancer can be treated radically with stereotactic body radiation therapy as a radiosensitive tumor, but careful attention should be given in cases with solitary kidney.
Collapse
Affiliation(s)
- Satoshi Funayama
- 1 Department of Radiology, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroshi Onishi
- 1 Department of Radiology, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kengo Kuriyama
- 2 Department of Radiology, Shizuoka General Hospital, Shizuoka, Japan
| | - Takafumi Komiyama
- 1 Department of Radiology, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kan Marino
- 1 Department of Radiology, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Masayuki Araya
- 3 Department of Radiology, Center of Proton Therapy, Aizawa Hospital, Nagano, Japan
| | - Ryo Saito
- 1 Department of Radiology, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Shinichi Aoki
- 1 Department of Radiology, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Yoshiyasu Maehata
- 1 Department of Radiology, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hotaka Nonaka
- 4 Department of Radiology, Fujiyoshida Municipal Medical Center, Yamanashi, Japan
| | - Licht Tominaga
- 5 Department of Radiology, Toranomon Hospital, Tokyo, Japan
| | - Juria Muramatsu
- 1 Department of Radiology, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hiroshi Nakagomi
- 6 Department of Urology, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Manabu Kamiyama
- 6 Department of Urology, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Masayuki Takeda
- 6 Department of Urology, School of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
9
|
Kasuya G, Tsuji H, Nomiya T, Makishima H, Haruyama Y, Kobashi G, Hayashi K, Ebner DK, Omatsu T, Kishimoto R, Yasuda S, Igarashi T, Oya M, Akakura K, Suzuki H, Ichikawa T, Shimazaki J, Kamada T. Prospective clinical trial of 12-fraction carbon-ion radiotherapy for primary renal cell carcinoma. Oncotarget 2019; 10:76-81. [PMID: 30713604 PMCID: PMC6343760 DOI: 10.18632/oncotarget.26539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
The aims of this study were to clarify the safety and efficacy of 12-fraction carbon-ion radiotherapy (CIRT) for primary renal cell carcinoma (RCC) and to confirm the recommended dose in a prospective clinical trial. This clinical trial was planned as a non-randomized, open-label, single-center phase I/II study of CIRT monotherapy. The incidence of acute adverse events was the primary endpoint. Dose-limiting toxicities (DLTs) were defined as grade ≥3 skin, gastrointestinal tract, or urologic adverse events. Based on the eligibility criteria, 8 patients with primary RCC, including 3 medically inoperable patients and 5 patients with tumors >4 cm, were enrolled. Of the 8 patients, 5 were treated with 66 Gy (relative biological effectiveness [RBE]), and subsequently, the dose was escalated to 72 Gy (RBE) for the remaining 3 patients. The median follow-up time was 43.1 months. No DLTs were observed at any dose level though the end of follow-up. Although 1 patient died of pneumonia 3 months after CIRT, which was determined to be unrelated to CIRT, no grade 3 or higher adverse events were observed, and both local control and cancer-specific survival rates were 100%. In conclusion, the safety and efficacy of CIRT hypofractionation using 12-fractions for the treatment of eligible RCC patients, including those with inoperable or tumor size >4 cm, were confirmed in this prospective trial, and a recommended dose of 72 Gy (RBE) was established.
Collapse
Affiliation(s)
- Goro Kasuya
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takuma Nomiya
- Department of Radiology, Joban Hospital, Iwaki, Japan
| | - Hirokazu Makishima
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuo Haruyama
- Department of Public Health, Dokkyo Medical University, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University, Tochigi, Japan
| | | | - Daniel K Ebner
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Tokuhiko Omatsu
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Riwa Kishimoto
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shigeo Yasuda
- Department of Radiation Oncology, Chiba Rosai Hospital, Chiba, Japan
| | - Tatsuo Igarashi
- Department of Urology, Seirei Sakura Citizen Hospital, Chiba, Japan.,Center for Frontier Medical Engineering, Chiba University, Chiba, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Koichiro Akakura
- Department of Urology, Japan Community Health Care Organization Tokyo, Shinjuku Medical Center, Tokyo, Japan
| | - Hiroyoshi Suzuki
- Department of Urology, Toho University Sakura Medical Center, Chiba, Japan
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Shimazaki
- Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tadashi Kamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | |
Collapse
|
10
|
Siva S, Chesson B, Bressel M, Pryor D, Higgs B, Reynolds HM, Hardcastle N, Montgomery R, Vanneste B, Khoo V, Ruben J, Lau E, Hofman MS, De Abreu Lourenco R, Sridharan S, Brook NR, Martin J, Lawrentschuk N, Kron T, Foroudi F. TROG 15.03 phase II clinical trial of Focal Ablative STereotactic Radiosurgery for Cancers of the Kidney - FASTRACK II. BMC Cancer 2018; 18:1030. [PMID: 30352550 PMCID: PMC6199711 DOI: 10.1186/s12885-018-4916-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 12/21/2022] Open
Abstract
Background Stereotactic ablative body radiotherapy (SABR) is a non-invasive alternative to surgery to control primary renal cell cancer (RCC) in patients that are medically inoperable or at high-risk of post-surgical dialysis. The objective of the FASTRACK II clinical trial is to investigate the efficacy of SABR for primary RCC. Methods FASTRACK II is a single arm, multi-institutional phase II study. Seventy patients will be recruited over 3 years and followed for a total of 5 years. Eligible patients must have a biopsy confirmed diagnosis of primary RCC with a single lesion within a kidney, have ECOG performance ≤2 and be medically inoperable, high risk or decline surgery. Radiotherapy treatment planning is undertaken using four dimensional CT scanning to incorporate the impact of respiratory motion. Treatment must be delivered using a conformal or intensity modulated technique including IMRT, VMAT, Cyberknife or Tomotherapy. The trial includes two alternate fractionation schedules based on tumour size: for tumours ≤4 cm in maximum diameter a single fraction of 26Gy is delivered; and for tumours > 4 cm in maximum diameter 42Gy in three fractions is delivered. The primary outcome of the study is to estimate the efficacy of SABR for primary RCC. Secondary objectives include estimating tolerability, characterising overall survival and cancer specific survival, estimating the distant failure rate, describing toxicity and renal function changes after SABR, and assessment of cost-effectiveness of SABR compared with current therapies. Discussion The present study design allows for multicentre prospective validation of the efficacy of SABR for primary RCC that has been observed from prior single institutional and retrospective series. The study also allows assessment of treatment related toxicity, overall survival, cancer specific survival, freedom from distant failure and renal function post therapy. Trial registration Clinicaltrials.govNCT02613819, registered Nov 25th 2015.
Collapse
Affiliation(s)
- Shankar Siva
- Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne, Melbourne, 3000, Australia. .,University of Melbourne, Royal Parade, Parkville, 8006, Australia.
| | - Brent Chesson
- Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne, Melbourne, 3000, Australia
| | - Mathias Bressel
- Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne, Melbourne, 3000, Australia
| | - David Pryor
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Braden Higgs
- University of Adelaide, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Hayley M Reynolds
- Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne, Melbourne, 3000, Australia
| | - Nicholas Hardcastle
- Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne, Melbourne, 3000, Australia
| | | | | | | | - Jeremy Ruben
- Alfred Health and Monash University, 55 Commercial Rd, Melbourne, 3004, Australia
| | - Eddie Lau
- Austin Health, Heidelberg, 3084, Australia
| | - Michael S Hofman
- Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne, Melbourne, 3000, Australia
| | - Richard De Abreu Lourenco
- Centre for Health Economics Research and Evaluation, University of Technology Sydney, Sydney, Australia
| | | | - Nicholas R Brook
- Trans Tasman Radiation Oncology Group (TROG), Waratah, Australia
| | - Jarad Martin
- Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Nathan Lawrentschuk
- Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne, Melbourne, 3000, Australia.,University of Melbourne, Royal Parade, Parkville, 8006, Australia
| | - Tomas Kron
- Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne, Melbourne, 3000, Australia
| | | |
Collapse
|
11
|
Kasuya G, Tsuji H, Nomiya T, Makishima H, Haruyama Y, Kobashi G, Ebner DK, Hayashi K, Omatsu T, Kishimoto R, Yasuda S, Igarashi T, Oya M, Akakura K, Suzuki H, Ichikawa T, Shimazaki J, Kamada T. Updated long-term outcomes after carbon-ion radiotherapy for primary renal cell carcinoma. Cancer Sci 2018; 109:2873-2880. [PMID: 29981249 PMCID: PMC6125442 DOI: 10.1111/cas.13727] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/03/2018] [Indexed: 12/31/2022] Open
Abstract
Long‐term oncological outcomes for primary renal cell carcinoma (RCC) treated with carbon‐ion radiotherapy (CIRT) are poorly understood. Patients with primary RCC were treated with 12 or 16‐fraction CIRT at The Hospital of the National Institute of Radiological Sciences outside of clinical trials. Outcome data were pooled and retrospectively analyzed for toxicity, local control, and disease‐free, cancer‐specific, and overall survival. From 1997 to 2014, 19 RCC patients (11 with T1aN0M0, 4 with T1bN0M0, and 4 with inoperable advanced stage [T4N0M0, T3aN1M0, and T1aN0M1]) were treated with CIRT and followed up for a median of 6.6 (range, 0.7‐16.5) years; 9 of these patients were inoperable because of comorbidities or advanced‐stage disease. Diagnoses were confirmed by imaging in 11 patients and by biopsy in the remaining 8. In 4 of 5 patients with definitive renal comorbidities, including diabetic nephropathy, sclerotic kidney or solitary kidney pre‐CIRT progressed to grade 4 chronic kidney disease (CKD). In contrast, the remaining 14 patients without definitive renal comorbidities did not progress to grade 3 or higher CKD. Furthermore, although 1 case of grade 4 dermatitis was observed, there were no other grade 3 or higher non‐renal adverse events. Local control rate, and disease‐free, cancer‐specific, and overall survival rates at 5 years of all 19 patients were 94.1%, 68.9%, 100%, and 89.2%, respectively. This updated retrospective analysis based on long‐term follow‐up data suggests that CIRT is a safe treatment for primary RCC patients without definitive renal comorbidities pre‐CIRT, and yield favorable treatment outcomes, even in inoperable cases.
Collapse
Affiliation(s)
- Goro Kasuya
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroshi Tsuji
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Takuma Nomiya
- Department of Radiology, Joban Hospital, Iwaki, Japan
| | - Hirokazu Makishima
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yasuo Haruyama
- Department of Public Health, Dokkyo Medical University, Tochigi, Japan
| | - Gen Kobashi
- Department of Public Health, Dokkyo Medical University, Tochigi, Japan
| | - Daniel K Ebner
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Brown University Alpert Medical School, Providence, Rhode Island
| | - Kazuhiko Hayashi
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tokuhiko Omatsu
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Riwa Kishimoto
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Shigeo Yasuda
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan.,Chiba Rosai Hospital, Chiba, Japan
| | - Tatsuo Igarashi
- Department of Urology, Seirei Sakura Citizen Hospital, Chiba, Japan.,Department of Urology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Koichiro Akakura
- Department of Urology, Japan Community Health Care Organization Tokyo, Shinjuku Medical Center, Tokyo, Japan
| | - Hiroyoshi Suzuki
- Department of Urology, Toho University Sakura Medical Center, Chiba, Japan
| | | | - Jun Shimazaki
- Department of Urology, Seirei Sakura Citizen Hospital, Chiba, Japan
| | - Tadashi Kamada
- The Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | | |
Collapse
|
12
|
Prevost V, Sichel F, Pottier I, Leduc A, Lagadu S, Laurent C. Production of early and late nuclear DNA damage and extracellular 8-oxodG in normal human skin fibroblasts after carbon ion irradiation compared to X-rays. Toxicol In Vitro 2018; 52:116-121. [PMID: 29879454 DOI: 10.1016/j.tiv.2018.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Virginie Prevost
- Normandie Univ, UNICAEN, INSERM U 1086, ANTICIPE, 14000 Caen, France; CLCC François Baclesse, 3 avenue du Général Harris, 14076 Caen, France
| | - François Sichel
- CLCC François Baclesse, 3 avenue du Général Harris, 14076 Caen, France; Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Ivannah Pottier
- CLCC François Baclesse, 3 avenue du Général Harris, 14076 Caen, France; Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Alexandre Leduc
- SAPHYN (ARCHADE Program), 3 avenue du Général Harris, 14076 Caen, France
| | - Stéphanie Lagadu
- CLCC François Baclesse, 3 avenue du Général Harris, 14076 Caen, France; Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France
| | - Carine Laurent
- CLCC François Baclesse, 3 avenue du Général Harris, 14076 Caen, France; Normandie Univ, UNICAEN, UNIROUEN, ABTE, 14000 Caen, France; SAPHYN (ARCHADE Program), 3 avenue du Général Harris, 14076 Caen, France.
| |
Collapse
|
13
|
Mohamad O, Makishima H, Kamada T. Evolution of Carbon Ion Radiotherapy at the National Institute of Radiological Sciences in Japan. Cancers (Basel) 2018; 10:cancers10030066. [PMID: 29509684 PMCID: PMC5876641 DOI: 10.3390/cancers10030066] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Charged particles can achieve better dose distribution and higher biological effectiveness compared to photon radiotherapy. Carbon ions are considered an optimal candidate for cancer treatment using particles. The National Institute of Radiological Sciences (NIRS) in Chiba, Japan was the first radiotherapy hospital dedicated for carbon ion treatments in the world. Since its establishment in 1994, the NIRS has pioneered this therapy with more than 69 clinical trials so far, and hundreds of ancillary projects in physics and radiobiology. In this review, we will discuss the evolution of carbon ion radiotherapy at the NIRS and some of the current and future projects in the field.
Collapse
Affiliation(s)
- Osama Mohamad
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
- Department of Radiation Oncology, University of Texas-Southwestern Medical Center, 2280 Inwood Rd., Dallas, TX 75390, USA.
| | - Hirokazu Makishima
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | - Tadashi Kamada
- Hospital of the National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
14
|
The 150 most important questions in cancer research and clinical oncology series: questions 67-75 : Edited by Chinese Journal of Cancer. CHINESE JOURNAL OF CANCER 2017; 36:86. [PMID: 29092716 PMCID: PMC5664810 DOI: 10.1186/s40880-017-0254-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022]
Abstract
Since the beginning of 2017, Chinese Journal of Cancer has published a series of important questions in cancer research and clinical oncology, which sparkle diverse thoughts, interesting communications, and potential collaborations among researchers all over the world. In this article, 9 more questions are presented as followed. Question 67. How could we overcome the resistance of hepatocellular carcinoma against chemotherapeutics? Question 68. Is pursuit of non-covalent small-molecule binders of RAS proteins viable as a strategy of cancer drug discovery? Question 69. In what oligomeric structures do RAS proteins signal? Question 70. How can we achieve non-invasive early detection and diagnosis of lung cancer? Question 71. Does genetic information influence the volatolome enabling diagnosis of lung cancer with genetic mutations via cell headspace or breath analysis? Question 72. Is heavy ion beam radiotherapy effective to kill cancer stem cells? Question 73. Is there any diversity among different types of cancer in terms of sensitivity to heavy ion beam radiotherapy? Question 74. Can targeted alpha-particle therapy augment the effect of carbon ion radiotherapy on malignancies? Question 75. How does chromosomal instability drive tumor progression?
Collapse
|
15
|
Radiotherapy for Brain Metastases From Renal Cell Carcinoma in the Targeted Therapy Era: The University of Rochester Experience. Am J Clin Oncol 2017; 40:439-443. [PMID: 25730604 DOI: 10.1097/coc.0000000000000186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Radiotherapy remains the standard approach for brain metastases from renal cell carcinoma (RCC). Kinase inhibitors (KI) have become standard of care for metastatic RCC. They also increase the radiosensitivity of various tumor types in preclinical models. Data are lacking regarding the effect of KIs among RCC patients undergoing radiotherapy for brain metastases. We report our experience of radiotherapy for brain metastatic RCC in the era of targeted therapy and analyzed effects of concurrent KI therapy. METHODS We retrospectively analyzed 25 consecutive patients who received radiotherapy for brain metastases from RCC with whole-brain radiotherapy (WBRT), stereotactic radiosurgery (SRS), or both. Kaplan-Meier rates of overall survival (OS) and brain progression-free survival (BPFS) were calculated and univariate analyses performed. RESULTS Lower diagnosis-specific graded prognostic assessment (DS-GPA) score and multiple intracranial metastases were associated with decreased OS and BPFS on univariate analysis; DS-GPA is also a prognostic factor on multivariate analysis. There was no significant difference in OS or BPFS for SRS compared with WBRT or WBRT and SRS combined. The concurrent use of KI was not associated with any change in OS or BPFS. CONCLUSIONS This hypothesis-generating analysis suggests among patients with brain metastatic RCC treated with the most current therapies, those selected to undergo SRS did not experience significantly different survival or control outcomes than those selected to undergo WBRT. From our experience to date, limited in patient numbers, there seems to be neither harm nor benefit in using concurrent KI therapy during radiotherapy. Given that most patients progress systemically, we would recommend considering KI use during brain radiotherapy in these patients.
Collapse
|
16
|
Frick MA, Chhabra AM, Lin L, Simone CB. First Ever Use of Proton Stereotactic Body Radiation Therapy Delivered with Curative Intent to Bilateral Synchronous Primary Renal Cell Carcinomas. Cureus 2017; 9:e1799. [PMID: 29282443 PMCID: PMC5741276 DOI: 10.7759/cureus.1799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 12/01/2022] Open
Abstract
Limited therapeutic options exist for inoperable bilateral kidney tumors. We report the first ever use of proton therapy to treat primary renal cell carcinoma (RCC) and the first report of proton stereotactic body radiation therapy (SBRT) for RCC in an inoperable patient with synchronous RCCs treated with proton SBRT. The patient is a 47-year-old 450-pound female with multiple medical comorbidities, including Stage 3 chronic kidney disease (CKD), who was found to have bilateral renal masses during work-up for cellulitis and sepsis. Following resolution of her sepsis, subsequent cross-sectional imaging demonstrated interval growth of the left renal mass to 4.4 x 4.8 cm and the right renal mass to 2.0 x 2.6 cm. Bilateral biopsies were performed, with pathology revealing Furhman Grade 1-2 clear cell RCC on both sides. A customized SBRT plan delivered a total dose of 3,000 cGy in five fractions to the bilateral kidneys every other day using proton beam therapy. The patient experienced no grade > 1 acute adverse toxicities from proton therapy, and now at one year after treatment, she has had no clinical symptoms of late radiation-induced toxicities. Although a marginal decline in post-treatment glomerular filtration rate (GFR) was observed (baseline 34 mL/min/1.73m2, one-year post-SBRT 29 mL/min/1.73m2), the patient remains asymptomatic and without a requirement for intervention. In presenting a case in which proton SBRT was performed safely and effectively for a medically complex patient with inoperable synchronous bilateral RCC, we suggest that proton therapy is a promising therapeutic approach for even unilateral primary RCC where preservation of renal function is of importance and should be considered for medically inoperable patients. Further experience is needed to determine the optimal dose and fractionation regimen for renal SBRT with proton therapy.
Collapse
Affiliation(s)
- Melissa A Frick
- Department of Radiation Oncology, University of Pennsylvania
| | - Arpit M Chhabra
- Department of Radiation Oncology, University of Maryland Medical Center
| | - Liyong Lin
- Department of Radiation Oncology, University of Pennsylvania
| | - Charles B Simone
- Department of Radiation Oncology, University of Maryland Medical Center
| |
Collapse
|
17
|
Stereotactic Body Radiotherapy for Large Primary Renal Cell Carcinoma. Clin Genitourin Cancer 2017; 15:e851-e854. [DOI: 10.1016/j.clgc.2017.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/31/2022]
|
18
|
Alongi F, Arcangeli S, Triggiani L, Mazzola R, Buglione di Monale E Bastia M, Fersino S, Baiguini A, Jereczek-Fossa BA, Magrini SM. Stereotactic ablative radiation therapy in renal cell carcinoma: From oligometastatic to localized disease. Crit Rev Oncol Hematol 2017; 117:48-56. [PMID: 28807235 DOI: 10.1016/j.critrevonc.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/30/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
Renal Cell Carcinoma (RCC) has historically been considered a radioresistant cancer, and radiotherapy was usually delivered with a palliative goal. Stereotactic ablative radiotherapy (SABR) allows the delivery of high doses on small treatment volumes in a safe and effective way, thus opening the doors to new applicationsof radiotherapy both in the treatment of the primary and oligometastasic disease. Aim of the current review is to explore the state of art of SABR in the therapeutic approach to RCC.
Collapse
Affiliation(s)
- Filippo Alongi
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy; University of Brescia, Brescia, Italy
| | | | - Luca Triggiani
- Radiation Oncology, Spedali Civili of Brescia, Brescia, Italy
| | - Rosario Mazzola
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy.
| | | | - Sergio Fersino
- Radiation Oncology, Sacro Cuore Don Calabria Cancer Care Center, Negrar-Verona, Italy
| | - Anna Baiguini
- Radiation Oncology, Spedali Civili of Brescia, Brescia, Italy
| | | | | | | |
Collapse
|
19
|
Siva S, Kothari G, Muacevic A, Louie AV, Slotman BJ, Teh BS, Lo SS. Radiotherapy for renal cell carcinoma: renaissance of an overlooked approach. Nat Rev Urol 2017. [PMID: 28631740 DOI: 10.1038/nrurol.2017.87] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conventional radiotherapy previously had a limited role in the definitive treatment of renal cell carcinoma (RCC), owing to the disappointing outcomes of several trials and the perceived radioresistance of this type of cancer. In this context, radiotherapy has been relegated largely to the palliation of symptoms in patients with metastatic disease, with variable rates of response. Following the availability of newer technologies that enable safe delivery of high-dose radiotherapy, stereotactic ablative radiotherapy (SABR) has become increasingly used in patients with RCC. Preclinical evidence demonstrates that RCC cells are sensitive to ablative doses of radiotherapy (≥8-10 Gy). Trials in the setting of intracranial and extracranial oligometastases, as well as primary RCC, have demonstrated excellent tumour control using this approach. Additionally, an awareness of the capacity of high-dose radiation to stimulate antitumour immunity has resulted in novel combinations of SABR with immunotherapies. Here we describe the historical application of conventional radiotherapy, the current biological understanding of the effects of radiation, and the clinical evidence supporting the use of ablative radiotherapy in RCC. We also explore emerging opportunities to combine systemic targeted agents or immunotherapies with radiation. Radiotherapy, although once an overlooked approach, is moving towards the forefront of RCC treatment.
Collapse
Affiliation(s)
- Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia
| | - Gargi Kothari
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Grattan Street, Melbourne, Victoria 3000, Australia
| | - Alexander Muacevic
- European Cyberknife Center, Max-Lebsche-Platz 31, Munich D-81377, Germany
| | - Alexander V Louie
- Department of Radiation Oncology, London Health Sciences Centre, 800 Commissioners Road East, PO Box 5010, London, Ontario N6A 5W9, Canada
| | - Ben J Slotman
- Radiation Oncology, VU University Medical Center, De Boelelaan, PO Box 7057, Amsterdam, 1007 MB, Netherlands
| | - Bin S Teh
- Department of Radiation Oncology, Houston Methodist Hospital, 6565 Fannin, Ste#DB1-077, Houston, Texas 77030, USA
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific Street, Box 356043, Seattle, Washington 98195-6043, USA
| |
Collapse
|
20
|
Role of Radiotherapy in the Treatment of Renal Cell Cancer: Updated and Critical Review. TUMORI JOURNAL 2017; 103:504-510. [DOI: 10.5301/tj.5000640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2017] [Indexed: 12/22/2022]
Abstract
Purpose The growing incidence of renal cell carcinoma (RCC) raises many questions about the management of these patients. The late clinical presentation, the presence of locally advanced or metastatic disease at diagnosis, the difficulty of radical surgical excision, and radioresistance make it one of the more challenging tumors to treat. The primary objective of this article is to propose an updated and critical review of the role of radiotherapy (RT) in the treatment of RCC. Methods This literature review is based on data from meta-analyses and randomized, prospective, and retrospective studies. We collected reports from 1970 to the present about preoperative RT, postoperative RT, stereotactic body RT, radiosurgery, and intraoperative RT in locally advanced renal cancer and in metastatic diseases. Results We emphasize the progress made in RT technology that allowed the creation of a more personalized and focused treatment with a minimum rate of complications. Conclusions In the coming years, new studies will be published to confirm and increase the indications for use of RT.
Collapse
|
21
|
Current Role of Radiotherapy for Renal-Cell Carcinoma: Review. Clin Genitourin Cancer 2017; 15:183-187. [DOI: 10.1016/j.clgc.2016.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/07/2016] [Accepted: 09/11/2016] [Indexed: 11/23/2022]
|
22
|
Liu S, Wang X, Lu J, Han L, Zhang Y, Liu Z, Ding S, Liu Z, Bi D, Niu Z. Ubenimex enhances the radiosensitivity of renal cell carcinoma cells by inducing autophagic cell death. Oncol Lett 2016; 12:3403-3410. [PMID: 27900012 PMCID: PMC5103958 DOI: 10.3892/ol.2016.5036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/03/2016] [Indexed: 12/19/2022] Open
Abstract
Renal cell carcinoma (RCC) is resistant to standard radiotherapy. Ubenimex, an aminopeptidase N inhibitor, is widely used as an adjunct therapy after surgery to enhance the function of immunocompetent cells and confer antitumor effects. Our previous study demonstrated that ubenimex induces autophagic cell death in RCC cells. Recently, the molecular mechanism of autophagy induction has been associated with radiosensitivity in RCC cells. In the present study, the ability of ubenimex to enhance RCC cell sensitivity to radiation via the induction of autophagic cell death was determined, and the mechanism of action of this effect was investigated. The 786-O and OS-RC-2 human RCC cell lines were treated with 0.5 mg/ml ubenimex and different doses of irradiation (IR). The cell viability was measured using a colony-formation assay and flow cytometry. Acridine orange (AO)-ethidium bromide (EB) staining was assessed by fluorescence microscopy as an indicator of autophagic cell death. Protein expression was assessed by western blotting. Autophagosomes were evaluated using transmission electron microscopy. RCC cells were used to evaluate the sensitivity to radiation using clonogenic survival and lactate dehydrogenase assays. Furthermore, these parameters were also tested at physiological oxygen levels. The AO-EB staining and flow cytometry of the OS-RC-2 cells indicated that the combined treatment significantly enhanced autophagic cell death compared with ubenimex or IR alone. Therefore, treatment with ubenimex did not significantly alter cell cycle progression but increased cell death when combined with radiation. An Akt agonist could significantly weaken this effect, indicating that ubenimex may act as an Akt inhibitor. Furthermore, the western blot analysis indicated that the combined treatment inhibited the Akt signaling pathway compared with ubenimex treatment or IR alone. Ubenimex may enhance RCC cell sensitivity to radiation by inducing cell autophagy. This induction changes the role of autophagy from protective to lethal in vitro, and this switch is associated with the inhibition of the Akt signaling pathway.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Xiaoqing Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Liping Han
- Department of Neurology, Shandong Police Hospital, Jinan, Shandong 250021, P.R. China
| | - Yongfei Zhang
- Department of Dermatology, Shandong University, Jinan, Shandong 250000, P.R. China
| | - Zheng Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Sentai Ding
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhao Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Dongbin Bi
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zhihong Niu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
23
|
|
24
|
Stereotactic Ablative Radiotherapy for the Treatment of Clinically Localized Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2015; 2015:547143. [PMID: 26640488 PMCID: PMC4658408 DOI: 10.1155/2015/547143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/19/2015] [Indexed: 12/11/2022]
Abstract
Thermal ablation is currently the most studied treatment option for medically inoperable patients with clinically localized renal cell carcinoma (RCC). Recent evidence suggests that stereotactic ablative radiotherapy (SABR) may offer an effective noninvasive alternative for these patients. In this review, we explore the current literature on SABR for the primary treatment of RCC and make recommendations for future studies so that an accurate comparison between SABR and other ablative therapies may be conducted.
Collapse
|
25
|
Swaminath A, Chu W. Stereotactic body radiotherapy for the treatment of medically inoperable primary renal cell carcinoma: Current evidence and future directions. Can Urol Assoc J 2015; 9:275-80. [PMID: 26316914 DOI: 10.5489/cuaj.2900] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The incidence of renal cell carcinoma (RCC) is steadily rising due to an aging population and more frequent imaging of the abdomen for other medical conditions. While surgery remains the standard of care treatment for localized disease, many patients are unfit due to their advanced age and medical comorbidities. In these patients, an active surveillance strategy or ablative therapies, including radiofrequency/microwave ablation or cryotherapy, can be offered. Such options have limitations particularly with fast growing, or larger tumors. A promising ablative therapy option to consider is stereo-tactic body radiotherapy (SBRT). SBRT refers to high dose, focally ablative radiation delivered in a short time (3-5 fractions), and is safe and effective in many other cancer sites, including lung, liver and spine. SBRT offers potential advantages in the primary kidney cancer setting due to its ablative dosing (overcoming the notion of "radio-resistance"), short treatment duration (important in an elderly population), low toxicity profile (enabling SBRT to treat larger RCCs than other ablative modalities), and non-invasiveness. To date, there is limited long-term prospective data on the outcomes of SBRT in primary RCC. However, early evidence is intriguing with respect to excellent local control and low toxicity; however, most studies vary in terms of technique and radiation dosing used. Well-designed prospective cohort studies with clearly defined and standardized techniques, dosing, follow-up, and integration of quality of life outcomes will be essential to further establish the role of SBRT in management of inoperable, localized RCC.
Collapse
Affiliation(s)
- Anand Swaminath
- Department of Oncology, McMaster University, Hamilton, ON; ; Juravinski Cancer Centre, Hamilton, ON
| | - William Chu
- Department of Radiation Oncology, Odette Cancer Centre, Sunnybrook Health Sciences Centre, University of Toronto, ON
| |
Collapse
|
26
|
Pham D, Kron T, Bressel M, Foroudi F, Hardcastle N, Schneider M, Soteriou S, Innes J, Siva S. Image guidance and stabilization for stereotactic ablative body radiation therapy (SABR) treatment of primary kidney cancer. Pract Radiat Oncol 2015; 5:e597-605. [PMID: 26547828 DOI: 10.1016/j.prro.2015.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/10/2015] [Accepted: 08/14/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Stereotactic ablative body radiation therapy for primary kidney cancer treatment relies on motion management that can quantify both the trajectory of kidney motion and stabilize the patient. A prospective ethics-approved clinical trial of stereotactic treatment to primary kidney targets was conducted at our institution. Our aim was to report on specific kidney tumor motion and the inter- and intrafraction motion as seen on treatment. METHODS AND MATERIALS Patients with tumor size <5 cm received a dose of 26 Gy in 1 fraction and those with tumor size ≥5 cm received 42 Gy in 3 fractions. All patients underwent a 4-dimensional computed tomography planning scan, immobilized in a dual-vacuum system. A conventional linear accelerator cone beam computed tomography scan was used for pre-, mid-, and posttreatment imaging to verify target position. RESULTS Between July 2012 and October 2014, 33 targets from 32 consecutive patients (24 males/8 females) were treated. Seventeen targets were prescribed 26 Gy/1 fraction and the remaining 16 targets received 42 Gy/3 fractions. Kidney motion at each of the poles was not affected by the presence of tumor (P = .875), nor was the motion statistically different from the corresponding contralateral kidney pole (P = .909). The mean 3-dimensional displacement of the target at mid- and posttreatment was 1.3 mm (standard deviation ± 1.6) and 1.0 mm (standard deviation ± 1.3), respectively. The maximum displacement in any direction for 95% of the fractions at mid- and posttreatment was ≤3 mm. CONCLUSION In summary, stereotactic ablative body radiation therapy of primary kidney targets can be accurately delivered on a conventional linear accelerator with protocol that has minimal intrafractional target motion.
Collapse
Affiliation(s)
- Daniel Pham
- Department of Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Australia.
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Mathias Bressel
- Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Farshad Foroudi
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Department of Radiation Oncology, Olivia Newton-John Cancer Centre/Austin Health, Melbourne, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michal Schneider
- Department of Medical Imaging and Radiation Sciences, Monash University, Melbourne, Australia
| | - Sally Soteriou
- Department of Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jayson Innes
- Department of Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
27
|
Reitkopf-Brodutch S, Confino H, Schmidt M, Cooks T, Efrati M, Arazi L, Rath-Wolfson L, Marshak G, Kelson I, Keisari Y. Ablation of experimental colon cancer by intratumoral 224Radium-loaded wires is mediated by alpha particles released from atoms which spread in the tumor and can be augmented by chemotherapy. Int J Radiat Biol 2015; 91:179-86. [PMID: 25179346 DOI: 10.3109/09553002.2015.959666] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE We developed (224)Ra-loaded wires, which release by recoil alpha emitting nuclei into solid tumors and cause tumor cell killing. This research examined if the major damage was inflicted by alpha particles emitted from these atoms or by direct gamma and beta emissions from the inserted wires. We also examined the efficacy of this treatment against colon cancer in combination with chemotherapy. MATERIALS AND METHODS Mouse colon carcinomas (CT-26 xenografts), treated by intra-tumoral radioactive wires loaded with (224)Ra atoms were monitored for effects on tumor growth, intratumoral tissue damage and distribution of alpha emitting atoms. The effects were compared with those of (224)Ra-loaded wires coated with poly methyl methacrylate (PMMA), which blocks atom recoil. Similar experiments were performed with radioactive wires combined with systemic 5-FU. RESULTS (224)Ra-loaded wires inhibited tumor growth and formed necrotic areas inside the tumor. PMMA coated wires did not inhibit tumor growth, and caused minor intratumoral damage. Autoradiography images of tumors treated with (224)Ra-loaded wires revealed a spread of alpha emitters over several mm, whereas PMMA-coated wires showed no such spread. Injection of 5-FU with (224)Ra-loaded wires augmented tumor growth retardation and cure. CONCLUSIONS (224)Ra-loaded wires ablate solid tumors by the release of alpha-particle emitting atoms inside the tissue, an effect that can be enhanced by combining this method with chemotherapy.
Collapse
Affiliation(s)
- Shira Reitkopf-Brodutch
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University , Tel Aviv , Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pham D, Thompson A, Kron T, Foroudi F, Kolsky MS, Devereux T, Lim A, Siva S. Stereotactic Ablative Body Radiation Therapy for Primary Kidney Cancer: A 3-Dimensional Conformal Technique Associated With Low Rates of Early Toxicity. Int J Radiat Oncol Biol Phys 2014; 90:1061-8. [DOI: 10.1016/j.ijrobp.2014.07.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/27/2014] [Accepted: 07/28/2014] [Indexed: 12/31/2022]
|
29
|
Jackson P, Foroudi F, Pham D, Hofman MS, Hardcastle N, Callahan J, Kron T, Siva S. Short communication: timeline of radiation-induced kidney function loss after stereotactic ablative body radiotherapy of renal cell carcinoma as evaluated by serial (99m)Tc-DMSA SPECT/CT. Radiat Oncol 2014; 9:253. [PMID: 25424613 PMCID: PMC4251855 DOI: 10.1186/s13014-014-0253-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 11/05/2014] [Indexed: 11/10/2022] Open
Abstract
Background Stereotactic ablative body radiotherapy (SABR) has been proposed as a definitive treatment for patients with inoperable primary renal cell carcinoma. However, there is little documentation detailing the radiobiological effects of hypofractionated radiation on healthy renal tissue. Findings In this study we describe a methodology for assessment of regional change in renal function in response to single fraction SABR of 26 Gy. In a patient with a solitary kidney, detailed follow-up of kidney function post-treatment was determined through 3-dimensional SPECT/CT imaging and 51Cr-EDTA measurements. Based on measurements of glomerular filtration rate, renal function declined rapidly by 34% at 3 months, plateaued at 43% loss at 12 months, with minimal further decrease to 49% of baseline by 18 months. Conclusions The pattern of renal functional change in 99mTc-DMSA uptake on SPECT/CT imaging correlates with dose delivered. This study demonstrates a dose effect relationship of SABR with loss of kidney function.
Collapse
Affiliation(s)
- Price Jackson
- Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia.
| | - Farshad Foroudi
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| | - Daniel Pham
- Department of Radiotherapy, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia.
| | - Michael S Hofman
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia.
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia. .,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
| | - Jason Callahan
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia.
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia.
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
30
|
Pham D, Kron T, Foroudi F, Schneider M, Siva S. A Review of Kidney Motion under Free, Deep and Forced-Shallow Breathing Conditions: Implications for Stereotactic Ablative Body Radiotherapy Treatment. Technol Cancer Res Treat 2014; 13:315-23. [DOI: 10.7785/tcrt.2012.500387] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Motion management strategies are important during stereotactic ablative body radiotherapy for abdominal targets. The kidney is a mobile retroperitoneal organ that moves with respiration. A review of the literature was performed to investigate the reported degree of kidney motion associated with various breathing conditions. A structured search was performed using Medline from January 1970 to May 2013 for all publications describing cranial-caudal kidney motion. Relevance to radiotherapy practice was reviewed based on any breathing instructions and/or immobilization equipment that could affect breathing pattern. Studies were categorized under three types of breathing conditions: Forced-shallow, breath-hold/deep and free. A total of 25 publications were identified describing cranial-caudal kidney motion with a combined total of 415 participants. Three publications described forced-shallow breathing using prone positioning or abdominal compression plates. Prone positioning, compared to supine positioning, did little to minimise kidney motion, however use of compression plates can result in kidney motion of less than 5 mm. Eight publications described deep breathing/breath hold techniques that showed average kidney motion ranging between 10 mm-40 mm. Fifteen publications investigated kidney motion under free breathing with the majority reporting mean motion of less than 10 mm. Kidney movement of up to 8.1 mm in the anterior posterior direction and 6.2 mm laterally were reported with no indications that breathing technique can influence the extent of this motion. In summary, kidney movement is complex and consideration should be made to ensure that motion management strategies provide the desired radiotherapy benefit. There are limited publications on the effectiveness of abdominal compression on reducing kidney motion which warrant further investigation in this area.
Collapse
Affiliation(s)
- D. Pham
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, St. Andrews Place East Melbourne, Victoria, AUSTRALIA 3002
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, AUSTRALIA 3800
| | - T. Kron
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, St. Andrews Place East Melbourne, Victoria, AUSTRALIA 3002
| | - F. Foroudi
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, St. Andrews Place East Melbourne, Victoria, AUSTRALIA 3002
| | - M. Schneider
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, AUSTRALIA 3800
| | - S. Siva
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, St. Andrews Place East Melbourne, Victoria, AUSTRALIA 3002
| |
Collapse
|
31
|
Onishi H, Kawasaki T, Zakoji H, Yoshida T, Komiyama T, Kuriyama K, Araya M, Saito R, Aoki S, Maehata Y, Tominaga L, Marino K, Watanabe I, Oguri M, Araki T, Enomoto N, Takeda M, Katoh R. Renal cell carcinoma treated with stereotactic radiotherapy with histological change confirmed on autopsy: a case report. BMC Res Notes 2014; 7:270. [PMID: 24767701 PMCID: PMC4008414 DOI: 10.1186/1756-0500-7-270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/21/2014] [Indexed: 11/23/2022] Open
Abstract
Background Treatment of primary renal cell carcinoma using radiotherapy with curative intent is rare, because renal cell carcinoma is generally regarded as a radiation-resistant tumor. Recently, stereotactic body radiation therapy has been radically applied for cancers in various organs including renal cell carcinoma. However, there were few reports describing pathological changes of renal cell carcinoma post stereotactic body radiation therapy. This is the first report we are aware of documenting late histological effects of stereotactic body radiation therapy on renal cell carcinoma and surrounding normal tissue. Case presentation A right renal tumor was identified in a Japanese 70-year-old man on follow-up computed tomography for his chronic hepatitis. T1N0M0 renal cell carcinoma was clinically diagnosed as the tumor was 3 cm in diameter and well-enhanced with intravenously infused contrast material in the arterial phase on computed tomography. No metastases in regional lymph nodes or distant sites were evident. Stereotactic body radiation therapy was selected as an alternative therapy to surgery because of his poor liver function. A total dose of 60 Gy in 10 fractions over 12 days was delivered using a 10-megavolt X-ray. The renal tumor gradually decreased in size and partial response had been achieved at 2 years after completing stereotactic body radiation therapy. Hepatocellular carcinoma was identified during follow-up in the patient and he died of progression of hepatocellular carcinoma with hepatic failure 2.5 years after completing stereotactic body radiation therapy. Autopsy was done and it showed almost complete necrosis of tumor tissues with a small amount of viable renal carcinoma cells. These pathological findings suggested marked effects of stereotactic body radiation therapy on clear cell renal cell carcinoma. Conclusion Our case demonstrates a good pathological response with small foci of remnant viable cancer cells after stereotactic body radiation therapy of 60Gy in 10 fractions for small renal cell carcinoma. Although further experiences and longer follow-up are mandatory to conclude the optimal treatment schedule and efficacy of stereotactic body radiation therapy for renal cell carcinoma, stereotactic body radiation therapy may represent a novel less-invasive option for the treatment of primary renal cell carcinoma.
Collapse
Affiliation(s)
- Hiroshi Onishi
- Department of Radiation Oncology, University of Yamanashi, 1110 Shimokato, 409-3898 Chuo-city, Yamanashi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
De Meerleer G, Khoo V, Escudier B, Joniau S, Bossi A, Ost P, Briganti A, Fonteyne V, Van Vulpen M, Lumen N, Spahn M, Mareel M. Radiotherapy for renal-cell carcinoma. Lancet Oncol 2014; 15:e170-7. [DOI: 10.1016/s1470-2045(13)70569-2] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
The potential value of the neutral comet assay and γH2AX foci assay in assessing the radiosensitivity of carbon beam in human tumor cell lines. Radiol Oncol 2013; 47:247-57. [PMID: 24133390 PMCID: PMC3794881 DOI: 10.2478/raon-2013-0045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/19/2013] [Indexed: 01/12/2023] Open
Abstract
Background Carbon ions (12C6+) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The assessment of tumour radiosensitivity would be particularly useful in optimizing the radiation dose during radiotherapy. The aim of the current study was to evaluate the potential value of the neutral comet assay and γH2AX foci assay in assessing 12C6+ radiosensitivity of tumour cells. Materials and methods The doses of 12C6+ and X-rays used in the present study were 2 and 4 Gy. The survival fraction, DNA double-strand breaks (DSB) and repair kinetics of DSB were assayed with clonogenic survival, neutral comet assay and γH2AX foci assay in human cervical carcinoma HeLa cells, hepatoma HepG2 cells, and mucoepidermoid carcinoma MEC-1 cells at the time points of 0.5, 4, 16 and 24 h after 12C6+ and X-rays irradiation. Results The survival fraction for 12C6+ irradiation was much more inhibited than for X-rays (p < 0.05) in all three tumour cell lines tested. Substantial amounts of residual damage, assessed by the neutral comet assay, were present after irradiation (p < 0.05). The highest residual damage was observed at 0.5 or 4 h, both for 12C6+ and X-ray irradiation. However, the residual damage in HeLa and MEC-1 cells was higher for 12C6+ than X-rays (p < 0.05). The strongest induction of γH2AX foci was observed after 30 min, for all three tumour cell lines (p < 0.01). The franction of γH2AX foci persisted for at least 24 h after 12C6+ irradiation; in HeLa cells and MEC-1 was higher than after X-ray irradiation (p < 0.05). The correlation coefficients between the clonogenic survival, neutral comet assay and γH2AX foci assay were not statistically significant, except for some tumour cells at individual irradiation doses and types. Conclusions Our study demonstrated that the neutral comet assay and γ-H2AX foci assay could be used to assess the radiosensitivity of 12C6+ in human tumour cells.
Collapse
|
34
|
Abstract
The use of charged particle therapy to control tumours non-invasively offers advantages over conventional radiotherapy. Protons and heavy ions deposit energy far more selectively than X-rays, allowing a higher local control of the tumour, a lower probability of damage to healthy tissue, low risk of complications and the chance for a rapid recovery after therapy. Charged particles are also useful for treating tumours located in areas that surround tissues that are radiosensitive and in anatomical sites where surgical access is limited. Current trial outcomes indicate that accelerated ions can potentially replace surgery for radical cancer treatments, which might be beneficial as the success of surgical cancer treatments are largely dependent on the expertise and experience of the surgeon and the location of the tumour. However, to date, only a small number of controlled randomized clinical trials have made comparisons between particle therapy and X-rays. Therefore, although the potential advantages are clear and supported by data, the cost:benefit ratio remains controversial. Research in medical physics and radiobiology is focusing on reducing the costs and increasing the benefits of this treatment.
Collapse
|
35
|
Schmid TE, Zlobinskaya O, Multhoff G. Differences in Phosphorylated Histone H2AX Foci Formation and Removal of Cells Exposed to Low and High Linear Energy Transfer Radiation. Curr Genomics 2013; 13:418-25. [PMID: 23450137 PMCID: PMC3426775 DOI: 10.2174/138920212802510501] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 10/17/2011] [Accepted: 06/12/2012] [Indexed: 01/14/2023] Open
Abstract
The use of particle ion beams in cancer radiotherapy has a long history. Today, beams of protons or heavy ions, predominantly carbon ions, can be accelerated to precisely calculated energies which can be accurately targeted to tumors. This particle therapy works by damaging the DNA of tissue cells, ultimately causing their death. Among the different types of DNA lesions, the formation of DNA double strand breaks is considered to be the most relevant of deleterious damages of ionizing radiation in cells. It is well-known that the extremely large localized energy deposition can lead to complex types of DNA double strand breaks. These effects can lead to cell death, mutations, genomic instability, or carcinogenesis. Complex double strand breaks can increase the probability of mis-rejoining by NHEJ. As a consequence differences in the repair kinetics following high and low LET irradiation qualities are attributed mainly to quantitative differences in their contributions of the fast and slow repair component. In general, there is a higher contribution of the slow component of DNA double strand repair after exposure to high LET radiation, which is thought to reflect the increased amount of complex DNA double strand breaks. These can be accurately measured by the γ-H2AX assay, because the number of phosphorylated H2AX foci correlates well with the number of double strand breaks induced by low or / and high LET radiation.
Collapse
Affiliation(s)
- Thomas Ernst Schmid
- Klinikum rechts der Isar, Department of Radiation Oncology, Technische Universität München, D-81675 München, Germany
| | | | | |
Collapse
|
36
|
Abstract
Carbon ion radiotherapy offers superior dose conformity in the treatment of deep-seated malignant tumours compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. The algorithm of treatment planning and beam delivery system is tailored to the individual parameters of the patient. The present article reviews the available literatures for various disease sites including the head and neck, skull base, lung, liver, prostate, bone and soft tissues and pelvic recurrence of rectal cancer as well as physical and biological properties.
Collapse
Affiliation(s)
- Tatsuya Ohno
- Gunma University Heavy Ion Medical Center, Gunma University, Showa 3-39-22, 371-8511, Maebashi, Gunma, Japan.
| |
Collapse
|
37
|
Siva S, Pham D, Gill S, Corcoran NM, Foroudi F. A systematic review of stereotactic radiotherapy ablation for primary renal cell carcinoma. BJU Int 2012; 110:E737-43. [DOI: 10.1111/j.1464-410x.2012.11550.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Bert C, Engenhart-Cabillic R, Durante M. Particle therapy for noncancer diseases. Med Phys 2012; 39:1716-27. [PMID: 22482597 DOI: 10.1118/1.3691903] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Radiation therapy using high-energy charged particles is generally acknowledged as a powerful new technique in cancer treatment. However, particle therapy in oncology is still controversial, specifically because it is unclear whether the putative clinical advantages justify the high additional costs. However, particle therapy can find important applications in the management of noncancer diseases, especially in radiosurgery. Extension to other diseases and targets (both cranial and extracranial) may widen the applications of the technique and decrease the cost/benefit ratio of the accelerator facilities. Future challenges in this field include the use of different particles and energies, motion management in particle body radiotherapy and extension to new targets currently treated by catheter ablation (atrial fibrillation and renal denervation) or stereotactic radiation therapy (trigeminal neuralgia, epilepsy, and macular degeneration). Particle body radiosurgery could be a future key application of accelerator-based particle therapy facilities in 10 years from today.
Collapse
Affiliation(s)
- Christoph Bert
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, Planckstraße 1, 64291 Darmstadt, Germany
| | | | | |
Collapse
|
39
|
Anbalagan S, Pires IM, Blick C, Hill MA, Ferguson DJP, Chan DA, Hammond EM. Radiosensitization of renal cell carcinoma in vitro through the induction of autophagy. Radiother Oncol 2012; 103:388-93. [PMID: 22551566 DOI: 10.1016/j.radonc.2012.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 04/02/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND PURPOSE For patients diagnosed with advanced renal cell carcinoma (RCC), there are few therapeutic options. Radiation therapy is predominantly used to treat metastasis and has not proven effective in the adjuvant setting for renal cancer. Furthermore, RCC is resistant to standard cytotoxic chemotherapies. Targeted anti-angiogenics are the standard of care for RCC but are not curative. Newer agents, such as mTOR inhibitors and others that induce autophagy, have shown great promise for treating RCC. Here, we investigate the potential use of the small molecule STF-62247 to modulate radiation. MATERIALS AND METHODS Using RCC cell lines, we evaluate sensitivity to radiation in addition to agents that induce autophagic cell death by clonogenic survival assays. Furthermore, these were also tested under physiological oxygen levels. RESULTS STF-62247 specifically induces autophagic cell death in cells that have lost VHL, an essential mutation in the development of RCC. Treatment with STF-62247 did not alter cell cycle progression but when combined with radiation increased cell killing under oxic and hypoxic/physiological conditions. CONCLUSIONS This study highlights the possibility of combining targeted therapeutics such as STF-62247 or temsirolimus with radiation to reduce the reliance on partial or full nephrectomy and improve patient prognosis.
Collapse
Affiliation(s)
- Selvakumar Anbalagan
- The Cancer Research UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Blanco AI, Teh BS, Amato RJ. Role of radiation therapy in the management of renal cell cancer. Cancers (Basel) 2011; 3:4010-23. [PMID: 24213122 PMCID: PMC3763407 DOI: 10.3390/cancers3044010] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/11/2011] [Accepted: 10/19/2011] [Indexed: 12/11/2022] Open
Abstract
Renal cell carcinoma (RCC) is traditionally considered to be radioresistant; therefore, conventional radiotherapy (RT) fraction sizes of 1.8 to 2 Gy are thought to have little role in the management of primary RCC, especially for curative disease. In the setting of metastatic RCC, conventionally fractionated RT has been an effective palliative treatment in 50% of patients. Recent technological advances in radiation oncology have led to the clinical implementation of image-guided radiotherapy, allowing biologically potent doses to the tumors intra- and extra-cranially. As predicted by radiobiologic modeling, favorable outcomes have been observed with highly hypofractionated schemes modeled after the experience with intracranial stereotactic radiosurgery (SRS) for RCC brain metastases with reported local control rates averaging 85%. At present, both primary and metastatic RCC tumors may be successfully treated using stereotactic approaches, which utilize steep dose gradients to maximally preserve function and avoid toxicity of adjacent organs including liver, uninvolved kidney, bowel, and spinal cord regions. Future endeavors will combine stereotactic body radiation therapy (SBRT) with novel targeted therapies, such as tyrosine kinase inhibitors and targeted rapamycin (mTOR) inhibitors, to maximize both local and systemic control.
Collapse
Affiliation(s)
- Angel I. Blanco
- Department of Radiation Oncology, The Methodist Hospital, The Methodist Hospital Research Institute, Houston, TX 77030, USA; E-Mails: (A.I.B.); (B.S.T.)
- Department of Radiation Oncology, The Methodist Hospital, Houston, TX 77030, USA
| | - Bin S. Teh
- Department of Radiation Oncology, The Methodist Hospital, The Methodist Hospital Research Institute, Houston, TX 77030, USA; E-Mails: (A.I.B.); (B.S.T.)
- Department of Radiation Oncology, The Methodist Hospital, Houston, TX 77030, USA
| | - Robert J. Amato
- Division of Oncology, University of Texas Health Science Center at Houston, Memorial Hermann Cancer Center, Houston, TX 77030, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-832-325-7702; Fax: +1-179-512-7132
| |
Collapse
|
41
|
|
42
|
Riaz A, Gates VL, Atassi B, Lewandowski RJ, Mulcahy MF, Ryu RK, Sato KT, Baker T, Kulik L, Gupta R, Abecassis M, Benson AB, Omary R, Millender L, Kennedy A, Salem R. Radiation Segmentectomy: A Novel Approach to Increase Safety and Efficacy of Radioembolization. Int J Radiat Oncol Biol Phys 2011; 79:163-71. [DOI: 10.1016/j.ijrobp.2009.10.062] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/24/2009] [Accepted: 10/26/2009] [Indexed: 02/07/2023]
|
43
|
Abstract
Radiation therapy with charged particles, such as protons and heavier ions, provides physical selectivity and therefore allows for favorable dose distributions in comparison with conventional photon radiotherapy. Carbon ions furthermore exhibit biologic advantages related to their high linear energy transfer properties in a number of tumors known to be relatively insensitive to low-linear energy transfer radiation therapy. Over the last 2 decades, major developments in the fields of accelerator technology, diagnostic techniques, and beam delivery methods have been made. These developments formed the basis for the application of particle beams in clinical surroundings. Many clinical centers are already considering the introduction of radiation therapy with charged particles. This article reviews the clinical experience with particle therapy in adults available so far.
Collapse
|
44
|
Schmid TE, Dollinger G, Beisker W, Hable V, Greubel C, Auer S, Mittag A, Tarnok A, Friedl AA, Molls M, Röper B. Differences in the kinetics of gamma-H2AX fluorescence decay after exposure to low and high LET radiation. Int J Radiat Biol 2010; 86:682-91. [PMID: 20569192 DOI: 10.3109/09553001003734543] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE In order to obtain more insight into heavy ion tumour therapy, some features of the underlying molecular mechanisms controlling the cellular response to high linear energy transfer (LET) radiation are currently analysed. MATERIALS AND METHODS We analysed the decay of the integrated fluorescence intensity of gamma-H2AX (phosphorylated histone H2AX) which is thought to reflect the repair kinetics of radiation-induced DNA double-strand breaks (DSB) using Laser-Scanning-Cytometry. Asynchronous human HeLa cells were irradiated with a single dose of either 1.89 Gy of 55 MeV carbon ions or 5 Gy of 70 kV X-rays. RESULTS Measurements of the gamma-H2AX-intensities from 15-60 min resulted in a 16 % decrease for carbon ions and in a 43 % decrease for X-rays. After 21 h, the decrease was 77 % for carbon ions and 85 % for X-rays. The corresponding time-effect relationship was fitted by a bi-exponential function showing a fast and a slow component with identical half-life values for both radiation qualities being 24 +/- 4 min and 13.9 +/- 0.7 h, respectively. Apparent differences in the kinetics following high and low LET irradiation could completely be attributed to quantitative differences in their contributions, with the slow component being responsible for 47 % of the repair after exposure to X-rays as compared to 80 % after carbon ion irradiation. CONCLUSION gamma-H2AX loss kinetics follows a bi-exponential decline with two definite decay times independent of LET. The higher contribution of the slow component determined for carbon ion exposure is thought to reflect the increased amount of complex DSB induced by high LET radiation.
Collapse
Affiliation(s)
- Thomas E Schmid
- Klinikum rechts der Isar, Department of Radiation Oncology, Technische Universität München, München, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Suit H, DeLaney T, Goldberg S, Paganetti H, Clasie B, Gerweck L, Niemierko A, Hall E, Flanz J, Hallman J, Trofimov A. Proton vs carbon ion beams in the definitive radiation treatment of cancer patients. Radiother Oncol 2010; 95:3-22. [DOI: 10.1016/j.radonc.2010.01.015] [Citation(s) in RCA: 170] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 01/22/2010] [Accepted: 01/23/2010] [Indexed: 02/03/2023]
|
46
|
Abstract
Radiotherapy is one of the most common and effective therapies for cancer. Generally, patients are treated with X-rays produced by electron accelerators. Many years ago, researchers proposed that high-energy charged particles could be used for this purpose, owing to their physical and radiobiological advantages compared with X-rays. Particle therapy is an emerging technique in radiotherapy. Protons and carbon ions have been used for treating many different solid cancers, and several new centers with large accelerators are under construction. Debate continues on the cost:benefit ratio of this technique, that is, on whether the high costs of accelerators and beam delivery in particle therapy are justified by a clear clinical advantage. This Review considers the present clinical results in the field, and identifies and discusses the research questions that have resulted with this technique.
Collapse
|