1
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
2
|
Pérès EA, Toutain J, Paty LP, Divoux D, Ibazizène M, Guillouet S, Barré L, Vidal A, Cherel M, Bourgeois M, Bernaudin M, Valable S. 64Cu-ATSM/ 64Cu-Cl 2 and their relationship to hypoxia in glioblastoma: a preclinical study. EJNMMI Res 2019; 9:114. [PMID: 31858290 PMCID: PMC6923301 DOI: 10.1186/s13550-019-0586-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background Diacetyl-bis(N4-methylthiosemicarbazone), labeled with 64Cu (64Cu-ATSM) has been suggested as a promising tracer for imaging hypoxia. However, various controversial studies highlighted potential pitfalls that may disable its use as a selective hypoxic marker. They also highlighted that the results may be tumor location dependent. Here, we first analyzed uptake of Cu-ATSM and its less lipophilic counterpart Cu-Cl2 in the tumor over time in an orthotopic glioblastoma model. An in vitro study was also conducted to investigate the hypoxia-dependent copper uptake in tumor cells. We then further performed a comprehensive ex vivo study to compare 64Cu uptake to hypoxic markers, specific cellular reactions, and also transporter expression. Methods μPET was performed 14 days (18F-FMISO), 15 days (64Cu-ATSM and 64Cu-Cl2), and 16 days (64Cu-ATSM and 64Cu-Cl2) after C6 cell inoculation. Thereafter, the brains were withdrawn for further autoradiography and immunohistochemistry. C6 cells were also grown in hypoxic workstation to analyze cellular uptake of Cu complexes in different oxygen levels. Results In vivo results showed that Cu-ASTM and Cu-Cl2 accumulated in hypoxic areas of the tumors. Cu-ATSM also stained, to a lesser extent, non-hypoxic regions, such as regions of astrogliosis, with high expression of copper transporters and in particular DMT-1 and CTR1, and also characterized by the expression of elevated astrogliosis. In vitro results show that 64Cu-ATSM showed an increase in the uptake only in severe hypoxia at 0.5 and 0.2% of oxygen while for 64Cu-Cl2, the cell retention was significantly increased at 5% and 1% of oxygen with no significant rise at lower oxygen percentages. Conclusion In the present study, we show that Cu-complexes undoubtedly accumulate in hypoxic areas of the tumors. This uptake may be the reflection of a direct dependency to a redox metabolism and also a reflection of hypoxic-induced overexpression of transporters. We also show that Cu-ATSM also stained non-hypoxic regions such as astrogliosis.
Collapse
Affiliation(s)
- Elodie A Pérès
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Jérôme Toutain
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Louis-Paul Paty
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Didier Divoux
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Méziane Ibazizène
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP group, GIP Cyceron, Caen, France
| | - Stéphane Guillouet
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP group, GIP Cyceron, Caen, France
| | - Louisa Barré
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP group, GIP Cyceron, Caen, France
| | | | - Michel Cherel
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France.,GIP ARRONAX, Nantes, France.,Nuclear Medicine Department, ICO-René Gauducheau Cancer Center, Saint-Herblain, France
| | - Mickaël Bourgeois
- Nantes-Angers Cancer Research Center CRCINA, University of Nantes, INSERM UMR1232, CNRS-ERL6001, Nantes, France.,GIP ARRONAX, Nantes, France.,Nuclear Medicine Department, University Hospital, Nantes, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy group, GIP Cyceron, Caen, France.
| |
Collapse
|
3
|
Montay-Gruel P, Acharya MM, Petersson K, Alikhani L, Yakkala C, Allen BD, Ollivier J, Petit B, Jorge PG, Syage AR, Nguyen TA, Baddour AAD, Lu C, Singh P, Moeckli R, Bochud F, Germond JF, Froidevaux P, Bailat C, Bourhis J, Vozenin MC, Limoli CL. Long-term neurocognitive benefits of FLASH radiotherapy driven by reduced reactive oxygen species. Proc Natl Acad Sci U S A 2019; 116:10943-10951. [PMID: 31097580 PMCID: PMC6561167 DOI: 10.1073/pnas.1901777116] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Here, we highlight the potential translational benefits of delivering FLASH radiotherapy using ultra-high dose rates (>100 Gy⋅s-1). Compared with conventional dose-rate (CONV; 0.07-0.1 Gy⋅s-1) modalities, we showed that FLASH did not cause radiation-induced deficits in learning and memory in mice. Moreover, 6 months after exposure, CONV caused permanent alterations in neurocognitive end points, whereas FLASH did not induce behaviors characteristic of anxiety and depression and did not impair extinction memory. Mechanistic investigations showed that increasing the oxygen tension in the brain through carbogen breathing reversed the neuroprotective effects of FLASH, while radiochemical studies confirmed that FLASH produced lower levels of the toxic reactive oxygen species hydrogen peroxide. In addition, FLASH did not induce neuroinflammation, a process described as oxidative stress-dependent, and was also associated with a marked preservation of neuronal morphology and dendritic spine density. The remarkable normal tissue sparing afforded by FLASH may someday provide heretofore unrealized opportunities for dose escalation to the tumor bed, capabilities that promise to hasten the translation of this groundbreaking irradiation modality into clinical practice.
Collapse
Affiliation(s)
- Pierre Montay-Gruel
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Munjal M Acharya
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Kristoffer Petersson
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Leila Alikhani
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Chakradhar Yakkala
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Jonathan Ollivier
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Benoit Petit
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Patrik Gonçalves Jorge
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Amber R Syage
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Thuan A Nguyen
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Al Anoud D Baddour
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Celine Lu
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Paramvir Singh
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695
| | - Raphael Moeckli
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Pascal Froidevaux
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Jean Bourhis
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland;
- Department of Radiation Oncology, Lausanne University Hospital, University of Lausanne, Lausanne VD-1011, Switzerland
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695;
| |
Collapse
|
4
|
Nel J, Franconi F, Joudiou N, Saulnier P, Gallez B, Lemaire L. Lipid nanocapsules as in vivo oxygen sensors using magnetic resonance imaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:396-403. [PMID: 31029333 DOI: 10.1016/j.msec.2019.03.104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/01/2019] [Accepted: 03/28/2019] [Indexed: 12/31/2022]
Abstract
Hypoxia is common occurrence of the tumour microenvironment, wherein heterogeneous gradients of O2 give rise to tumoural cells which are highly malignant, metastatic, and resistant to therapeutic efforts. Thus, the assessment and imaging of hypoxia is essential for tumour diagnosis and treatment. Magnetic resonance imaging and, more specifically, the quantitative assessment of longitudinal relaxation time enhancement, was shown to enable the mapping of oxygen in tumours with increased sensitivity for lipids as compared to water signal. Unfortunately, this can only be applied to tumours with high lipid content. To overcome this issue, we propose the use of lipid nanocapsules (LNCs). LNCs have been demonstrated as excellent core-shell nanocarriers, wherein the lipidic-core is used for lipophilic drug encapsulation, enabling treatment of highly malignant tumours. Herein, however, we exploited the lipidic-core of the LNCs to develop a simple but effective technique to increase the lipidic content within tissues to enable the assessment and mapping of pO2. LNCs were prepared using the phase-inversion technique to produce 60 nm sized nanoparticles, and in vitro studies demonstrated the permeability and responsiveness of LNCs to O2. To evaluate the ability of LNCs to respond to changes in pO2in vivo, after a hyperoxic challenge, three animal models, namely a normal tissue model (gastrocnemius muscle tissue) and two tumour tissue models (subcutaneous fibrosarcoma and intracerebral glioblastoma) were explored. LNCs were found to be responsive to variation of O2in vivo. Moreover, the use of MRI enabled the mapping of oxygen gradients and heterogeneity within tumours.
Collapse
Affiliation(s)
- Janske Nel
- Micro et Nanomedecines translationnelles, MINT, UNIV Angers, INSERM 1066, CNRS 6021, 4 rue Larrey, Angers, France; Biomedical Magnetic Resonance Unit (REMA), Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73 bte B1.73.08, 1200 Brussels, Belgium
| | - Florence Franconi
- Micro et Nanomedecines translationnelles, MINT, UNIV Angers, INSERM 1066, CNRS 6021, 4 rue Larrey, Angers, France; PRISM, UNIV d'Angers, 4 rue Larrey, Angers F-49933, France
| | - Nicolas Joudiou
- Biomedical Magnetic Resonance Unit (REMA), Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73 bte B1.73.08, 1200 Brussels, Belgium; Nuclear and Electron Spin Technologies Platform (NEST), Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73 bte B1.73.08, 1200 Brussels, Belgium
| | - Patrick Saulnier
- Micro et Nanomedecines translationnelles, MINT, UNIV Angers, INSERM 1066, CNRS 6021, 4 rue Larrey, Angers, France
| | - Bernard Gallez
- Biomedical Magnetic Resonance Unit (REMA), Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73 bte B1.73.08, 1200 Brussels, Belgium
| | - Laurent Lemaire
- Micro et Nanomedecines translationnelles, MINT, UNIV Angers, INSERM 1066, CNRS 6021, 4 rue Larrey, Angers, France; PRISM, UNIV d'Angers, 4 rue Larrey, Angers F-49933, France.
| |
Collapse
|
5
|
Orlova AG, Maslennikova AV, Golubiatnikov GY, Suryakova AS, Kirillin MY, Kurakina DA, Kalganova TI, Volovetsky AB, Turchin IV. Diffuse optical spectroscopy assessment of rodent tumor model oxygen state after single-dose irradiation. Biomed Phys Eng Express 2019; 5. [PMID: 34247150 DOI: 10.1088/2057-1976/ab0b19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/27/2019] [Indexed: 01/09/2023]
Abstract
Modern radiation therapy of malignant tumors requires careful selection of conditions that can improve the effectiveness of the treatment. The study of the dynamics and mechanisms of tumor reoxygenation after radiation therapy makes it possible to select the regimens for optimizing the ongoing treatment. Diffuse optical spectroscopy (DOS) is among the methods used for non-invasive assessment of tissue oxygenation. In this work DOS was used forin vivoregistration of changes in oxygenation level of an experimental rat tumor after single-dose irradiation at a dose of 10 Gy and investigation of their possible mechanisms. It was demonstrated that in 24 h after treatment, tumor oxygenation increases, which is mainly due to an increase in the oxygen supply to the tissues. DOS is demonstrated to be efficient for study of changes in blood flow parameters when monitoring tumor response to therapy.
Collapse
Affiliation(s)
- A G Orlova
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A V Maslennikova
- Department of Oncology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - G Yu Golubiatnikov
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - A S Suryakova
- Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - M Yu Kirillin
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - D A Kurakina
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - T I Kalganova
- Department of Oncology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia.,Clinical Laboratory, N.A. Semashko Nizhny Novgorod Regional Clinical Hospital, Nizhny Novgorod, Russia
| | - A B Volovetsky
- Institute of Biology and Biomedicine, N.I. Lobachevsky Nizhny Novgorod State University, Nizhny Novgorod, Russia
| | - I V Turchin
- Department for Radiophysical Methods in Medicine, Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| |
Collapse
|
6
|
How to Modulate Tumor Hypoxia for Preclinical In Vivo Imaging Research. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:4608186. [PMID: 30420794 PMCID: PMC6211155 DOI: 10.1155/2018/4608186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023]
Abstract
Tumor hypoxia is related with tumor aggressiveness, chemo- and radiotherapy resistance, and thus a poor clinical outcome. Therefore, over the past decades, every effort has been made to develop strategies to battle the negative prognostic influence of tumor hypoxia. For appropriate patient selection and follow-up, noninvasive imaging biomarkers such as positron emission tomography (PET) radiolabeled ligands are unprecedentedly needed. Importantly, before being able to implement these new therapies and potential biomarkers into the clinical setting, preclinical in vivo validation in adequate animal models is indispensable. In this review, we provide an overview of the different attempts that have been made to create differential hypoxic in vivo cancer models with a particular focus on their applicability in PET imaging studies.
Collapse
|
7
|
Li Y, Xu S, Cai M. PO 2-based biodosimetry evaluation using an EPR technique acts as a sensitive index for chemotherapy. Oncol Lett 2018; 16:2167-2174. [PMID: 30008915 PMCID: PMC6036430 DOI: 10.3892/ol.2018.8911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 04/17/2018] [Indexed: 12/02/2022] Open
Abstract
The partial pressure of oxygen (PO2) in the tumor microenvironment directly affects tumor sensitivity to chemotherapy. In the present study, a lithium phthalocyanine probe was implanted into MCF-7 human breast cancer cells, followed by transplant of the cells into nude mice. The present study used an electron paramagnetic resonance (EPR) oximetry measuring technique to dynamically monitor PO2 in the tumor microenvironment prior to and following chemotherapy, and aimed to determine the precise time window in which the microenvironmental PO2 peaked following chemotherapy. The results indicated that PO2 was significantly higher in breast cancer compared with control (P<0.05). Following four cycles of chemotherapy, the activity of NADH dehydrogenase, succinate-cytochrome c reductase and cytochrome c oxidase in the mitochondria of cells was significantly reduced when compared with their activity prior to chemotherapy (P<0.05). Regional blood flow in tumor tissues undergoing chemotherapy was significantly lower than that prior to chemotherapy (P<0.05). The rate of cellular apoptosis in the PO2 peak-based chemotherapy group was significantly greater than that in the conventional chemotherapy group after two and four cycles of chemotherapy (P<0.05). Tumor volume in the PO2 peak-based chemotherapy group was significantly reduced compared with that in the 0.9% NaCl solution control and the conventional chemotherapy groups after four cycles of chemotherapy (P<0.05). The tumor inhibitory rate of the experimental group was significantly higher than that of the conventional chemotherapy group (P<0.01). In conclusion, the present study may provide guidance for the development of effective strategies depending on tumor-maximal response to chemotherapy in an oxygen-rich environment. Additionally, the present study aimed to establish a foundation for a clinical noninvasive assessment intended to guide treatment and formulate individual regimens, in order to improve cancer therapeutics, sensitivity monitoring and curative effect estimation.
Collapse
Affiliation(s)
- Yuanjing Li
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Shengxin Xu
- Institute of Atomic and Molecular Physics, Anhui Normal University, Wuhu 241000, Anhui, P.R. China
| | - Ming Cai
- Department of Endocrinology and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
8
|
Raccagni I, Valtorta S, Moresco RM, Belloli S. Tumour hypoxia: lessons learnt from preclinical imaging. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0248-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Feldman LA, Fabre MS, Grasso C, Reid D, Broaddus WC, Lanza GM, Spiess BD, Garbow JR, McConnell MJ, Herst PM. Perfluorocarbon emulsions radiosensitise brain tumors in carbogen breathing mice with orthotopic GL261 gliomas. PLoS One 2017; 12:e0184250. [PMID: 28873460 PMCID: PMC5584944 DOI: 10.1371/journal.pone.0184250] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/21/2017] [Indexed: 01/02/2023] Open
Abstract
Background Tumour hypoxia limits the effectiveness of radiation therapy. Delivering normobaric or hyperbaric oxygen therapy elevates pO2 in both tumour and normal brain tissue. However, pO2 levels return to baseline within 15 minutes of stopping therapy. Aim To investigate the effect of perfluorocarbon (PFC) emulsions on hypoxia in subcutaneous and intracranial mouse gliomas and their radiosensitising effect in orthotopic gliomas in mice breathing carbogen (95%O2 and 5%CO2). Results PFC emulsions completely abrogated hypoxia in both subcutaneous and intracranial GL261 models and conferred a significant survival advantage orthotopically (Mantel Cox: p = 0.048) in carbogen breathing mice injected intravenously (IV) with PFC emulsions before radiation versus mice receiving radiation alone. Carbogen alone decreased hypoxia levels substantially and conferred a smaller but not statistically significant survival advantage over and above radiation alone. Conclusion IV injections of PFC emulsions followed by 1h carbogen breathing, radiosensitises GL261 intracranial tumors.
Collapse
Affiliation(s)
- Lisa A Feldman
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA United States of America.,Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Marie-Sophie Fabre
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Carole Grasso
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Dana Reid
- School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - William C Broaddus
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, VA United States of America
| | - Gregory M Lanza
- Division of Cardiovascular Diseases, Washington University School of Medicine, St. Louis, MO United States of America
| | - Bruce D Spiess
- Department of Anesthesiology, College of Medicine, University of Florida, Gainesville, FL United States of America
| | - Joel R Garbow
- Mallinckrodt Institute, Washington University School of Medicine, St. Louis, MO United States of America
| | - Melanie J McConnell
- Malaghan Institute of Medical Research, Wellington, New Zealand.,School of Biological Sciences, Victoria University, Wellington, New Zealand
| | - Patries M Herst
- Malaghan Institute of Medical Research, Wellington, New Zealand.,Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| |
Collapse
|
10
|
Valable S, Corroyer-Dulmont A, Chakhoyan A, Durand L, Toutain J, Divoux D, Barré L, MacKenzie ET, Petit E, Bernaudin M, Touzani O, Barbier EL. Imaging of brain oxygenation with magnetic resonance imaging: A validation with positron emission tomography in the healthy and tumoural brain. J Cereb Blood Flow Metab 2017; 37:2584-2597. [PMID: 27702880 PMCID: PMC5531354 DOI: 10.1177/0271678x16671965] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The partial pressure in oxygen remains challenging to map in the brain. Two main strategies exist to obtain surrogate measures of tissue oxygenation: the tissue saturation studied by magnetic resonance imaging (StO2-MRI) and the identification of hypoxia by a positron emission tomography (PET) biomarker with 3-[18F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([18F]-FMISO) as the leading radiopharmaceutical. Nonetheless, a formal validation of StO2-MRI against FMISO-PET has not been performed. The objective of our studies was to compare the two approaches in (a) the normal rat brain when the rats were submitted to hypoxemia; (b) animals implanted with four tumour types differentiated by their oxygenation. Rats were submitted to normoxic and hypoxemic conditions. For the brain tumour experiments, U87-MG, U251-MG, 9L and C6 glioma cells were orthotopically inoculated in rats. For both experiments, StO2-MRI and [18F]-FMISO PET were performed sequentially. Under hypoxemia conditions, StO2-MRI revealed a decrease in oxygen saturation in the brain. Nonetheless, [18F]-FMISO PET, pimonidazole immunohistochemistry and molecular biology were insensitive to hypoxia. Within the context of tumours, StO2-MRI was able to detect hypoxia in the hypoxic models, mimicking [18F]-FMISO PET with high sensitivity/specificity. Altogether, our data clearly support that, in brain pathologies, StO2-MRI could be a robust and specific imaging biomarker to assess hypoxia.
Collapse
Affiliation(s)
- Samuel Valable
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | | | - Ararat Chakhoyan
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Lucile Durand
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Jérôme Toutain
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Didier Divoux
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Louisa Barré
- 2 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/LDM-TEP Group, Caen, France
| | - Eric T MacKenzie
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Edwige Petit
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Myriam Bernaudin
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Omar Touzani
- 1 Normandie Université, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Emmanuel L Barbier
- 3 Inserm, U1216, Grenoble, France.,4 Université Grenoble Alpes, Grenoble Institut des Neurosciences, Grenoble, France
| |
Collapse
|
11
|
Chakhoyan A, Corroyer-Dulmont A, Leblond MM, Gérault A, Toutain J, Chazaviel L, Divoux D, Petit E, MacKenzie ET, Kauffmann F, Delcroix N, Bernaudin M, Touzani O, Valable S. Carbogen-induced increases in tumor oxygenation depend on the vascular status of the tumor: A multiparametric MRI study in two rat glioblastoma models. J Cereb Blood Flow Metab 2017; 37:2270-2282. [PMID: 27496553 PMCID: PMC5464716 DOI: 10.1177/0271678x16663947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The alleviation of hypoxia in glioblastoma with carbogen to improve treatment has met with limited success. Our hypothesis is that the eventual benefits of carbogen depend on the capacity for vasodilation. We examined, with MRI, changes in fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent signals in response to carbogen. The analyses were performed in two xenograft models of glioma (U87 and U251) recognized to have different vascular patterns. Carbogen increased fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent signals in contralateral tissues. In the tumor core and peritumoral regions, changes were dependent on the capacity to vasodilate rather than on resting fractional cerebral blood volume. In the highly vascularised U87 tumor, carbogen induced a greater increase in fractional cerebral blood volume and blood oxygen saturation in comparison to the less vascularized U251 tumor. The blood oxygenation level dependent signal revealed a delayed response in U251 tumors relative to the contralateral tissue. Additionally, we highlight the considerable heterogeneity of fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent within U251 tumor in which multiple compartments co-exist (tumor core, rim and peritumoral regions). Finally, our study underlines the complexity of the flow/metabolism interactions in different models of glioblastoma. These irregularities should be taken into account in order to palliate intratumoral hypoxia in clinical trials.
Collapse
Affiliation(s)
- Ararat Chakhoyan
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Aurélien Corroyer-Dulmont
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Marine M Leblond
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Aurélie Gérault
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Jérôme Toutain
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Laurent Chazaviel
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France.,5 UMS3408, GIP CYCERON, Caen, France
| | - Didier Divoux
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Edwige Petit
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Eric T MacKenzie
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - François Kauffmann
- 4 Normandie Univ, Esplanade de la Paix, Caen, France.,6 UMR6139 LMNO, Avenue de Côte de Nacre, Caen, France
| | - Nicolas Delcroix
- 3 UNICAEN, GIP CYCERON, Caen, France.,5 UMS3408, GIP CYCERON, Caen, France
| | - Myriam Bernaudin
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Omar Touzani
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| | - Samuel Valable
- 1 CNRS, UMR6301-ISTCT, CERVOxy Group, GIP CYCERON, Caen, France.,2 CEA, DSV/I2BM, GIP CYCERON, Caen, France.,3 UNICAEN, GIP CYCERON, Caen, France.,4 Normandie Univ, Esplanade de la Paix, Caen, France
| |
Collapse
|
12
|
Hou H, Khan N, Gohain S, Eskey CJ, Moodie KL, Maurer KJ, Swartz HM, Kuppusamy P. Dynamic EPR Oximetry of Changes in Intracerebral Oxygen Tension During Induced Thromboembolism. Cell Biochem Biophys 2017; 75:285-294. [PMID: 28434138 DOI: 10.1007/s12013-017-0798-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/12/2017] [Indexed: 12/19/2022]
Abstract
Cerebral tissue oxygenation (oxygen tension, pO2) is a critical parameter that is closely linked to brain metabolism, function, and pathophysiology. In this work, we have used electron paramagnetic resonance oximetry with a deep-tissue multi-site oxygen-sensing probe, called implantable resonator, to monitor temporal changes in cerebral pO2 simultaneously at four sites in a rabbit model of ischemic stroke induced by embolic clot. The pO2 values in healthy brain were not significantly different among the four sites measured over a period of 4 weeks. During exposure to 15% O2 (hypoxia), a sudden and significant decrease in pO2 was observed in all four sites. On the other hand, brief exposure to breathing carbogen gas (95% O2 + 5% CO2) showed a significant increase in the cerebral pO2 from baseline value. During ischemic stroke, induced by embolic clot in the left brain, a significant decline in the pO2 of the left cortex (ischemic core) was observed without any change in the contralateral sites. While the pO2 in the non-infarct regions returned to baseline at 24-h post-stroke, pO2 in the infarct core was consistently lower compared to the baseline and other regions of the brain. The results demonstrated that electron paramagnetic resonance oximetry with the implantable resonator can repeatedly and simultaneously report temporal changes in cerebral pO2 at multiple sites. This oximetry approach can be used to develop interventions to rescue hypoxic/ischemic tissue by modulating cerebral pO2 during hypoxic and stroke injury.
Collapse
Affiliation(s)
- Huagang Hou
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Nadeem Khan
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Sangeeta Gohain
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Clifford J Eskey
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Karen L Moodie
- Center for Comparative Medicine and Research, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Kirk J Maurer
- Center for Comparative Medicine and Research, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Harold M Swartz
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA
| | - Periannan Kuppusamy
- Department of Radiology, The Geisel School of Medicine, Dartmouth College, 1 Medical Center Drive,, Lebanon, 03756, NH, USA.
| |
Collapse
|
13
|
Colliez F, Gallez B, Jordan BF. Assessing Tumor Oxygenation for Predicting Outcome in Radiation Oncology: A Review of Studies Correlating Tumor Hypoxic Status and Outcome in the Preclinical and Clinical Settings. Front Oncol 2017; 7:10. [PMID: 28180110 PMCID: PMC5263142 DOI: 10.3389/fonc.2017.00010] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/10/2017] [Indexed: 12/30/2022] Open
Abstract
Tumor hypoxia is recognized as a limiting factor for the efficacy of radiotherapy, because it enhances tumor radioresistance. It is strongly suggested that assessing tumor oxygenation could help to predict the outcome of cancer patients undergoing radiation therapy. Strategies have also been developed to alleviate tumor hypoxia in order to radiosensitize tumors. In addition, oxygen mapping is critically needed for intensity modulated radiation therapy (IMRT), in which the most hypoxic regions require higher radiation doses and the most oxygenated regions require lower radiation doses. However, the assessment of tumor oxygenation is not yet included in day-to-day clinical practice. This is due to the lack of a method for the quantitative and non-invasive mapping of tumor oxygenation. To fully integrate tumor hypoxia parameters into effective improvements of the individually tailored radiation therapy protocols in cancer patients, methods allowing non-invasively repeated, safe, and robust mapping of changes in tissue oxygenation are required. In this review, non-invasive methods dedicated to assessing tumor oxygenation with the ultimate goal of predicting outcome in radiation oncology are presented, including positron emission tomography used with nitroimidazole tracers, magnetic resonance methods using endogenous contrasts (R1 and R2*-based methods), and electron paramagnetic resonance oximetry; the goal is to highlight results of studies establishing correlations between tumor hypoxic status and patients’ outcome in the preclinical and clinical settings.
Collapse
Affiliation(s)
- Florence Colliez
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| | - Bénédicte F Jordan
- Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Université Catholique de Louvain , Brussels , Belgium
| |
Collapse
|
14
|
Gallez B. Contribution of Harold M. Swartz to In Vivo EPR and EPR Dosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:16-37. [PMID: 27421469 DOI: 10.1093/rpd/ncw157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 2015, we are celebrating half a century of research in the application of Electron Paramagnetic Resonance (EPR) as a biodosimetry tool to evaluate the dose received by irradiated people. During the EPR Biodose 2015 meeting, a special session was organized to acknowledge the pioneering contribution of Harold M. (Hal) Swartz in the field. The article summarizes his main contribution in physiology and medicine. Four emerging themes have been pursued continuously along his career since its beginning: (1) radiation biology; (2) oxygen and oxidation; (3) measuring physiology in vivo; and (4) application of these measurements in clinical medicine. The common feature among all these different subjects has been the use of magnetic resonance techniques, especially EPR. In this article, you will find an impressionist portrait of Hal Swartz with the description of the 'making of' this pioneer, a time-line perspective on his career with the creation of three National Institutes of Health-funded EPR centers, a topic-oriented perspective on his career with a description of his major contributions to Science, his role as a mentor and his influence on his academic children, his active role as founder of scientific societies and organizer of scientific meetings, and the well-deserved international recognition received so far.
Collapse
Affiliation(s)
- Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Avenue Mounier 73.08, B-1200, Brussels, Belgium
| |
Collapse
|
15
|
Lemasson B, Pannetier N, Coquery N, Boisserand LSB, Collomb N, Schuff N, Moseley M, Zaharchuk G, Barbier EL, Christen T. MR Vascular Fingerprinting in Stroke and Brain Tumors Models. Sci Rep 2016; 6:37071. [PMID: 27883015 PMCID: PMC5121626 DOI: 10.1038/srep37071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/25/2016] [Indexed: 02/08/2023] Open
Abstract
In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.
Collapse
Affiliation(s)
- B Lemasson
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - N Pannetier
- Center for Imaging of Neurodegenerative diseases, Veterans Affairs Medical Centrer, San Francisco, USA.,Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - N Coquery
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Ligia S B Boisserand
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Nora Collomb
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - N Schuff
- Center for Imaging of Neurodegenerative diseases, Veterans Affairs Medical Centrer, San Francisco, USA.,Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - M Moseley
- Department of Radiology, Stanford University, Stanford, California, USA
| | - G Zaharchuk
- Department of Radiology, Stanford University, Stanford, California, USA
| | - E L Barbier
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - T Christen
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Hou HG, Khan N, Du GX, Hodge S, Swartz HM. Temporal variation in the response of tumors to hyperoxia with breathing carbogen and oxygen. Med Gas Res 2016; 6:138-146. [PMID: 27867481 PMCID: PMC5110141 DOI: 10.4103/2045-9912.191359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The effect of hyperoxygenation with carbogen (95% O2 + 5% CO2) and 100% oxygen inhalation on partial pressure of oxygen (pO2) of radiation-induced fibrosarcoma (RIF-1) tumor was investigated. RIF-1 tumors were innoculated in C3H mice, and aggregates of oximetry probe, lithium phthalocyanine (LiPc), was implanted in each tumor. A baseline tumor pO2 was measured by electron paramagnetic resonance (EPR) oximetry for 20 minutes in anesthetized mice breathing 30% O2 and then the gas was switched to carbogen or 100 % oxygen for 60 minutes. These experiments were repeated for 10 days. RIF-1 tumors were hypoxic with a baseline tissue pO2 of 6.2–8.3 mmHg in mice breathing 30% O2. Carbogen and 100% oxygen significantly increased tumor pO2 on days 1 to 5, with a maximal increase at approximately 32–45 minutes on each day. However, the extent of increase in pO2 from the baseline declined significantly on day 5 and day 10. The results provide quantitative information on the effect of hyperoxic gas inhalation on tumor pO2 over the course of 10 days. EPR oximetry can be effectively used to repeatedly monitor tumor pO2 and test hyperoxic methods for potential clinical applications.
Collapse
Affiliation(s)
- Hua-Gang Hou
- EPR Center for Viable Systems, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Nadeem Khan
- EPR Center for Viable Systems, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Gai-Xin Du
- EPR Center for Viable Systems, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Sassan Hodge
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Harold M Swartz
- EPR Center for Viable Systems, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
17
|
Stokes AM, Hart CP, Quarles CC. Hypoxia Imaging With PET Correlates With Antitumor Activity of the Hypoxia-Activated Prodrug Evofosfamide (TH-302) in Rodent Glioma Models. Tomography 2016; 2:229-237. [PMID: 27752544 PMCID: PMC5065246 DOI: 10.18383/j.tom.2016.00259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
High-grade gliomas are often characterized by hypoxia, which is associated with both poor long-term prognosis and therapy resistance. The adverse role hypoxia plays in treatment resistance and disease progression has led to the development of hypoxia imaging methods and hypoxia-targeted treatments. Here, we determined the tumor hypoxia and vascular perfusion characteristics of 2 rat orthotopic glioma models using 18-fluoromisonidozole positron emission tomography. In addition, we determined tumor response to the hypoxia-activated prodrug evofosfamide (TH-302) in these rat glioma models. C6 tumors exhibited more hypoxia and were less perfused than 9L tumors. On the basis of these differences in their tumor hypoxic burden, treatment with evofosfamide resulted in 4- and 2-fold decreases in tumor growth rates of C6 and 9L tumors, respectively. This work shows that imaging methods sensitive to tumor hypoxia and perfusion are able to predict response to hypoxia-targeted agents. This has implications for improved patient selection, particularly in clinical trials, for treatment with hypoxia-activated cytotoxic prodrugs, such as evofosfamide.
Collapse
Affiliation(s)
- Ashley M. Stokes
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee
- Department of Imaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| | - Charles P. Hart
- Threshold Pharmaceuticals Inc., South San Francisco, California
| | - C. Chad Quarles
- Institute of Imaging Science, Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee
- Department of Imaging Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and
| |
Collapse
|
18
|
Peeters SG, Zegers CM, Biemans R, Lieuwes NG, van Stiphout RG, Yaromina A, Sun JD, Hart CP, Windhorst AD, van Elmpt W, Dubois LJ, Lambin P. TH-302 in Combination with Radiotherapy Enhances the Therapeutic Outcome and Is Associated with Pretreatment [18F]HX4 Hypoxia PET Imaging. Clin Cancer Res 2015; 21:2984-92. [DOI: 10.1158/1078-0432.ccr-15-0018] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/12/2015] [Indexed: 11/16/2022]
|
19
|
Hou H, Krishnamurthy Nemani V, Du G, Montano R, Song R, Gimi B, Swartz HM, Eastman A, Khan N. Monitoring oxygen levels in orthotopic human glioma xenograft following carbogen inhalation and chemotherapy by implantable resonator-based oximetry. Int J Cancer 2014; 136:1688-96. [PMID: 25111969 DOI: 10.1002/ijc.29132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 11/08/2022]
Abstract
Hypoxia is a critical hallmark of glioma, and significantly compromises treatment efficacy. Unfortunately, techniques for monitoring glioma pO2 to facilitate translational research are lacking. Furthermore, poor prognosis of patients with malignant glioma, in particular glioblastoma multiforme, warrant effective strategies that can inhibit hypoxia and improve treatment outcome. EPR oximetry using implantable resonators was implemented for monitoring pO2 in normal cerebral tissue and U251 glioma in mice. Breathing carbogen (95% O2 + 5% CO2 ) was tested for hyperoxia in the normal brain and glioma xenografts. A new strategy to inhibit glioma growth by rationally combining gemcitabine and MK-8776, a cell cycle checkpoint inhibitor, was also investigated. The mean pO2 of left and right hemisphere were ∼56-69 mmHg in the normal cerebral tissue of mice. The mean baseline pO2 of U251 glioma on the first and fifth day of measurement was 21.9 ± 3.7 and 14.1 ± 2.4 mmHg, respectively. The mean brain pO2 including glioma increased by at least 100% on carbogen inhalation, although the response varied between the animals over days. Treatment with gemcitabine + MK-8776 significantly increased pO2 and inhibited glioma growth assessed by MRI. In conclusion, EPR oximetry with implantable resonators can be used to monitor the efficacy of carbogen inhalation and chemotherapy on orthotopic glioma in mice. The increase in glioma pO2 of mice breathing carbogen can be used to improve treatment outcome. The treatment with gemcitabine + MK-8776 is a promising strategy that warrants further investigation.
Collapse
Affiliation(s)
- Huagang Hou
- EPR Center for the Study of Viable Systems, Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mistry N, Stokes AM, Van Gambrell J, Quarles CC. Nitrite induces the extravasation of iron oxide nanoparticles in hypoxic tumor tissue. NMR IN BIOMEDICINE 2014; 27:425-430. [PMID: 24470164 PMCID: PMC3966547 DOI: 10.1002/nbm.3078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 12/27/2013] [Accepted: 01/03/2014] [Indexed: 06/03/2023]
Abstract
Nitrite undergoes reconversion to nitric oxide under conditions characteristic of the tumor microenvironment, such as hypoxia and low pH. This selective conversion of nitrite into nitric oxide in tumor tissue has led to the possibility of using nitrite to enhance drug delivery and the radiation response. In this work, we propose to serially characterize the vascular response of brain tumor-bearing rats to nitrite using contrast-enhanced R2 * mapping. Imaging is performed using a multi-echo gradient echo sequence at baseline, post iron oxide nanoparticle injection and post-nitrite injection, whilst the animal is breathing air. The results indicate that nitrite sufficiently increases the vascular permeability in C6 gliomas, such that the iron oxide nanoparticles accumulate within the tumor tissue. When animals breathed 100% oxygen, the contrast agent remained within the vasculature, indicating that the conversion of nitrite to nitric oxide occurs in the presence of hypoxia within the tumor. The hypoxia-dependent, nitrite-induced extravasation of iron oxide nanoparticles observed herein has implications for the enhancement of conventional and nanotherapeutic drug delivery.
Collapse
Affiliation(s)
- Nilesh Mistry
- Department of Radiation Oncology, University of Maryland School of Medicine
| | - Ashley M Stokes
- Department of Radiology and Radiological Sciences, Vanderbilt University
- Vanderbilt University Institute of Imaging Science
| | - James Van Gambrell
- Department of Radiology and Radiological Sciences, Vanderbilt University
| | - Christopher Chad Quarles
- Department of Biomedical Engineering, Vanderbilt University
- Department of Radiology and Radiological Sciences, Vanderbilt University
- Department of Cancer Biology, Vanderbilt University
- Vanderbilt University Institute of Imaging Science
| |
Collapse
|
21
|
Franzén S, Pihl L, Khan N, Palm F, Gustafsson H. Repetitive Measurements of Intrarenal Oxygenation In Vivo Using L Band Electron Paramagnetic Resonance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 812:135-141. [DOI: 10.1007/978-1-4939-0620-8_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
|
22
|
Measurement of brain oxygenation changes using dynamic T1-weighted imaging. Neuroimage 2013; 78:7-15. [DOI: 10.1016/j.neuroimage.2013.03.068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/25/2013] [Accepted: 03/28/2013] [Indexed: 11/30/2022] Open
|
23
|
Elas M, Magwood JM, Butler B, Li C, Wardak R, DeVries R, Barth ED, Epel B, Rubinstein S, Pelizzari CA, Weichselbaum RR, Halpern HJ. EPR oxygen images predict tumor control by a 50% tumor control radiation dose. Cancer Res 2013; 73:5328-35. [PMID: 23861469 DOI: 10.1158/0008-5472.can-13-0069] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Clinical trials to ameliorate hypoxia as a strategy to relieve the radiation resistance it causes have prompted a need to assay the precise extent and location of hypoxia in tumors. Electron paramagnetic resonance oxygen imaging (EPR O2 imaging) provides a noninvasive means to address this need. To obtain a preclinical proof-of-principle that EPR O2 images could predict radiation control, we treated mouse tumors at or near doses required to achieve 50% control (TCD50). Mice with FSa fibrosarcoma or MCa4 carcinoma were subjected to EPR O2 imaging and immediately radiated to a TCD50 or TCD50 ± 10 Gy. Statistical analysis was permitted by collection of approximately 1,300 tumor pO2 image voxels, including the fraction of tumor voxels with pO2 less than 10 mm Hg (HF10). Tumors were followed for 90 days (FSa) or 120 days (MCa4) to determine local control or failure. HF10 obtained from EPR images showed statistically significant differences between tumors that were controlled by the TCD50 and those that were not controlled for both FSa and MCa4. Kaplan-Meier analysis of both types of tumors showed that approximately 90% of mildly hypoxic tumors were controlled (HF10%< 10%), and only 37% (FSA) and 23% (MCa4) tumors controlled if hypoxic. EPR pO2 image voxel distributions in these approximately 0.5 mL tumors provide a prediction of radiation curability independent of radiation dose. These data confirm the significance of EPR pO2 hypoxic fractions. The 90% control of low HF10 tumors argue that 0.5 mL subvolumes of tumors may be more sensitive to radiation and may need less radiation for high tumor control rates. Cancer Res; 73(17); 5328-35. ©2013 AACR.
Collapse
Affiliation(s)
- Martyna Elas
- Departments of Radiation and Cellular Oncology and Radiology, Pritzker School of Medicine, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Dagıstan Y, Karaca I, Bozkurt ER, Ozar E, Yagmurlu K, Toklu A, Bilir A. Combination hyperbaric oxygen and temozolomide therapy in C6 rat glioma model. Acta Cir Bras 2013; 27:383-7. [PMID: 22666755 DOI: 10.1590/s0102-86502012000600005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/12/2012] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Temozolomide (TMZ) has anti-tumor activity in patients with malignant glioma. Hyperbaric oxygen (HBO) may enhance the efficacy of certain therapies that are limited because of the hypoxic tumor microenvironment. We examined the combined effects of TMZ-HBO in a rat glioma model. METHODS After stereotactic injection of C6/LacZ rat glioma cells into the Wistar rats brain, the rats were randomly assigned to three treatment groups [group 1, control treatment; group 2, TMZ alone; group 3, a combination of TMZ and HBO]. Rats were sacrificed 18 days after treatment, and number of intra-/peri-tumoral vessels, microendothelial proliferations, immunohistochemistry and necrotic area were evaluated. RESULTS Tumoral tissue was stained only sparsely with GFAP. Temozolomide treatment was significantly decreased in tumor tissue intratumoral vessel number / total tumor area level. The level of Ki67 was significantly decreased in the tumor tissue of the group 3. Additionally, the total necrotic area / total tumor volume (%) was decreased significantly in tumor tissue of the group 3 rats compared to group 1 and 2. CONCLUSION The combination of hyperbaric oxygen with temozolomide produced an important reduction in glioma growth and effective approach to the treatment of glioblastoma.
Collapse
Affiliation(s)
- Yaşar Dagıstan
- Department of Neurosurgery, Izzet Baysal Hospital, Bolu, Turkey.
| | | | | | | | | | | | | |
Collapse
|
25
|
Hou H, Mupparaju SP, Lariviere JP, Hodge S, Gui J, Swartz HM, Khan N. Assessment of the changes in 9L and C6 glioma pO2 by EPR oximetry as a prognostic indicator of differential response to radiotherapy. Radiat Res 2013; 179. [PMID: 23391148 PMCID: PMC3633145 DOI: 10.1667/rr2811.1;10.1667/rr2811.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Tumor hypoxia impedes the outcome of radiotherapy. As the extent of hypoxia in solid tumors varies during the course of radiotherapy, methods that can provide repeated assessment of tumor pO2 such as EPR oximetry may enhance the efficacy of radiotherapy by scheduling irradiations when the tumors are oxygenated. The repeated measurements of tumor pO2 may also identify responders, and thereby facilitate the design of better treatment plans for nonresponding tumors. We have investigated the temporal changes in the ectopic 9L and C6 glioma pO2 irradiated with single radiation doses less than 10 Gy by EPR oximetry. The 9L and C6 tumors were hypoxic with pO2 of approximately 5-9 mmHg. The pO2 of C6 tumors increased significantly with irradiation of 4.8-9.3 Gy. However, no change in the 9L tumor pO2 was observed. The irradiation of the oxygenated C6 tumors with a second dose of 4.8 Gy resulted in a significant delay in growth compared to hypoxic and 2 Gy × 5 treatment groups. The C6 tumors with an increase in pO2 of greater than 50% from the baseline of irradiation with 4.8 Gy (responders) had a significant tumor growth delay compared to nonresponders. These results indicate that the ectopic 9L and C6 tumors responded differently to radiotherapy. We propose that the repeated measurement of the oxygen levels in the tumors during radiotherapy can be used to identify responders and to design tumor oxygen guided treatment plans to improve the outcome.
Collapse
Affiliation(s)
- Huagang Hou
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Sriram P. Mupparaju
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire
| | - Jean P. Lariviere
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Sassan Hodge
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Jiang Gui
- Community and Family Medicine, Geisel School of Medicine, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Harold M. Swartz
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Nadeem Khan
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
- Address for correspondence: EPR Center for Viable Systems, 716 Vail, Geisel School of Medicine, Hanover, NH 03755;
| |
Collapse
|
26
|
Hou H, Mupparaju SP, Lariviere JP, Hodge S, Gui J, Swartz HM, Khan N. Assessment of the changes in 9L and C6 glioma pO2 by EPR oximetry as a prognostic indicator of differential response to radiotherapy. Radiat Res 2013; 179:343-51. [PMID: 23391148 DOI: 10.1667/rr2811.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumor hypoxia impedes the outcome of radiotherapy. As the extent of hypoxia in solid tumors varies during the course of radiotherapy, methods that can provide repeated assessment of tumor pO2 such as EPR oximetry may enhance the efficacy of radiotherapy by scheduling irradiations when the tumors are oxygenated. The repeated measurements of tumor pO2 may also identify responders, and thereby facilitate the design of better treatment plans for nonresponding tumors. We have investigated the temporal changes in the ectopic 9L and C6 glioma pO2 irradiated with single radiation doses less than 10 Gy by EPR oximetry. The 9L and C6 tumors were hypoxic with pO2 of approximately 5-9 mmHg. The pO2 of C6 tumors increased significantly with irradiation of 4.8-9.3 Gy. However, no change in the 9L tumor pO2 was observed. The irradiation of the oxygenated C6 tumors with a second dose of 4.8 Gy resulted in a significant delay in growth compared to hypoxic and 2 Gy × 5 treatment groups. The C6 tumors with an increase in pO2 of greater than 50% from the baseline of irradiation with 4.8 Gy (responders) had a significant tumor growth delay compared to nonresponders. These results indicate that the ectopic 9L and C6 tumors responded differently to radiotherapy. We propose that the repeated measurement of the oxygen levels in the tumors during radiotherapy can be used to identify responders and to design tumor oxygen guided treatment plans to improve the outcome.
Collapse
Affiliation(s)
- Huagang Hou
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Sheehan JP, Xu Z, Popp B, Kowalski L, Schlesinger D. Inhibition of glioblastoma and enhancement of survival via the use of mibefradil in conjunction with radiosurgery. J Neurosurg 2012. [PMID: 23198803 DOI: 10.3171/2012.11.jns121087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The survival of patients with high-grade gliomas remains unfavorable. Mibefradil, a T-type calcium channel inhibitor capable of synchronizing dividing cells at the G1 phase, has demonstrated potential benefit in conjunction with chemotherapeutic agents for gliomas in in vitro studies. In vivo study of mibefradil and radiosurgery is lacking. The authors used an intracranial C6 glioma model in rats to study tumor response to mibefradil and radiosurgery. METHODS Two weeks after implantation of C6 cells into the animals, each rat underwent MRI every 2 weeks thereafter for 8 weeks. After tumor was confirmed on MRI, the rats were randomly assigned to one of the experimental groups. Tumor volumes were measured on MR images. Experimental Group 1 received 30 mg/kg of mibefradil intraperitoneally 3 times a day for 1 week starting on postoperative day (POD) 15; Group 2 received 8 Gy of cranial radiation via radiosurgery delivered on POD 15; Group 3 underwent radiosurgery on POD 15, followed by 1 week of mibefradil; and Group 4 received mibefradil on POD 15 for 1 week, followed by radiosurgery sometime from POD 15 to POD 22. Twenty-seven glioma-bearing rats were analyzed. Survival was compared between groups using Kaplan-Meier methodology. RESULTS Median survival in Groups 1, 2, 3, and 4 was 35, 31, 43, and 52 days, respectively (p = 0.036, log-rank test). Two animals in Group 4 survived to POD 60, which is twice the expected survival of untreated animals in this model. Analysis of variance and a post hoc test indicated no tumor volume differences on PODs 15 and 29. However, significant volume differences were found on POD 43; mean tumor volumes for Groups 1, 2, 3, and 4 were 250, 266, 167, and 34 mm(3), respectively (p = 0.046, ANOVA). A Cox proportional hazards regression test showed survival was associated with tumor volume on POD 29 (p = 0.001) rather than on POD 15 (p = 0.162). In vitro assays demonstrated an appreciable and dose-dependent increase in apoptosis between 2- and 7-μM concentrations of mibefradil. CONCLUSIONS Mibefradil response is schedule dependent and enhances survival and reduces glioblastoma when combined with ionizing radiation.
Collapse
Affiliation(s)
- Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
28
|
Hou H, Dong R, Li H, Williams B, Lariviere JP, Hekmatyar SK, Kauppinen RA, Khan N, Swartz H. Dynamic changes in oxygenation of intracranial tumor and contralateral brain during tumor growth and carbogen breathing: a multisite EPR oximetry with implantable resonators. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 214:22-8. [PMID: 22033225 PMCID: PMC3730127 DOI: 10.1016/j.jmr.2011.09.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/19/2011] [Accepted: 09/22/2011] [Indexed: 05/21/2023]
Abstract
INTRODUCTION Several techniques currently exist for measuring tissue oxygen; however technical difficulties have limited their usefulness and general application. We report a recently developed electron paramagnetic resonance (EPR) oximetry approach with multiple probe implantable resonators (IRs) that allow repeated measurements of oxygen in tissue at depths of greater than 10mm. METHODS The EPR signal to noise (S/N) ratio of two probe IRs was compared with that of LiPc deposits. The feasibility of intracranial tissue pO(2) measurements by EPR oximetry using IRs was tested in normal rats and rats bearing intracerebral F98 tumors. The dynamic changes in the tissue pO(2) were assessed during repeated hyperoxia with carbogen breathing. RESULTS A 6-10 times increase in the S/N ratio was observed with IRs as compared to LiPc deposits. The mean brain pO(2) of normal rats was stable and increased significantly during carbogen inhalation in experiments repeated for 3months. The pO(2) of F98 glioma declined gradually, while the pO(2) of contralateral brain essentially remained the same. Although a significant increase in the glioma pO(2) was observed during carbogen inhalation, this effect declined in experiments repeated over days. CONCLUSION EPR oximetry with IRs provides a significant increase in S/N ratio. The ability to repeatedly assess orthotopic glioma pO(2) is likely to play a vital role in understanding the dynamics of tissue pO(2) during tumor growth and therapies designed to modulate tumor hypoxia. This information could then be used to optimize chemoradiation by scheduling treatments at times of increased glioma oxygenation.
Collapse
Affiliation(s)
- Huagang Hou
- EPR Center for the Study of Viable Systems, Department of Radiology, Dartmouth Medical School, Hanover, NH 03755, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Repeated assessment of orthotopic glioma pO(2) by multi-site EPR oximetry: a technique with the potential to guide therapeutic optimization by repeated measurements of oxygen. J Neurosci Methods 2011; 204:111-117. [PMID: 22079559 DOI: 10.1016/j.jneumeth.2011.10.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/29/2011] [Accepted: 10/27/2011] [Indexed: 01/27/2023]
Abstract
Tumor hypoxia plays a vital role in therapeutic resistance. Consequently, measurements of tumor pO(2) could be used to optimize the outcome of oxygen-dependent therapies, such as, chemoradiation. However, the potential optimizations are restricted by the lack of methods to repeatedly and quantitatively assess tumor pO(2) during therapies, particularly in gliomas. We describe the procedures for repeated measurements of orthotopic glioma pO(2) by multi-site electron paramagnetic resonance (EPR) oximetry. This oximetry approach provides simultaneous measurements of pO(2) at more than one site in the glioma and contralateral cerebral tissue. The pO(2) of intracerebral 9L, C6, F98 and U251 tumors, as well as contralateral brain, were measured repeatedly for five consecutive days. The 9L glioma was well oxygenated with pO(2) of 27-36 mm Hg, while C6, F98 and U251 glioma were hypoxic with pO(2) of 7-12mm Hg. The potential of multi-site EPR oximetry to assess temporal changes in tissue pO(2) was investigated in rats breathing 100% O(2). A significant increase in F98 tumor and contralateral brain pO(2) was observed on day 1 and day 2, however, glioma oxygenation declined on subsequent days. In conclusion, EPR oximetry provides the capability to repeatedly assess temporal changes in orthotopic glioma pO(2). This information could be used to test and optimize the methods being developed to modulate tumor hypoxia. Furthermore, EPR oximetry could be potentially used to enhance the outcome of chemoradiation by scheduling treatments at times of increase in glioma pO(2).
Collapse
|
30
|
Avni R, Cohen B, Neeman M. Hypoxic stress and cancer: imaging the axis of evil in tumor metastasis. NMR IN BIOMEDICINE 2011; 24:569-81. [PMID: 21793071 PMCID: PMC3558740 DOI: 10.1002/nbm.1632] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Revised: 09/16/2010] [Accepted: 09/24/2010] [Indexed: 05/04/2023]
Abstract
Tumors emerge as a result of the sequential acquisition of genetic, epigenetic and somatic alterations promoting cell proliferation and survival. The maintenance and expansion of tumor cells rely on their ability to adapt to changes in their microenvironment, together with the acquisition of the ability to remodel their surroundings. Tumor cells interact with two types of interconnected microenvironments: the metabolic cell autonomous microenvironment and the nonautonomous cellular-molecular microenvironment comprising interactions between tumor cells and the surrounding stroma. Hypoxia is a central player in cancer progression, affecting not only tumor cell autonomous functions, such as cell division and invasion, resistance to therapy and genetic instability, but also nonautonomous processes, such as angiogenesis, lymphangiogenesis and inflammation, all contributing to metastasis. Closely related microenvironmental stressors affecting cancer progression include, in addition to hypoxia, elevated interstitial pressure and oxidative stress. Noninvasive imaging offers multiple means to monitor the tumor microenvironment and its consequences, and can thus assist in the understanding of the biological basis of hypoxia and microenvironmental stress in cancer progression, and in the development of strategies to monitor therapies targeted at stress-induced tumor progression.
Collapse
Affiliation(s)
- Reut Avni
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | | | | |
Collapse
|
31
|
Sheehan JP, Popp B, Monteith S, Toulmin S, Tomlinson J, Martin J, Cifarelli CP, Lee DH, Park DM. Trans sodium crocetinate: functional neuroimaging studies in a hypoxic brain tumor. J Neurosurg 2011; 115:749-53. [PMID: 21682571 DOI: 10.3171/2011.5.jns101954] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Intratumoral hypoxia is believed to be exhibited in high-grade gliomas. Trans sodium crocetinate (TSC) has been shown to increase oxygen diffusion to hypoxic tissues. In this research, the authors use oxygen-sensitive PET studies to evaluate the extent of hypoxia in vivo in a glioblastoma model and the effect of TSC on the baseline oxygenation of the tumor. METHODS The C6 glioma cells were stereotactically implanted in the right frontal region of rat brains. Formation of intracranial tumors was confirmed on MR imaging. Animals were injected with Copper(II) diacetyl-di(N4-methylthiosemicarbazone) (Cu-ATSM) and then either TSC or saline (6 rats each). Positron emission tomography imaging was performed, and relative uptake values were computed to determine oxygenation within the tumor and normal brain parenchyma. Additionally, TSC or saline was infused into the animals, and carbonic anhydrase 9 (CA9) and hypoxia-inducing factor-1α (HIF-1α) protein expression were measured 1 day afterward. RESULTS On PET imaging, all glioblastoma tumors demonstrated a statistically significant decrease in uptake of Cu-ATSM compared with the contralateral cerebral hemisphere (p = 0.000002). The mean relative uptake value of the tumor was 3900 (range 2203-6836), and that of the contralateral brain tissue was 1017 (range 488-2304). The mean relative hypoxic tumor volume for the saline group and TSC group (6 rats each) was 1.01 ± 0.063 and 0.69 ± 0.062, respectively (mean ± SEM, p = 0.002). Infusion of TSC resulted in a 31% decrease in hypoxic volume. Immunoblot analysis revealed expression of HIF-1α and CA9 in all tumor specimens. CONCLUSIONS Some glioblastomas exhibit hypoxia that is demonstrable on oxygen-specific PET imaging. It appears that TSC lessens intratumoral hypoxia on functional imaging. Further studies should explore relative hypoxia in glioblastoma and the potential therapeutic gains that can be achieved by lessening hypoxia during delivery of adjuvant treatment.
Collapse
Affiliation(s)
- Jason P Sheehan
- Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Valable S, Petit E, Roussel S, Marteau L, Toutain J, Divoux D, Sobrio F, Delamare J, Barré L, Bernaudin M. Complementary information from magnetic resonance imaging and (18)F-fluoromisonidazole positron emission tomography in the assessment of the response to an antiangiogenic treatment in a rat brain tumor model. Nucl Med Biol 2011; 38:781-93. [PMID: 21843775 DOI: 10.1016/j.nucmedbio.2011.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 01/19/2011] [Accepted: 01/29/2011] [Indexed: 11/28/2022]
Abstract
INTRODUCTION No direct proof has been brought to light in a link between hypoxic changes in glioma models and the effects of antiangiogenic treatments. Here, we assessed the sensitivity of the detection of hypoxia through the use of (18)F-fluoromisonidazole positron emission tomography ([(18)F]-FMISO PET) in response to the evolution of the tumor and its vasculature. METHODS Orthotopic glioma tumors were induced in rats after implantation of C6 or 9L cells. Sunitinib was administered from day (D) 17 to D24. At D17 and D24, multiparametric magnetic resonance imaging was performed to characterize tumor growth and vasculature. Hypoxia was assessed by [(18)F]-FMISO PET. RESULTS We showed that brain hypoxic volumes are related to glioma volume and its vasculature and that an antiangiogenic treatment, leading to an increase in cerebral blood volume and a decrease in vessel permeability, is accompanied by a decrease in the degree of hypoxia. CONCLUSIONS We propose that [(18)F]-FMISO PET and multiparametric magnetic resonance imaging are pertinent complementary tools in the evaluation of the effects of an antiangiogenic treatment in glioma.
Collapse
Affiliation(s)
- Samuel Valable
- CERVOxy group, UMR 6232 CI-NAPS. CNRS, Université de Caen Basse-Normandie, Université Paris-Descartes, CEA. GIP CYCERON, Bd Henri Becquerel, BP5229, 14074 CAEN cedex, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
HOU H, DONG R, LARIVIERE JP, MUPPARAJU SP, SWARTZ HM, KHAN N. Synergistic combination of hyperoxygenation and radiotherapy by repeated assessments of tumor pO2 with EPR oximetry. JOURNAL OF RADIATION RESEARCH 2011; 52:568-74. [PMID: 21799293 PMCID: PMC3955714 DOI: 10.1269/jrr.11028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The effect of hyperoxygenation with carbogen (95% O(2) + 5% CO(2)) inhalation on RIF-1 tumor pO(2 )and its consequence on growth inhibition with fractionated radiotherapy is reported. The temporal changes in the tumor pO(2) were assessed by in vivo Electron Paramagnetic Resonance (EPR) oximetry in mice breathing 30% O(2) or carbogen and the tumors were irradiated with 4 Gy/day for 5 consecutive days; a protocol that emulates the clinical application of carbogen. The RIF-1 tumors were hypoxic with a tissue pO(2) of 5-9 mmHg. Carbogen (CB) breathing significantly increased tumor pO(2), with a maximum increase at 22.9-31.2 min on days 1-5, however, the magnitude of increase in pO(2) declined on day 5. Radiotherapy during carbogen inhalation (CB/RT) resulted in a significant tumor growth inhibition from day 3 to day 6 as compared to 30%O(2)/RT and carbogen (CB/Sham RT) groups. The results provide unambiguous quantitative information on the effect of carbogen inhalation on tumor pO(2) over the course of 5 days. Tumor growth inhibition in the CB/RT group confirms that the tumor oxygenation with carbogen was radiobiologically significant. Repeated tumor pO(2) measurements by EPR oximetry can provide temporal information that could be used to improve therapeutic outcomes by scheduling doses at times of improved tumor oxygenation.
Collapse
Affiliation(s)
- Huagang HOU
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover,
NH, 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center,
Lebanon, NH 03756, USA
| | - Ruhong DONG
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover,
NH, 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center,
Lebanon, NH 03756, USA
| | - Jean P. LARIVIERE
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover,
NH, 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center,
Lebanon, NH 03756, USA
| | - Sriram P. MUPPARAJU
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover,
NH, 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center,
Lebanon, NH 03756, USA
| | - Harold M. SWARTZ
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover,
NH, 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center,
Lebanon, NH 03756, USA
| | - Nadeem KHAN
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover,
NH, 03755, USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center,
Lebanon, NH 03756, USA
- Contact information, Phone: 1-603-6533591, Fax: 1-603-6501717,
| |
Collapse
|
34
|
Ortiz-Prado E, Natah S, Srinivasan S, Dunn JF. A method for measuring brain partial pressure of oxygen in unanesthetized unrestrained subjects: the effect of acute and chronic hypoxia on brain tissue PO(2). J Neurosci Methods 2010; 193:217-25. [PMID: 20817029 DOI: 10.1016/j.jneumeth.2010.08.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/19/2010] [Accepted: 08/23/2010] [Indexed: 10/19/2022]
Abstract
The level of tissue oxygenation provides information related to the balance between oxygen delivery, oxygen utilization, tissue reactivity and morphology during physiological conditions. Tissue partial pressure of oxygen (PtO(2)) is influenced by the use of anesthesia or restraint. These factors may impact the absolute level of PtO(2). In this study we present a novel fiber optic method to measure brain PtO(2). This method can be used in unanesthetized, unrestrained animals, provides absolute values for PO(2), has a stable calibration, does not consume oxygen and is MRI compatible. Brain PtO(2) was studied during acute hypoxia, as well as before and after 28 days of high altitude acclimatization. A sensor was chronically implanted in the frontal cortex of eight Wistar rats. It is comprised of a fiber optic probe with a tip containing material that fluoresces with an oxygen dependent lifetime. Brain PtO(2) declines by 80% and 76% pre- and post-acclimatization, respectively, when the fraction of inspired oxygen declines from 0.21 to 0.08. In addition, a linear relationship between brain PtO(2) and inspired O(2) levels was demonstrated r(2)=0.98 and r(2)=0.99 (pre- and post-acclimatization). Hypoxia acclimatization resulted in an increase in the overall brain PtO(2) by approximately 35%. This paper demonstrates the use of a novel chronically implanted fiber optic based sensor for measuring absolute PtO(2). It shows a very strong linear relationship in awake animals between inspired O(2) and tissue O(2), and shows that there is a proportional increase in PtO(2) over a range of inspired values after exposure to chronic hypoxia.
Collapse
Affiliation(s)
- E Ortiz-Prado
- Department of Radiology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
35
|
Khan N, Mupparaju S, Hekmatyar SK, Hou H, Lariviere JP, Demidenko E, Gladstone DJ, Kauppinen RA, Swartz HM. Effect of hyperoxygenation on tissue pO2 and its effect on radiotherapeutic efficacy of orthotopic F98 gliomas. Int J Radiat Oncol Biol Phys 2010; 78:1193-200. [PMID: 20813466 DOI: 10.1016/j.ijrobp.2010.05.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 04/20/2010] [Accepted: 05/25/2010] [Indexed: 01/19/2023]
Abstract
PURPOSE Lack of methods for repeated assessment of tumor pO(2) limits the ability to test and optimize hypoxia-modifying procedures being developed for clinical applications. We report repeated measurements of orthotopic F98 tumor pO(2) and relate this to the effect of carbogen inhalation on tumor growth when combined with hypofractionated radiotherapy. METHODS AND MATERIALS Electron paramagnetic resonance (EPR) oximetry was used for repeated measurements of tumor and contralateral brain pO(2) in rats during 30% O(2) and carbogen inhalation for 5 consecutive days. The T(1)-enhanced volumes and diffusion coefficients of the tumors were assessed by magnetic resonance imaging (MRI). The tumors were irradiated with 9.3 Gy x 4 fractions in rats breathing 30% O(2) or carbogen to determine the effect on tumor growth. RESULTS The pretreatment F98 tumor pO(2) varied between 8 and 16 mmHg, while the contralateral brain had 41 to 45 mmHg pO(2) during repeated measurements. Carbogen breathing led to a significant increase in tumor and contralateral brain pO(2); however, this effect declined over days. Irradiation of the tumors in rats breathing carbogen resulted in a significant decrease in tumor growth and an increase in the diffusion coefficient measured by MRI. CONCLUSIONS The results provide quantitative measurements of the effect of carbogen inhalation on intracerebral tumor pO(2) and its effect on therapeutic outcome. Such direct repeated pO(2) measurements by EPR oximetry can provide temporal information that could be used to improve therapeutic outcome by scheduling doses at times of improved tumor oxygenation. EPR oximetry is currently being tested for clinical applications.
Collapse
Affiliation(s)
- Nadeem Khan
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sheehan J, Cifarelli CP, Dassoulas K, Olson C, Rainey J, Han S. Trans-sodium crocetinate enhancing survival and glioma response on magnetic resonance imaging to radiation and temozolomide. J Neurosurg 2010; 113:234-9. [DOI: 10.3171/2009.11.jns091314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Glioblastoma (GB) tumors typically exhibit regions of hypoxia. Hypoxic areas within the tumor can make tumor cells less sensitive to chemotherapy and radiation therapy. Trans-sodium crocetinate (TSC) has been shown to transiently increase oxygen to hypoxic brain tumors. The authors examined whether this improvement in intratumor oxygenation translates to a therapeutic advantage when delivering standard adjuvant treatment to GBs.
Methods
The authors used C6 glioma cells to create a hypoxic GB model. The C6 glioma cells were stereotactically injected into the rat brain to create a tumor. Fifteen days later, MR imaging was used to confirm the presence of a glioma. The animals were randomly assigned to 1 of 3 groups: 1) temozolomide alone (350 mg/m2/day for 5 days); 2) temozolomide and radiation therapy (8 Gy); or 3) TSC (100 μg/kg for 5 days), temozolomide, and radiation therapy. Animals were followed through survival studies, and tumor response was assessed on serial MR images obtained at 15-day intervals during a 2-month period.
Results
Mean survival (± SEM) of the temozolomide-alone and the temozolomide/radiotherapy groups was 23.2 ± 0.9 and 29.4 ± 4.4 days, respectively. Mean survival in the TSC/temozolomide/radiotherapy group was 39.8 ± 6 days, a statistically significant improvement compared with either of the other groups (p < 0.05).
Although tumor size was statistically equivalent in all groups at the time of treatment initiation, the addition of TSC to temozolomide and radiotherapy resulted in a statistically significant reduction in the MR imaging–documented mean tumor size at 30 days after tumor implantation. The mean tumor size in the TSC/temozolomide/radiotherapy group was 18.9 ± 6.6 mm2 compared with 42.1 ± 2.7 mm2 in the temozolomide-alone group (p = 0.047) and 35.8 ± 5.1 mm2 in the temozolomide/radiation group (p = 0.004).
Conclusions
In a hypoxic GB model, TSC improves the radiological and clinical effectiveness of temozolomide and radiation therapy. Further investigation of this oxygen diffusion enhancer as a radiosensitizer for hypoxic brain tumors seems warranted.
Collapse
|
37
|
Hou H, Abramovic Z, Lariviere JP, Sentjurc M, Swartz H, Khan N. Effect of a topical vasodilator on tumor hypoxia and tumor oxygen guided radiotherapy using EPR oximetry. Radiat Res 2010; 173:651-8. [PMID: 20426665 DOI: 10.1667/rr1947.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We sought to reduce tumor hypoxia by topical application of a vasodilator, benzyl nicotinate (BN), and investigated its effect on the growth of tumors irradiated at times when tumor pO(2) increased. EPR oximetry was used to follow the changes in the tissue pO(2) of subcutaneous radiation-induced fibrosarcoma (RIF-1) tumors during topical applications of 1.25-8% BN formulations for 5 consecutive days. The RIF-1 tumors were hypoxic with a tissue pO(2) of 4.6-7.0 mmHg. A significant increase in tumor pO(2) occurred 10-30 min after BN application. The formulation with the minimal BN concentration that produced a significant increase in tumor pO(2) was used for the radiation study. The tumors were irradiated (4 Gy x 5) at the time of the maximum increase in pO(2) observed with the 2.5% BN formulation. The tumors with an increase in pO(2) of greater than 2 mmHg from the baseline after application of BN on day 1 had a significant growth inhibition compared to the tumors with an increase in pO(2) of less than 2 mmHg. The results indicate that the irradiation of tumors at the time of an increase in pO(2) after the topical application of the 2.5% BN formulation led to a significant growth inhibition. EPR oximetry provided dynamic information on the changes in tumor pO(2), which could be used to identify responders and non-responders and schedule therapy during the experiments.
Collapse
Affiliation(s)
- Huagang Hou
- EPR Center for Viable Systems, Department of Diagnostic Radiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | |
Collapse
|
38
|
Khan N, Mupparaju SP, Hou H, Lariviere JP, Demidenko E, Swartz HM, Eastman A. Radiotherapy in conjunction with 7-hydroxystaurosporine: a multimodal approach with tumor pO2 as a potential marker of therapeutic response. Radiat Res 2009; 172:592-7. [PMID: 19883227 DOI: 10.1667/rr1781.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Checkpoint inhibitors potentially could be used to enhance cell killing by DNA-targeted therapeutic modalities such as radiotherapy. UCN-01 (7-hydroxystaurosporine) inhibits S and G2 checkpoint arrest in the cells of various malignant cell lines and has been investigated in combination with chemotherapy. However, little is known about its potential use in combination with radiotherapy. We report the effect of 20 Gy radiation given in conjunction with UCN-01 on the pO2 and growth of subcutaneous RIF-1 tumors. Multisite EPR oximetry was used for repeated, non-invasive tumor pO2 measurements. The effect of UCN-01 and/or 20 Gy on tumor pO2 and tumor volume was investigated to determine therapeutic outcomes. Untreated RIF-1 tumors were hypoxic with a tissue pO2 of 5-7 mmHg. Treatment with 20 Gy or UCN-01 significantly reduced tumor growth, and a modest increase in tumor pO2 was observed in tumors treated with 20 Gy. However, irradiation with 20 Gy 12 h after UCN-01 treatment resulted in a significant inhibition of tumor growth and a significant increase in tumor pO2 to 16-28 mmHg from day 1 onward compared to the control, UCN-01 or 20-Gy groups. Treatment with UCN-01 12 h after 20 Gy also led to a similar growth inhibition of the tumors and a similar increase in tumor pO2. The changes in tumor pO2 observed after the treatment correlated inversely with the tumor volume in the groups receiving UCN-01 with 20 Gy. This multimodal approach could be used to enhance the outcome of radiotherapy. Furthermore, tumor pO2 could be a potential marker of therapeutic response.
Collapse
Affiliation(s)
- Nadeem Khan
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Allard E, Huynh NT, Vessières A, Pigeon P, Jaouen G, Benoit JP, Passirani C. Dose effect activity of ferrocifen-loaded lipid nanocapsules on a 9L-glioma model. Int J Pharm 2009; 379:317-23. [PMID: 19467309 DOI: 10.1016/j.ijpharm.2009.05.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/27/2009] [Accepted: 05/18/2009] [Indexed: 11/16/2022]
Abstract
Ferrociphenol (Fc-diOH) is a new molecule belonging to the fast-growing family of organometallic anti-cancer drugs. In a previous study, we showed promising in vivo results obtained after the intratumoural subcutaneous administration of the new drug-carrier system Fc-diOH-LNCs on a 9L-glioma model. To further increase the dose of this lipophilic entity, we have created a series of prodrugs of Fc-diOH. The phenol groups were protected by either an acetyl (Fc-diAc) or by the long fatty-acid chain of a palmitate (Fc-diPal). LNCs loaded with Fc-diOH prodrugs have to be activated in situ by enzymatic hydrolysis. We show here that the protection of diphenol groups with palmitoyl results in the loss of Fc-diOH in vitro activity, probably due to a lack of in situ hydrolysis. On the contrary, protection with an acetate group does not affect the strong, in vitro, antiproliferative effect of ferrocifen-loaded-LNCs neither the reduction of tumour volume observed on an ectopic model, confirming that acetate is easily cleaved by cell hydrolases. Moreover, the cytostatic activity of Fc-diOH-LNCs is confirmed on an orthotopic glioma model since the difference in survival time between the infusion of 0.36 mg/rat Fc-diOH-LNCs and blank LNCs is statistically significant. By using LNCs or Labrafac to carry the drug, a dose-effect ranging from 0.005 to 2.5mg of Fc-diOH per animal can be evidenced.
Collapse
Affiliation(s)
- E Allard
- INSERM, U646, Angers, F-49100 France
| | | | | | | | | | | | | |
Collapse
|