1
|
MacManus MP, Prins E, Xie J, Akhurst T, Hicks RJ, Callahan J, Hegi-Johnson F, Hardcastle N, Everitt S. Dose-Response Relationships Between Radiation Exposure, Bone Marrow Function as Measured by 18F-Fluorothymidine Positron Emission Tomography, and Lymphocyte Counts During Chemoradiation for Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2025; 121:375-387. [PMID: 39233020 DOI: 10.1016/j.ijrobp.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/18/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE 18F-fluorothymidine (FLT) positron emission tomography (PET) enables sensitive imaging of bone marrow (BM) proliferation. Sequential FLT-PET/computed tomography scans before and during chemoradiation therapy (CRT) for non-small cell lung cancer were repurposed to investigate the dose-response effects of radiation on BM proliferation. METHODS AND MATERIALS Twenty-six non-small cell lung cancer patients underwent platinum-based CRT to 60 Gy in 30 fractions with FLT-PET/computed tomography scans at baseline, week 2 (20 Gy), and week 4 (40 Gy). FLT uptake in BM was isolated using Medical Image Merge software. Weeks 2 and 4 FLT-PET BM scans were fused with contemporaneous radiation isodose distributions. Relationships between radiation dose and FLT BM uptake (highest standardized uptake values within the volume and visual parameters) were analyzed using generalized linear and restricted cubic spline models. Percentage volumes of total BM without appreciable FLT uptake ("ablated") on weeks 2 and 4 FLT-PET scans were calculated by comparisons with baseline scans. RESULTS Thoracic FLT uptake was ablated in BM regions exposed to cumulative radiation doses ≥3 Gy by week 2. In all cases, BM FLT's highest standardized uptake values within the volume declined rapidly as the radiation dose increased. BM proliferation significantly decreased by >95% after ≥3 to 4 Gy at 2 weeks and ≥4 to 5 Gy at 4 weeks. The ablated BM volume increased from week 2 to week 4 as BM in the penumbra accumulated radiation dose. The median percentage of total BM ablated was 13.1% (range, 5.6%-20.3%) at 2 weeks and 15.7% (range, 9.2%-24.1%) at 4 weeks. Mean lymphocyte counts fell from a baseline of 2.01 × 109/L to 0.77 at week 2 and 0.60 at week 4. Lymphocyte decline strongly correlated with the percentage of total BM ablated by week 4 (y = -46 to 1.64x; R2adj = 0.34; P = .001). CONCLUSIONS BM ablation associated with low-dose radiation exposure during CRT correlated significantly with lower week 4 lymphocyte counts. BM is a potential organ at risk, and reducing the BM volume exposed to ≥3 Gy may help preserve lymphocytes, which is essential for effective adjuvant immunotherapy.
Collapse
Affiliation(s)
- Michael P MacManus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Elizabeth Prins
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jing Xie
- Department of Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tim Akhurst
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Rodney J Hicks
- Melbourne Theranostic Innovation Centre, Melbourne, Victoria, Australia
| | - Jason Callahan
- Melbourne Theranostic Innovation Centre, Melbourne, Victoria, Australia
| | - Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nicholas Hardcastle
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia; Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sarah Everitt
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Katib Y, Tisseverasinghe S, Gerard IJ, Royal-Preyra B, Chaddad A, Sasson T, Bahoric B, Roncarolo F, Niazi T. Evaluating the Effects of Prostate Radiotherapy Intensified with Pelvic Nodal Radiotherapy and Androgen Deprivation Therapy on Myelosuppression: Single-Institution Experience. Curr Oncol 2024; 31:5439-5451. [PMID: 39330030 PMCID: PMC11431330 DOI: 10.3390/curroncol31090402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) management commonly involves the utilization of prostate radiotherapy (PRT), pelvic nodal radiotherapy (PNRT), and androgen deprivation therapy (ADT). However, the potential association of these treatment modalities with bone marrow (BM) suppression remains inadequately reported in the existing literature. This study is designed to comprehensively evaluate the risk of myelosuppression associated with PRT, shedding light on an aspect that has been underrepresented in prior research. MATERIALS AND METHODS We conducted a retrospective analysis of 600 patients with prostate cancer (PCa) treated with prostate radiotherapy (PRT) at a single oncology center between 2007 and 2017. Patients were categorized into four cohorts: PRT alone (n = 149), PRT + ADT, (n = 91), PRT + PNRT (n = 39), and PRT + PNRT + ADT (n = 321). To assess the risk of myelosuppression, we scrutinized specific blood parameters, such as hemoglobin (HGB), white blood cells (WBCs), neutrophils (NEUT), lymphocytes (LYM), and platelets (PLT) at baseline, mid-treatment (mRT), immediately post-RT (pRT), 1 month post-RT (1M-pRT), and 1 year post-RT (1Y-pRT). The inter-cohort statistical significance was evaluated with further stratification based on the utilized RT technique {3D conformal radiotherapy (3D-CRT), and intensity-modulated radiation therapy (IMRT)}. RESULTS Significant statistical differences at baseline were observed in HGB and LYM values among all cohorts (p < 0.05). Patients in the PRT + PNRT + ADT cohort had significantly lower HGB at baseline and 1M-pRT. In patients undergoing ADT, BMS had a significant impact at 1M-pRT {odds ratio (OR) 9.1; 95% Confidence Interval (CI) 4.8-17.1} and at 1Y-pRT (OR 2.84; CI 1.14-7.08). The use of 3D-CRT was linked to reduced HGB levels in the PRT + PNRT + ADT group at 1 month pRT (p = 0.015). Similarly, PNRT significantly impacted BMS at 1M-pRT (OR 6.7; CI 2.6-17.2). PNRT increased the odds of decreased WBC counts at 1Y-pRT (OR 6.83; CI: 1.02-45.82). Treatment with any RT techniques (3D-CRT or IMRT), particularly in the PRT + PNRT and PRT + PNRT + ADT groups, significantly increased the odds of low LYM counts at all time points except immediately pRT (p < 0.05). Furthermore, NEUT counts were considerably lower at 1M-pRT (p < 0.05) in the PRT + PNRT + ADT group. PLT counts were significantly decreased by PRT + PNRT + ADT at mRT (OR 2.57; 95% CI: 1.42-4.66) but were not significantly impacted by the RT technique. CONCLUSIONS Treatment with PRT, ADT, PNRT, and 3D-CRT is associated with BMS. Despite this statistically significant risk, no patient required additional interventions to manage the outcome. While its clinical impact appears limited, its importance cannot be underestimated in the context of increased integration of novel systemic agents with myelosuppressive properties. Longer follow-up should be considered in future studies.
Collapse
Affiliation(s)
- Yousef Katib
- College of Medicine, Taibah University, Madinah 42353, Saudi Arabia
- Department of Radiation Oncology, McGill University Health Centre, Montreal, QC H3A 3J1, Canada; (S.T.); (I.J.G.); (B.R.-P.)
| | - Steven Tisseverasinghe
- Department of Radiation Oncology, McGill University Health Centre, Montreal, QC H3A 3J1, Canada; (S.T.); (I.J.G.); (B.R.-P.)
| | - Ian J. Gerard
- Department of Radiation Oncology, McGill University Health Centre, Montreal, QC H3A 3J1, Canada; (S.T.); (I.J.G.); (B.R.-P.)
| | - Benjamin Royal-Preyra
- Department of Radiation Oncology, McGill University Health Centre, Montreal, QC H3A 3J1, Canada; (S.T.); (I.J.G.); (B.R.-P.)
| | - Ahmad Chaddad
- School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China;
| | - Tania Sasson
- Faculty of Medicine, McGill University, Montreal, QC H3A 0G4, Canada
- Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (T.S.); (B.B.)
| | - Boris Bahoric
- Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (T.S.); (B.B.)
| | - Federico Roncarolo
- School of Public Health, Université de Montréal, Montreal, QC H3N 1X9, Canada;
| | - Tamim Niazi
- Department of Oncology, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada; (T.S.); (B.B.)
| |
Collapse
|
3
|
Farhadi F, Rajagopal JR, Veziroglu EM, Abdollahi H, Shiri I, Nikpanah M, Morris MA, Zaidi H, Rahmim A, Saboury B. Multi-Scale Temporal Imaging: From Micro- and Meso- to Macro-scale-time Nuclear Medicine. PET Clin 2023; 18:135-148. [DOI: 10.1016/j.cpet.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Campbell BA, Callahan J, Cole-Sinclair M, MacManus M, Hofman MS. 18F-Fluorothymidine PET for Functional Response Assessment Following Radiation Therapy for Extramedullary Hematopoiesis. Clin Nucl Med 2021; 46:e454-e457. [PMID: 33661206 DOI: 10.1097/rlu.0000000000003566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT As a marker of cellular proliferation, 18F-fluorothymidine (FLT) PET can detect the distribution of proliferating hematopoiesis and has an emerging role in the investigation of hematopoietic disorders. These images demonstrate the novel utility of 18F-FLT PET for imaging sites of extramedullary hematopoiesis (EMH) in a patient with Chuvash-type polycythemia and suggest a role for 18F-FLT PET in response assessment following radiotherapy. Further, the discordant response observed in the irradiated marrow and sites of EMH is a unique discovery, possibly suggesting the influence of the microenvironment favoring more rapid recovery of proliferative function within EMH sites.
Collapse
Affiliation(s)
| | | | - Merrole Cole-Sinclair
- Department of Haematology, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
| | | | | |
Collapse
|
5
|
Alwadani B, Dall'Angelo S, Fleming IN. Clinical value of 3'-deoxy-3'-[ 18F]fluorothymidine-positron emission tomography for diagnosis, staging and assessing therapy response in lung cancer. Insights Imaging 2021; 12:90. [PMID: 34213667 PMCID: PMC8253862 DOI: 10.1186/s13244-021-01026-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/02/2021] [Indexed: 12/09/2022] Open
Abstract
Lung cancer has the highest mortality rate of any tumour type. The main driver of lung tumour growth and development is uncontrolled cellular proliferation. Poor patient outcomes are partly the result of the limited range of effective anti-cancer therapies available and partly due to the limited accuracy of biomarkers to report on cell proliferation rates in patients. Accordingly, accurate methods of diagnosing, staging and assessing response to therapy are crucial to improve patient outcomes. One effective way of assessing cell proliferation is to employ non-invasive evaluation using 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) positron emission tomography [18F]FLT-PET. [18F]FLT, unlike the most commonly used PET tracer [18F]fluorodeoxyglucose ([18F]FDG), can specifically report on cell proliferation and does not accumulate in inflammatory cells. Therefore, this radiotracer could exhibit higher specificity in diagnosis and staging, along with more accurate monitoring of therapy response at early stages in the treatment cycle. This review summarises and evaluates published studies on the clinical use of [18F]FLT to diagnose, stage and assess response to therapy in lung cancer.
Collapse
Affiliation(s)
- Bandar Alwadani
- Diagnostic Radiology Department, College of Applied Medical Sciences, Jazan University, Al Maarefah Rd, POB 114, Jazan, 45142, Saudi Arabia.,Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Sergio Dall'Angelo
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Ian N Fleming
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
6
|
Christensen TN, Langer SW, Persson G, Larsen KR, Amtoft AG, Keller SH, Kjaer A, Fischer BM. Impact of [ 18F]FDG-PET and [ 18F]FLT-PET-Parameters in Patients with Suspected Relapse of Irradiated Lung Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020279. [PMID: 33670242 PMCID: PMC7916960 DOI: 10.3390/diagnostics11020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 02/07/2021] [Indexed: 12/25/2022] Open
Abstract
Radiation-induced changes may cause a non-malignant high 2-deoxy-2-[18F]fluoro-d-glucose (FDG)-uptake. The 3′-deoxy-3′-[18F]fluorothymidine (FLT)-PET/CT performs better in the differential diagnosis of inflammatory changes and lung lesions with a higher specificity than FDG-PET/CT. We investigated the association between post-radiotherapy FDG-PET-parameters, FLT-PET-parameters, and outcome. Sixty-one patients suspected for having a relapse after definitive radiotherapy for lung cancer were included. All the patients had FDG-PET/CT and FLT-PET/CT. FDG-PET- and FLT-PET-parameters were collected from within the irradiated high-dose volume (HDV) and from recurrent pulmonary lesions. For associations between PET-parameters and relapse status, respectively, the overall survival was analyzed. Thirty patients had a relapse, of these, 16 patients had a relapse within the HDV. FDG-SUVmax and FLT-SUVmax were higher in relapsed HDVs compared with non-relapsed HDVs (median FDG-SUVmax: 12.8 vs. 4.2; p < 0.001; median FLT-SUVmax 3.9 vs. 2.2; p < 0.001). A relapse within HDV had higher FDG-SUVpeak (median FDG-SUVpeak: 7.1 vs. 3.5; p = 0.014) and was larger (median metabolic tumor volume (MTV50%): 2.5 vs. 0.7; 0.014) than the relapsed lesions outside of HDV. The proliferative tumor volume (PTV50%) was prognostic for the overall survival (hazard ratio: 1.07 pr cm3 [1.01–1.13]; p = 0.014) in the univariate analysis, but not in the multivariate analysis. FDG-SUVmax and FLT-SUVmax may be helpful tools for differentiating the relapse from radiation-induced changes, however, they should not be used definitively for relapse detection.
Collapse
Affiliation(s)
- Tine N. Christensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen Ø, Denmark; (A.G.A.); (S.H.K.); (A.K.); (B.M.F.)
- Cluster for Molecular Imaging, University of Copenhagen, 2200 Copenhagen N, Denmark
- Correspondence:
| | - Seppo W. Langer
- Department of Oncology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen Ø, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
| | - Gitte Persson
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
- Department of Oncology, Herlev-Gentofte Hospital, University of Copenhagen, 2730 Herlev, Denmark
| | - Klaus Richter Larsen
- Department of Pulmonary Medicine, Bispebjerg University Hospital, 2400 Copenhagen NV, Denmark;
| | - Annemarie G. Amtoft
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen Ø, Denmark; (A.G.A.); (S.H.K.); (A.K.); (B.M.F.)
| | - Sune H. Keller
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen Ø, Denmark; (A.G.A.); (S.H.K.); (A.K.); (B.M.F.)
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen Ø, Denmark; (A.G.A.); (S.H.K.); (A.K.); (B.M.F.)
- Cluster for Molecular Imaging, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Barbara Malene Fischer
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen Ø, Denmark; (A.G.A.); (S.H.K.); (A.K.); (B.M.F.)
- Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen Ø, Denmark;
- The PET Centre, School of Biomedical Engineering and Imaging Science, King’s College London, London SE1 7EH, UK
| |
Collapse
|
7
|
Yang WC, Hsu FM, Yang PC. Precision radiotherapy for non-small cell lung cancer. J Biomed Sci 2020; 27:82. [PMID: 32693792 PMCID: PMC7374898 DOI: 10.1186/s12929-020-00676-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Precision medicine is becoming the standard of care in anti-cancer treatment. The personalized precision management of cancer patients highly relies on the improvement of new technology in next generation sequencing and high-throughput big data processing for biological and radiographic information. Systemic precision cancer therapy has been developed for years. However, the role of precision medicine in radiotherapy has not yet been fully implemented. Emerging evidence has shown that precision radiotherapy for cancer patients is possible with recent advances in new radiotherapy technologies, panomics, radiomics and dosiomics. This review focused on the role of precision radiotherapy in non-small cell lung cancer and demonstrated the current landscape.
Collapse
Affiliation(s)
- Wen-Chi Yang
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, Taiwan.,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, No. 7, Chung-Shan South Rd, Taipei, Taiwan. .,Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Pan-Chyr Yang
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan. .,Department of Internal Medicine, National Taiwan University Hospital, No.1 Sec 1, Jen-Ai Rd, Taipei, 100, Taiwan.
| |
Collapse
|
8
|
Beheshti M, Manafi-Farid R, Rezaee A, Langsteger W. PET/CT and PET/MRI, Normal Variations, and Artifacts. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Filice A, Casali M, Ciammella P, Galaverni M, Fioroni F, Iotti C, Versari A. Radiotherapy Planning and Molecular Imaging in Lung Cancer. Curr Radiopharm 2020; 13:204-217. [PMID: 32186275 PMCID: PMC8206193 DOI: 10.2174/1874471013666200318144154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/11/2019] [Accepted: 11/11/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In patients suitable for radical chemoradiotherapy for lung cancer, 18F-FDGPET/ CT is a proposed management to improve the accuracy of high dose radiotherapy. However, there is a high rate of locoregional failure in patients with locally advanced non-small cell lung cancer (NSCLC), probably due to the fact that standard dosing may not be effective in all patients. The aim of the present review was to address some criticisms associated with the radiotherapy image-guided in NSCLC. MATERIALS AND METHODS A systematic literature search was conducted. Only published articles that met the following criteria were included: articles, only original papers, radiopharmaceutical ([18F]FDG and any tracer other than [18F]FDG), target, only specific for lung cancer radiotherapy planning, and experimental design (eventually "in vitro" studies were excluded). Peer-reviewed indexed journals, regardless of publication status (published, ahead of print, in press, etc.) were included. Reviews, case reports, abstracts, editorials, poster presentations, and publications in languages other than English were excluded. The decision to include or exclude an article was made by consensus and any disagreement was resolved through discussion. RESULTS Hundred eligible full-text articles were assessed. Diverse information is now available in the literature about the role of FDG and new alternative radiopharmaceuticals for the planning of radiotherapy in NSCLC. In particular, the role of alternative technologies for the segmentation of FDG uptake is essential, although indeterminate for RT planning. The pros and cons of the available techniques have been extensively reported. CONCLUSION PET/CT has a central place in the planning of radiotherapy for lung cancer and, in particular, for NSCLC assuming a substantial role in the delineation of tumor volume. The development of new radiopharmaceuticals can help overcome the problems related to the disadvantage of FDG to accumulate also in activated inflammatory cells, thus improving tumor characterization and providing new prognostic biomarkers.
Collapse
Affiliation(s)
- Angelina Filice
- Address correspondence to this author at the Nuclear Medicine Unit, Azienda Unità Sanitaria Locale, Istituto di Ricovero e Cura a Carattere Scientifico, Reggio Emilia, Italy; E-mail:
| | | | | | | | | | | | | |
Collapse
|
10
|
Minamimoto R, Takeda Y, Hotta M, Toyohara J, Nakajima K, Naka G, Sugiyama H. 18F-FDG and 11C-4DST PET/CT for evaluating response to platinum-based doublet chemotherapy in advanced non-small cell lung cancer: a prospective study. EJNMMI Res 2019; 9:4. [PMID: 30649637 PMCID: PMC6335230 DOI: 10.1186/s13550-019-0472-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/02/2019] [Indexed: 12/16/2022] Open
Abstract
Background 4′-[Methyl-11C] thiothymidine (4DST) PET/CT provides DNA synthesis imaging, which represented a higher correlation with the proliferation in advanced non-small cell lung cancer (NSCLC) than that from imaging with FDG. The aim of this prospective study was to evaluate the potential of 4DST in early therapy monitoring for advanced NSCLC, and to compare the results with those from CT and FDG PET/CT. Results Patients who had been pathologically diagnosed with advanced NSCLC and were scheduled to receive platinum-doublet chemotherapy (PT-DC) were eligible. PET/CT imaging with 4DST and with FDG, and CT were performed at baseline and after 2 cycles of PT-DC (interim). Patients were evaluated semi-quantitatively after the 2 cycles of PT-DC using several PET parameters, response evaluation criteria in solid tumors (RECIST) 1.1 based on CT measurements, European Organization for Research and Treatment of Cancer (EORTC) criteria and PET Response Criteria in Solid Tumors (PERCIST) 1.0 based on PET/CT measurements. Baseline measurement data and metabolic response were compared between patients with progression-free survival (PFS) > 4 months and ≤ 4 months, and PFS and overall survival (OS) were compared between patients with and without metabolic response measured with each of the different parameters, using Kaplan-Meier statistics and log-rank testing. A total of 22 patients were included in this study. For predicting PFS > 4 months and ≤ 4 months, metabolic tumor volume (MTV) of baseline 4DST showed the highest area under the curve (0.73), positive predictive value (80.0%), negative predictive value (66.7%), and accuracy (72.7%) among baseline measurement data and metabolic responses from 4DST PET/CT, FDG PET/CT, and CT. Kaplan-Meier curves and log-rank tests for PFS with MTV of baseline FDG and baseline 4DST, and for OS with MTV of baseline FDG and baseline TLG, and MTV of baseline 4DST revealed significant results. Conclusions MTV of baseline 4DST PET/CT along with MTV of baseline FDG PET/CT represent promising predictors of PFS, and MTV of baseline 4DST PET/CT along with MTV and TLG of baseline FDG PET/CT are possible predictors of OS in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Ryogo Minamimoto
- Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan.
| | - Yuichiro Takeda
- Department of Respiratory Medicine, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan
| | - Masatoshi Hotta
- Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan
| | - Jun Toyohara
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, 1-1 Naka-cho, Itabashi-ku, Tokyo, 173-0022, Japan
| | - Kazuhiko Nakajima
- Division of Nuclear Medicine, Department of Radiology, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan
| | - Go Naka
- Department of Respiratory Medicine, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan
| | - Haruhito Sugiyama
- Department of Respiratory Medicine, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjyuku-ku, Tokyo, 162-8655, Japan
| |
Collapse
|
11
|
Li C, Zhang X, Pang L, Huang Y, Gao Y, Sun X, Yu J, Meng X. Spatial Concordance of Tumor Proliferation and Accelerated Repopulation from Pathologic Images to 3′-[18F]Fluoro-3′-Deoxythymidine PET Images: a Basic Study Guided for PET-Based Radiotherapy Dose Painting. Mol Imaging Biol 2018; 21:713-721. [DOI: 10.1007/s11307-018-1292-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
12
|
Rowe JA, Morandi F, Osborne DR, Wall JS, Kennel SJ, Reed RB, LeBlanc AK. Relative skeletal distribution of proliferating marrow in the adult dog determined using 3'-deoxy-3'-[ 18 F]fluorothymidine. Anat Histol Embryol 2018; 48:46-52. [PMID: 30353574 PMCID: PMC6587773 DOI: 10.1111/ahe.12410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/16/2018] [Accepted: 10/01/2018] [Indexed: 11/27/2022]
Abstract
3'-deoxy-3'-[18 F]fluorothymidine (18 FLT) is a radiopharmaceutical tracer used with positron emission tomography (PET), often in combination with computed tomography (CT), to image DNA synthesis, and thus, cellular proliferation. Characteristic accumulation of the tracer within haematopoietic bone marrow provides a noninvasive means to assess marrow activity and distribution throughout the living animal. The present study utilizes three-dimensional analysis of 18 FLT-PET/CT scans to quantify the relative skeletal distribution of active marrow by anatomic site in the dog. Scans were performed on six healthy, adult (3-6 years of age), mixed-breed dogs using a commercially available PET/CT scanner consisting of a 64-slice helical CT scanner combined with an integrated four ring, high-resolution LSO PET scanner. Regions of interest encompassing 11 separate skeletal regions (skull, cervical vertebral column, thoracic vertebral column, lumbar vertebral column, sacrum, ribs, sternum, scapulae, proximal humeri, ossa coxarum, and proximal femora) were manually drawn based on CT images and thresholded by standardized uptake value to delineate bone marrow activity. Activity within each skeletal region was then divided by the total skeletal activity to derive the per cent of overall marrow activity within an individual site. The majority of proliferative marrow was located within the vertebral column. Of the sites traditionally accessed clinically for marrow sampling, the proximal humerus contained the largest percentage, followed by the ossa coxarum, proximal femur, and sternum, respectively. This information may be used to guide selection of traditional marrow sampling sites as well as inform efforts to spare important sites of haematopoiesis in radiation therapy planning.
Collapse
Affiliation(s)
- Joshua A Rowe
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - Federica Morandi
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - Dustin R Osborne
- Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee
| | - Jonathan S Wall
- Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee
| | - Stephen J Kennel
- Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee
| | - Robert B Reed
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee
| | - Amy K LeBlanc
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee.,Graduate School of Medicine, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
13
|
Zhu T, Das S, Wong TZ. Integration of PET/MR Hybrid Imaging into Radiation Therapy Treatment. Magn Reson Imaging Clin N Am 2017; 25:377-430. [PMID: 28390536 DOI: 10.1016/j.mric.2017.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hybrid PET/MR imaging is in early development for treatment planning. This article briefly reviews research and clinical applications of PET/MR imaging in radiation oncology. With improvements in workflow, more specific tracers, and fast and robust acquisition protocols, PET/MR imaging will play an increasingly important role in better target delineation for treatment planning and have clear advantages in the evaluation of tumor response and in a better understanding of tumor heterogeneity. With advances in treatment delivery and the potential of integrating PET/MR imaging with research on radiomics for radiation oncology, quantitative and physiologic information could lead to more precise and personalized RT.
Collapse
Affiliation(s)
- Tong Zhu
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599, USA
| | - Shiva Das
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599, USA
| | - Terence Z Wong
- Department of Radiology, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599, USA.
| |
Collapse
|
14
|
Warren S, Hurt CN, Crosby T, Partridge M, Hawkins MA. Potential of Proton Therapy to Reduce Acute Hematologic Toxicity in Concurrent Chemoradiation Therapy for Esophageal Cancer. Int J Radiat Oncol Biol Phys 2017; 99:729-737. [PMID: 29280467 PMCID: PMC5612280 DOI: 10.1016/j.ijrobp.2017.07.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 06/19/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022]
Abstract
PURPOSE Radiation therapy dose escalation using a simultaneous integrated boost (SIB) is predicted to improve local tumor control in esophageal cancer; however, any increase in acute hematologic toxicity (HT) could limit the predicted improvement in patient outcomes. Proton therapy has been shown to significantly reduce HT in lung cancer patients receiving concurrent chemotherapy. Therefore, we investigated the potential of bone marrow sparing with protons for esophageal tumors. METHODS AND MATERIALS Twenty-one patients with mid-esophageal cancer who had undergone conformal radiation therapy (3D50) were selected. Two surrogates for bone marrow were created by outlining the thoracic bones (bone) and only the body of the thoracic vertebrae (TV) in Eclipse. The percentage of overlap of the TV with the planning treatment volume was recorded for each patient. Additional plans were created retrospectively, including a volumetric modulated arc therapy (VMAT) plan with the same dose as for 3D50; a VMAT SIB plan with a dose prescription of 62.5 Gy to the high-risk subregion within the planning treatment volume; a reoptimized TV-sparing VMAT plan; and a proton therapy plan with the same SIB dose prescription. The bone and TV dose metrics were recorded and compared across all plans and variations with respect to PTV and percentage of overlap for each patient. RESULTS The 3D50 plans showed the highest bone mean dose and TV percentage of volume receiving ≥30 Gy (V30Gy) for each patient. The VMAT plans irradiated a larger bone V10Gy than did the 3D50 plans. The reoptimized VMAT62.5 VT plans showed improved sparing of the TV volume, but only the proton plans showed significant sparing for bone V10Gy and bone mean dose, especially for patients with a larger PTV. CONCLUSIONS The results of the present study have shown that proton therapy can reduced bone marrow toxicity.
Collapse
Affiliation(s)
- Samantha Warren
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, United Kingdom
| | | | - Thomas Crosby
- Velindre Cancer Centre, Velindre Hospital, Cardiff, United Kingdom
| | - Mike Partridge
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, United Kingdom
| | - Maria A Hawkins
- Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, Gray Laboratories, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
15
|
Everitt S, Ball D, Hicks RJ, Callahan J, Plumridge N, Trinh J, Herschtal A, Kron T, Mac Manus M. Prospective Study of Serial Imaging Comparing Fluorodeoxyglucose Positron Emission Tomography (PET) and Fluorothymidine PET During Radical Chemoradiation for Non-Small Cell Lung Cancer: Reduction of Detectable Proliferation Associated With Worse Survival. Int J Radiat Oncol Biol Phys 2017; 99:947-955. [PMID: 29063854 DOI: 10.1016/j.ijrobp.2017.07.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the associations between interim tumor responses on 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and 18F-fluorothymidine (18F-FLT) PET and patient outcomes, especially progression-free survival (PFS) and overall survival (OS), in non-small cell lung cancer (NSCLC) patients. METHODS AND MATERIALS Patients with FDG-PET/computed tomography stage I-III NSCLC were prescribed concurrent chemotherapy and radiation therapy (60 Gy in 30 fractions). Scans were acquired at baseline (FDG-PET/computed tomography [FDGBL] for radiation therapy planning and FLT-PET [FLTBL]), week 2 (FDGwk2 and FLTwk2), and week 4 (FDGwk4 and FLTwk4) of chemoradiation therapy. Tumor responses were categorized as complete or partial responses or stable or progressive disease (SD, PD) using European Organization for Research and Treatment of Cancer criteria. Associations between response, OS, and PFS were analyzed with univariate Cox regressions and plotted using Kaplan-Meier curves. RESULTS Between 2009 and 2013, 60 patients were recruited. Thirty-seven (62%) were male, and the median age was 66 years (range, 31-86 years). Two-year OS and PFS were 0.51 and 0.26, respectively. Unexpectedly, SD on FLTwk2 compared with complete response/partial response was associated with longer OS (hazard ratio [95% confidence interval] 2.01 [0.87-4.65], P=.082) and PFS (2.01 [0.92-4.36], P=.061). Weeks 2 and 4 FDG PET/CT were not significantly associated with survival. Study scans provided additional information to FDGBL in 21 patients (35%). Distant metastases detected in 3 patients on FLTBL and in 2 patients on FDG/FLTwk2 changed treatment intent from curative to palliative. Locoregional progression during radiation therapy was observed in 5 (8%) patients, prompting larger radiation therapy fields. CONCLUSIONS Stable uptake of 18F-FLT at week 2 was paradoxically associated with longer OS and PFS. This suggests that suppression of tumor cell proliferation may protect against radiation-induced tumor cell killing. Baseline FLT, FLTwk2, and FDGwk2 detected rapid distant and locoregional progression in 10 patients (17%), prompting changes in management.
Collapse
Affiliation(s)
- Sarah Everitt
- Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia.
| | - David Ball
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Rodney J Hicks
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jason Callahan
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia; Centre for Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nikki Plumridge
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jenny Trinh
- Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Alan Herschtal
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tomas Kron
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Victoria, Australia; Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael Mac Manus
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia; Division of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Goldklang MP, Tekabe Y, Zelonina T, Trischler J, Xiao R, Stearns K, Romanov A, Muzio V, Shiomi T, Johnson LL, D'Armiento JM. Single-Photon Emission Computed Tomography/Computed Tomography Imaging in a Rabbit Model of Emphysema Reveals Ongoing Apoptosis In Vivo. Am J Respir Cell Mol Biol 2017; 55:848-857. [PMID: 27483341 DOI: 10.1165/rcmb.2015-0407oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Evaluation of lung disease is limited by the inability to visualize ongoing pathological processes. Molecular imaging that targets cellular processes related to disease pathogenesis has the potential to assess disease activity over time to allow intervention before lung destruction. Because apoptosis is a critical component of lung damage in emphysema, a functional imaging approach was taken to determine if targeting apoptosis in a smoke exposure model would allow the quantification of early lung damage in vivo. Rabbits were exposed to cigarette smoke for 4 or 16 weeks and underwent single-photon emission computed tomography/computed tomography scanning using technetium-99m-rhAnnexin V-128. Imaging results were correlated with ex vivo tissue analysis to validate the presence of lung destruction and apoptosis. Lung computed tomography scans of long-term smoke-exposed rabbits exhibit anatomical similarities to human emphysema, with increased lung volumes compared with controls. Morphometry on lung tissue confirmed increased mean linear intercept and destructive index at 16 weeks of smoke exposure and compliance measurements documented physiological changes of emphysema. Tissue and lavage analysis displayed the hallmarks of smoke exposure, including increased tissue cellularity and protease activity. Technetium-99m-rhAnnexin V-128 single-photon emission computed tomography signal was increased after smoke exposure at 4 and 16 weeks, with confirmation of increased apoptosis through terminal deoxynucleotidyl transferase dUTP nick end labeling staining and increased tissue neutral sphingomyelinase activity in the tissue. These studies not only describe a novel emphysema model for use with future therapeutic applications, but, most importantly, also characterize a promising imaging modality that identifies ongoing destructive cellular processes within the lung.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Valeria Muzio
- 4 Preclinical Pharmacology R&D, Advanced Accelerator Applications (Italy), Saint-Genis-Pouilly, Italy
| | | | | | - Jeanine M D'Armiento
- 1 Department of Anesthesiology.,2 Department of Medicine.,5 Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, New York; and
| |
Collapse
|
17
|
Sequential Serum Let-7 Is a Novel Biomarker to Predict Accelerated Reproliferation During Fractional Radiotherapy in Lung Cancer. Clin Lung Cancer 2016; 17:e95-e101. [DOI: 10.1016/j.cllc.2016.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
|
18
|
Ghaye B, Wanet M, El Hajjam M. Imaging after radiation therapy of thoracic tumors. Diagn Interv Imaging 2016; 97:1037-1052. [PMID: 27567554 DOI: 10.1016/j.diii.2016.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/02/2016] [Accepted: 06/02/2016] [Indexed: 12/25/2022]
Abstract
Radiation-induced lung disease (RILD) is frequent after therapeutic irradiation of thoracic malignancies. Many technique-, treatment-, tumor- and patient-related factors influence the degree of injury sustained by the lung after irradiation. Based on the time interval after the completion of the treatment RILD presents as early and late features characterized by inflammatory and fibrotic changes, respectively. They are usually confined to the radiation port. Though the typical pattern of RILD is easily recognized after conventional two-dimensional radiation therapy (RT), RILD may present with atypical patterns after more recent types of three- or four-dimensional RT treatment. Three atypical patterns are reported: the modified conventional, the mass-like and the scar-like patterns. Knowledge of the various features and patterns of RILD is important for correct diagnosis and appropriate treatment. RILD should be differentiated from recurrent tumoral disease, infection and radiation-induced tumors. Due to RILD, the follow-up after RT may be difficult as response evaluation criteria in solid tumours (RECIST) criteria may be unreliable to assess tumor control particularly after stereotactic ablation RT (SABR). Long-term follow-up should be based on clinical examination and morphological and/or functional investigations including CT, PET-CT, pulmonary functional tests, MRI and PET-MRI.
Collapse
Affiliation(s)
- B Ghaye
- Service de radiologie, secteur cardiothoracique, cliniques universitaires St-Luc, université catholique de Louvain, avenue Hippocrate 10, 1200 Bruxelles, Belgium.
| | - M Wanet
- Service de radiothérapie, oncologique, CHU UCL Namur, site clinique et maternité Sainte-Elisabeth, 5000 Namur, Belgium
| | - M El Hajjam
- Service de radiologie, hôpital Ambroise-Paré, 92100 Boulogne-Billancourt, France
| |
Collapse
|
19
|
Abstract
Although many PET tracers are in use, FDG still is the most widely used in clinical oncology practice. FDG therefore deserves an in-depth discussion, which is even more interesting because of the huge increase in the molecular biology of glucose metabolism. Obviously, other tracers are of increasing importance as well, and these will be discussed in short.
Collapse
Affiliation(s)
- Dirk De Ruysscher
- Radiation Oncology, University Hospitals Leuven/KU Leuven, Louvain, Belgium.
- Maastricht University Medical Center, GROW, Maastro clinic, Louvain, Belgium.
| | - Karin Haustermans
- Radiation Oncology, University Hospitals Leuven/KU Leuven, Louvain, Belgium
| | - Daniela Thorwarth
- Section for Biomedical Physics, University Hospital for Radiation Oncology Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Waissi W, Noël G, Giraud P. Surveillance après radiothérapie stéréotaxique des tumeurs pulmonaires. Cancer Radiother 2015; 19:566-72. [DOI: 10.1016/j.canrad.2015.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/11/2015] [Indexed: 12/25/2022]
|
21
|
Jeraj R, Bradshaw T, Simončič U. Molecular Imaging to Plan Radiotherapy and Evaluate Its Efficacy. J Nucl Med 2015; 56:1752-65. [PMID: 26383148 DOI: 10.2967/jnumed.114.141424] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 09/08/2015] [Indexed: 12/25/2022] Open
Abstract
Molecular imaging plays a central role in the management of radiation oncology patients. Specific uses of imaging, particularly to plan radiotherapy and assess its efficacy, require an additional level of reproducibility and image quality beyond what is required for diagnostic imaging. Specific requirements include proper patient preparation, adequate technologist training, careful imaging protocol design, reliable scanner technology, reproducible software algorithms, and reliable data analysis methods. As uncertainty in target definition is arguably the greatest challenge facing radiation oncology, the greatest impact that molecular imaging can have may be in the reduction of interobserver variability in target volume delineation and in providing greater conformity between target volume boundaries and true tumor boundaries. Several automatic and semiautomatic contouring methods based on molecular imaging are available but still need sufficient validation to be widely adopted. Biologically conformal radiotherapy (dose painting) based on molecular imaging-assessed tumor heterogeneity is being investigated, but many challenges remain to fully exploring its potential. Molecular imaging also plays increasingly important roles in both early (during treatment) and late (after treatment) response assessment as both a predictive and a prognostic tool. Because of potentially confounding effects of radiation-induced inflammation, treatment response assessment requires careful interpretation. Although molecular imaging is already strongly embedded in radiotherapy, the path to widespread and all-inclusive use is still long. The lack of solid clinical evidence is the main impediment to broader use. Recommendations for practicing physicians are still rather scarce. (18)F-FDG PET/CT remains the main molecular imaging modality in radiation oncology applications. Although other molecular imaging options (e.g., proliferation imaging) are becoming more common, their widespread use is limited by lack of tracer availability and inadequate reimbursement models. With the increasing presence of molecular imaging in radiation oncology, special emphasis should be placed on adequate training of radiation oncology personnel to understand the potential, and particularly the limitations, of quantitative molecular imaging applications. Similarly, radiologists and nuclear medicine specialists should be sensitized to the special need of the radiation oncologist in terms of quantification and reproducibility. Furthermore, strong collaboration between radiation oncology, nuclear medicine/radiology, and medical physics teams is necessary, as optimal and safe use of molecular imaging can be ensured only within appropriate interdisciplinary teams.
Collapse
Affiliation(s)
- Robert Jeraj
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; and Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Tyler Bradshaw
- School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; and
| | - Urban Simončič
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
22
|
Campbell BA, Callahan J, Bressel M, Simoens N, Everitt S, Hofman MS, Hicks RJ, Burbury K, MacManus M. Distribution Atlas of Proliferating Bone Marrow in Non-Small Cell Lung Cancer Patients Measured by FLT-PET/CT Imaging, With Potential Applicability in Radiation Therapy Planning. Int J Radiat Oncol Biol Phys 2015; 92:1035-1043. [PMID: 26194679 DOI: 10.1016/j.ijrobp.2015.04.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 02/03/2023]
Abstract
PURPOSE Proliferating bone marrow is exquisitely sensitive to ionizing radiation. Knowledge of its distribution could improve radiation therapy planning to minimize unnecessary marrow exposure and avoid consequential prolonged myelosuppression. [18F]-Fluoro-3-deoxy-3-L-fluorothymidine (FLT)-positron emission tomography (PET) is a novel imaging modality that provides detailed quantitative images of proliferating tissues, including bone marrow. We used FLT-PET imaging in cancer patients to produce an atlas of marrow distribution with potential clinical utility. METHODS AND MATERIALS The FLT-PET and fused CT scans of eligible patients with non-small cell lung cancer (no distant metastases, no prior cytotoxic exposure, no hematologic disorders) were reviewed. The proportions of skeletal FLT activity in 10 predefined bony regions were determined and compared according to age, sex, and recent smoking status. RESULTS Fifty-one patients were studied: 67% male; median age 68 (range, 31-87) years; 8% never smokers; 70% no smoking in the preceding 3 months. Significant differences in marrow distribution occurred between sex and age groups. No effect was detected from smoking in the preceding 3 months. Using the mean percentages of FLT uptake per body region, we created an atlas of the distribution of functional bone marrow in 4 subgroups defined by sex and age. CONCLUSIONS This atlas has potential utility for estimating the distribution of active marrow in adult cancer patients to guide radiation therapy planning. However, because of interindividual variation it should be used with caution when radiation therapy risks ablating large proportions of active marrow; in such cases, individual FLT-PET scans may be required.
Collapse
Affiliation(s)
- Belinda A Campbell
- Department of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia.
| | - Jason Callahan
- Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Mathias Bressel
- Centre for Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Nathalie Simoens
- Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Sarah Everitt
- Radiotherapy Services, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Michael S Hofman
- Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Rodney J Hicks
- Centre for Molecular Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Kate Burbury
- Department of Haematology, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | - Michael MacManus
- Department of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Australia
| |
Collapse
|
23
|
The Evolving Role of Molecular Imaging in Non–Small Cell Lung Cancer Radiotherapy. Semin Radiat Oncol 2015; 25:133-42. [DOI: 10.1016/j.semradonc.2014.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Arvold ND, Heidari P, Kunawudhi A, Sequist LV, Mahmood U. Tumor Hypoxia Response After Targeted Therapy in EGFR-Mutant Non-Small Cell Lung Cancer: Proof of Concept for FMISO-PET. Technol Cancer Res Treat 2015; 15:234-42. [PMID: 25759424 DOI: 10.1177/1533034615574386] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/28/2015] [Indexed: 01/14/2023] Open
Abstract
Hypoxia is associated with resistance to radiotherapy and chemotherapy. Functional imaging of hypoxia in non-small cell lung cancer (NSCLC) could allow early assessment of tumor response and guide subsequent therapies. Epidermal growth factor receptor (EGFR) inhibition with erlotinib reduces hypoxia in vivo. [18F]-Fluoromisonidazole (FMISO) is a radiolabeled tracer that selectively accumulates in hypoxic cells. We sought to determine whether FMISO positron emission tomography (FMISO-PET) could detect changes in hypoxia in vivo in response to EGFR-targeted therapy. In a preclinical investigation, nude mice with human EGFR-mutant lung adenocarcinoma xenografts underwent FMISO-PET scans before and 5 days after erlotinib or empty vehicle initiation. Descriptive statistics and analysis of variance (ANOVA) tests were used to analyze changes in standardized uptake value (SUV), with pooled analyses for the mice in each group (baseline, postvehicle, and posterlotinib). In a small correlative pilot human study, patients with EGFR-mutant metastatic NSCLC underwent FMISO-PET scans before and 10 to 12 days after erlotinib initiation. Changes in SUV were compared to standard chest computed tomography (CT) scans performed 6 weeks after erlotinib initiation. The mean (±standard error of the mean; SUVmean) of the xenografts was 0.17 ± 0.014, 0.14 ± 0.008, and 0.06 ± 0.004 for baseline, postvehicle, and posterlotinib groups, respectively, with lower SUVmean among the posterlotinib group compared to other groups (P < .05). Changes on preclinical PET imaging were striking, with near-complete disappearance of FMISO uptake after erlotinib initiation. Two patients were enrolled on the pilot study. In the first patient, SUVmean increased by 21% after erlotinib, with progression on 6-week chest CT followed by death after 4.8 months. In the second patient, SUVmean decreased by 7% after erlotinib, with regression on 6-week chest CT accompanied by clinical improvement; the patient had stable disease at 14.5 months. In conclusion, we observed that FMISO-PET can detect changes in hypoxia levels after EGFR-directed therapy in EGFR-mutant NSCLC. Further study is warranted to determine its utility as an imaging biomarker of early response to EGFR-directed therapy.
Collapse
Affiliation(s)
- Nils D Arvold
- Department of Radiation Oncology, Dana-Farber/Brigham & Women's Cancer Center, Boston, MA, USA
| | - Pedram Heidari
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Anchisa Kunawudhi
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Lecia V Sequist
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Umar Mahmood
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
25
|
van Elmpt W, Zegers CML, Das M, De Ruysscher D. Imaging techniques for tumour delineation and heterogeneity quantification of lung cancer: overview of current possibilities. J Thorac Dis 2014; 6:319-27. [PMID: 24688776 DOI: 10.3978/j.issn.2072-1439.2013.08.62] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 08/21/2013] [Indexed: 01/05/2023]
Abstract
Imaging techniques for the characterization and delineation of primary lung tumours and lymph nodes are a prerequisite for adequate radiotherapy. Numerous imaging modalities have been proposed for this purpose, but only computed tomography (CT) and FDG-PET have been implemented in clinical routine. Hypoxia PET, dynamic contrast-enhanced CT (DCE-CT), dual energy CT (DECT) and (functional) magnetic resonance imaging (MRI) hold promise for the future. Besides information on the primary tumour, these techniques can be used for quantification of tissue heterogeneity and response. In the future, treatment strategies may be designed which are based on imaging techniques to optimize individual treatment.
Collapse
Affiliation(s)
- Wouter van Elmpt
- 1 Department of Radiation Oncology (MAASTRO), 2 Department of Radiology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands ; 3 Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Catharina M L Zegers
- 1 Department of Radiation Oncology (MAASTRO), 2 Department of Radiology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands ; 3 Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Marco Das
- 1 Department of Radiation Oncology (MAASTRO), 2 Department of Radiology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands ; 3 Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- 1 Department of Radiation Oncology (MAASTRO), 2 Department of Radiology, GROW, School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands ; 3 Radiation Oncology, University Hospitals Leuven/KU Leuven, Leuven, Belgium
| |
Collapse
|
26
|
Farwell MD, Pryma DA, Mankoff DA. PET/CT imaging in cancer: current applications and future directions. Cancer 2014; 120:3433-45. [PMID: 24947987 DOI: 10.1002/cncr.28860] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Positron emission tomography (PET) is a radiotracer imaging method that yields quantitative images of regional in vivo biology and biochemistry. PET, now used in conjunction with computed tomography (CT) in PET/CT devices, has had its greatest impact to date on cancer and is now an important part of oncologic clinical practice and translational cancer research. In this review of current applications and future directions for PET/CT in cancer, the authors first highlight the basic principles of PET followed by a discussion of the biochemistry and current clinical applications of the most commonly used PET imaging agent, (18) F-fluorodeoxyglucose (FDG). Then, emerging methods for PET imaging of other biologic processes relevant to cancer are reviewed, including cellular proliferation, tumor hypoxia, apoptosis, amino acid and cell membrane metabolism, and imaging of tumor receptors and other tumor-specific gene products. The focus of the review is on methods in current clinical practice as well as those that have been translated to patients and are currently in clinical trials.
Collapse
Affiliation(s)
- Michael D Farwell
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
27
|
|
28
|
Leimgruber A, Möller A, Everitt SJ, Chabrot M, Ball DL, Solomon B, MacManus M, Hicks RJ. Effect of Platinum-Based Chemoradiotherapy on Cellular Proliferation in Bone Marrow and Spleen, Estimated by (18)F-FLT PET/CT in Patients with Locally Advanced Non-Small Cell Lung Cancer. J Nucl Med 2014; 55:1075-80. [PMID: 24868108 DOI: 10.2967/jnumed.113.136127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 03/07/2014] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Historically, it has been difficult to monitor the acute impact of anticancer therapies on hematopoietic organs on a whole-body scale. Deeper understanding of the effect of treatments on bone marrow would be of great potential value in the rational design of intensive treatment regimens. 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a functional radiotracer used to study cellular proliferation. It is trapped in cells in proportion to thymidine-kinase 1 enzyme expression, which is upregulated during DNA synthesis. This study investigates the potential of (18)F-FLT to monitor acute effects of chemotherapy on cellular proliferation and its recovery in bone marrow, spleen, and liver during treatment with 2 different chemotherapy regimens. METHODS Sixty patients with non-small cell lung cancer underwent concurrent radical chemoradiotherapy to 60 Gy in 6 wk with either cisplatin/etoposide (C/E, n = 28) weeks 1 and 5 or weekly carboplatin/paclitaxel (C/P, n = 32) regimens. (18)F-FLT and (18)F-FDG PET with CT were performed at baseline, week 2 (day 9 for (18)F-FLT and day 10 for (18)F-FDG PET), and week 4 (day 23 for (18)F-FLT and day 24 for (18)F-FDG PET). Visual and semiquantitative standardized uptake value (SUV) measurements were performed in bone marrow outside the radiotherapy field, liver, spleen, and small bowel. These were correlated to blood counts and smears in a subset of patients. RESULTS The C/E group exhibited a drop in bone marrow (18)F-FLT uptake at week 2 (median SUVmax [maximum SUV] decrease to 31%, 8.7-6.0, P < 0.001), with recovery at week 4, reflecting the absence of chemotherapy between these times. By contrast, the weekly C/P group showed gradually declining bone marrow uptake (P > 0.05). Spleen uptake in both cohorts decreased at week 2, with intense rebound activity at week 4 (SUVmax week 4 at 58% above baseline: 2.4-3.8, for C/E, respectively, 30% for C/P: 2.7-3.5, P < 0.001). Liver uptake changed little. (18)F-FLT changes preceded neutrophil count reductions. (18)F-FDG uptake in marrow liver and spleen changed much less than (18)F-FLT. CONCLUSION (18)F-FLT imaging may be used to quantify impairment and recovery of bone marrow by specific chemotherapy regimens and may also enable imaging of organ-specific processes such as spleen activation. (18)F-FLT is superior to (18)F-FDG for this purpose. This technology may support novel treatment planning and monitoring approaches in oncology patients.
Collapse
Affiliation(s)
- Antoine Leimgruber
- Centre for Molecular Imaging, Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia Department of Medical Imaging, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Andreas Möller
- QIMR Berghofer Medical Research Institute, Herston Queensland, Australia
| | - Sarah J Everitt
- Department of Radiation Oncology, Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Victoria, Australia; and
| | - Marine Chabrot
- Centre for Molecular Imaging, Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - David L Ball
- Department of Radiation Oncology, Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Ben Solomon
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia Medical Oncology, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
| | - Michael MacManus
- Department of Radiation Oncology, Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Rodney J Hicks
- Centre for Molecular Imaging, Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Everitt SJ, Ball DL, Hicks RJ, Callahan J, Plumridge N, Collins M, Herschtal A, Binns D, Kron T, Schneider M, MacManus M. Differential 18F-FDG and 18F-FLT Uptake on Serial PET/CT Imaging Before and During Definitive Chemoradiation for Non–Small Cell Lung Cancer. J Nucl Med 2014; 55:1069-74. [DOI: 10.2967/jnumed.113.131631] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 03/10/2014] [Indexed: 11/16/2022] Open
|
30
|
Herrmann K, Buck AK. Proliferation imaging with ¹⁸F-fluorothymidine PET/computed tomography: physiologic uptake, variants, and pitfalls. PET Clin 2014; 9:331-8. [PMID: 25030396 DOI: 10.1016/j.cpet.2014.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For noninvasive in vivo imaging of proliferation, 18F-FLT PET/CT remains a promising tool, owing to its correlation with proliferation indexes in many tumor entities. Future clinical applications will focus on monitoring response to cancer therapy, whereas tumor detection will be limited to organs with high physiologic 18F-FDG uptake. Use and interpretation of 18F-FLT requires knowledge of the physiologic tracer distribution and how it will be affected by anticancer treatment. Further studies are needed to determine the optimal timing of 18F-FLT PET/CT imaging in the course of cancer therapies or at the conclusion of therapy.
Collapse
Affiliation(s)
- Ken Herrmann
- Department of Nuclear Medicine, Universitätsklinikum Würzburg, Oberdürrbacher Str. 6, Würzburg 97080, Germany.
| | - Andreas K Buck
- Department of Nuclear Medicine, Universitätsklinikum Würzburg, Oberdürrbacher Str. 6, Würzburg 97080, Germany
| |
Collapse
|
31
|
Langer NH, Christensen TN, Langer SW, Kjaer A, Fischer BM. PET/CT in therapy evaluation of patients with lung cancer. Expert Rev Anticancer Ther 2014; 14:595-620. [PMID: 24702537 DOI: 10.1586/14737140.2014.883280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
FDG-PET/CT is a well documented and widespread used imaging modality for the diagnosis and staging of patient with lung cancer. FDG-PET/CT is increasingly used for the assessment of treatment effects during and after chemotherapy. However, PET is not an accepted surrogate end-point for assessment of response rate in clinical trials. The aim of this review is to present current evidence on the use of PET in response evaluation of patients with lung cancer and to introduce the pearls and pitfalls of the PET-technology relating to response assessment. Based on this and relating to validation criteria, including stable technology, standardization, reproducibility and broad availability, the review discusses why, despite numerous studies on response assessment indicating a possible role for FDG-PET/CT, PET still has no place in guidelines relating to response evaluation in lung cancer.
Collapse
Affiliation(s)
- Natasha Hemicke Langer
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
32
|
Trigonis I, Koh PK, Taylor B, Tamal M, Ryder D, Earl M, Anton-Rodriguez J, Haslett K, Young H, Faivre-Finn C, Blackhall F, Jackson A, Asselin MC. Early reduction in tumour [18F]fluorothymidine (FLT) uptake in patients with non-small cell lung cancer (NSCLC) treated with radiotherapy alone. Eur J Nucl Med Mol Imaging 2014; 41:682-93. [PMID: 24504503 PMCID: PMC3955141 DOI: 10.1007/s00259-013-2632-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 11/06/2013] [Indexed: 01/14/2023]
Abstract
PURPOSE Changes in tumour 3'-deoxy-3'-[(18)F]fluorothymidine (FLT) uptake during concurrent chemo-radiotherapy in patients with non-small cell lung cancer (NSCLC) have been reported, at variable time points, in two pilot positron emission tomography (PET) studies. The aim of this study was to assess whether FLT changes occur early in response to radiotherapy (RT) without concurrent chemotherapy and whether such changes exceed test-retest variability. METHODS Sixteen patients with NSCLC, scheduled to have radical RT, underwent FLT PET once/twice at baseline to assess reproducibility and/or after 5-11 RT fractions to evaluate response. Primary and nodal malignant lesions were manually delineated on CT and volume, mean and maximum standardized uptake values (SUV(mean) and SUV(max)) estimated. Analysis included descriptive statistics and parameter fitting to a mixed-effects model accounting for patients having different numbers of evaluable lesions. RESULTS In all, 35 FLT PET scans from 7 patients with a total of 18 lesions and 12 patients with a total of 30 lesions were evaluated for reproducibility and response, respectively. SUV(mean) reproducibility in primary tumours (SD 8.9%) was better than SUV(max) reproducibility (SD 12.6%). In nodes, SUV(mean) and SUV(max) reproducibilities (SD 18.0 and 17.2%) were comparable but worse than for primary tumours. After 5-11 RT fractions, primary tumour SUV(mean) decreased significantly by 25% (p = 0.0001) in the absence of significant volumetric change, whereas metastatic nodes decreased in volume by 31% (p = 0.020) with a larger SUV(mean) decrease of 40% (p < 0.0001). Similar changes were found for SUV(max). CONCLUSION Across this group of NSCLC patients, RT induced an early, significant decrease in lesion FLT uptake exceeding test-retest variability. This effect is variable between patients, appears distinct between primary and metastatic nodal lesions, and in primary tumours is lower than previously reported for concurrent chemo-RT at a similar time point. These results confirm the potential for FLT PET to report early on radiation response and to enhance the clinical development of novel drug-radiation combinations by providing an interpretable, early pharmacodynamic end point.
Collapse
Affiliation(s)
- Ioannis Trigonis
- Institute of Population Health, Wolfson Molecular Imaging Centre, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, M20 3LJ, UK,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Bradshaw TJ, Yip S, Jallow N, Forrest LJ, Jeraj R. Spatiotemporal stability of Cu-ATSM and FLT positron emission tomography distributions during radiation therapy. Int J Radiat Oncol Biol Phys 2014; 89:399-405. [PMID: 24685446 DOI: 10.1016/j.ijrobp.2014.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 01/06/2014] [Accepted: 02/12/2014] [Indexed: 12/09/2022]
Abstract
PURPOSE In dose painting, in which functional imaging is used to define biological targets for radiation therapy dose escalation, changes in spatial distributions of biological properties during treatment can compromise the quality of therapy. The goal of this study was to assess the spatiotemporal stability of 2 potential dose painting targets--hypoxia and proliferation--in canine tumors during radiation therapy. METHODS AND MATERIALS Twenty-two canine patients with sinonasal tumors (14 carcinoma and 8 sarcoma) were imaged before hypofractionated radiation therapy with copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) positron emission tomography/computed tomography (PET/CT) for hypoxia and 3'-deoxy-3'-(18)F-fluorothymidine (FLT) PET/CT for proliferation. The FLT scans were repeated after 2 fractions and the Cu-ATSM scans after 3 fractions. Midtreatment PET/CT images were deformably registered to pretreatment PET/CT images. Voxel-based Spearman correlation coefficients quantified the spatial stability of Cu-ATSM and FLT uptake distributions between pretreatment and midtreatment scans. Paired t tests determined significant differences between the patients' respective Cu-ATSM and FLT correlations coefficients. Standardized uptake value measures were also compared between pretreatment and midtreatment scans by use of paired t tests. RESULTS Spatial distributions of Cu-ATSM and FLT uptake were stable through midtreatment for both sarcomas and carcinomas: the population mean ± standard deviation in Spearman correlation coefficient was 0.88 ± 0.07 for Cu-ATSM and 0.79 ± 0.13 for FLT. The patients' Cu-ATSM correlation coefficients were significantly higher than their respective FLT correlation coefficients (P=.001). Changes in Cu-ATSM SUV measures from pretreatment to midtreatment were histology dependent: carcinomas experienced significant decreases in Cu-ATSM uptake (P<.05), whereas sarcomas did not (P>.20). Both histologies experienced significant decreases in FLT uptake (P<.05). CONCLUSIONS Spatial distributions of Cu-ATSM were very stable after a few fractions of radiation therapy. FLT spatial distributions were generally stable early in therapy, although they were significantly less stable than Cu-ATSM distributions. Canine tumors had significantly lower proliferative activity at midtreatment than at pretreatment, and they experienced histology-dependent changes in Cu-ATSM uptake.
Collapse
Affiliation(s)
- Tyler J Bradshaw
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Stephen Yip
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Ngoneh Jallow
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Lisa J Forrest
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin
| | - Robert Jeraj
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin; Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
34
|
Yang J, Yue JB, Liu J, Yu JM. Repopulation of tumor cells during fractionated radiotherapy and detection methods (Review). Oncol Lett 2014; 7:1755-1760. [PMID: 24932228 PMCID: PMC4049693 DOI: 10.3892/ol.2014.1990] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/26/2014] [Indexed: 12/18/2022] Open
Abstract
Repopulation of tumor cells during radiotherapy is believed to be a significant cause for treatment failure. The phenomenon of tumor repopulation during fractionated radiotherapy was found from clinical observations that identified that the local control rate decreased with a prolonged treatment time. A series of animal experiments with varied overall treatment time and fractionated doses were performed to demonstrate tumor cell repopulation during radiotherapy in various mouse xenograft models. However, conventional detection methods are challenging, as it is difficult to separate viable cells from those destined for apoptosis during fractionated radiotherapy. In essence, the mechanism of tumor repopulation involves the continuing proliferation of clonogenic tumor cells. In vivo imaging, tracking and targeting of the repopulation of these cells has been of clinical interest so as to administer a higher dose to the tumor repopulation regions. Currently, functional imaging methods, including 3'-deoxy-3'-18F-fluorothymidine positron emission tomography (18F-FLT PET), are showing promise in assessing the proliferation activity of tumors in vivo. This review mainly focuses on the phenomenon of tumor repopulation during radiotherapy and its conventional and novel detection methods, particularly on the feasibility of 18F-FLT PET for the detection of tumor-cell repopulation.
Collapse
Affiliation(s)
- Jia Yang
- Shandong Cancer Hospital and Institute, Jinan University, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jin-Bo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China
| | - Jing Liu
- Graduate Education Centre of Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jin-Ming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
35
|
Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome. Eur J Nucl Med Mol Imaging 2013; 41:915-24. [PMID: 24346414 DOI: 10.1007/s00259-013-2651-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 11/28/2013] [Indexed: 01/28/2023]
Abstract
PURPOSE Radiotherapy of head and neck cancer induces changes in tumour cell proliferation during treatment, which can be depicted by the PET tracer (18)F-fluorothymidine (FLT). In this study, three advanced semiautomatic PET segmentation methods for delineation of the proliferative tumour volume (PV) before and during (chemo)radiotherapy were compared and related to clinical outcome. METHODS The study group comprised 46 patients with 48 squamous cell carcinomas of the head and neck, treated with accelerated (chemo)radiotherapy, who underwent FLT PET/CT prior to treatment and in the 2nd and 4th week of therapy. Primary gross tumour volumes were visually delineated on CT images (GTV CT). PVs were visually determined on all PET scans (PV VIS). The following semiautomatic segmentation methods were applied to sequential PET scans: background-subtracted relative-threshold level (PV RTL), a gradient-based method using the watershed transform algorithm and hierarchical clustering analysis (PV W&C), and a fuzzy locally adaptive Bayesian algorithm (PV FLAB). RESULTS Pretreatment PV VIS correlated best with PV FLAB and GTV CT. Correlations with PV RTL and PV W&C were weaker although statistically significant. During treatment, the PV VIS, PV W&C and PV FLAB significant decreased over time with the steepest decline over time for PV FLAB. Among these advanced segmentation methods, PV FLAB was the most robust in segmenting volumes in the third scan (67 % of tumours as compared to 40 % for PV W&C and 27 % for PV RTL). A decrease in PV FLAB above the median between the pretreatment scan and the scan obtained in the 4th week was associated with better disease-free survival (4 years 90 % versus 53 %). CONCLUSION In patients with head and neck cancer, FLAB proved to be the best performing method for segmentation of the PV on repeat FLT PET/CT scans during (chemo)radiotherapy. This may potentially facilitate radiation dose adaptation to changing PV.
Collapse
|
36
|
Machtay M, Duan F, Siegel BA, Snyder BS, Gorelick JJ, Reddin JS, Munden R, Johnson DW, Wilf LH, DeNittis A, Sherwin N, Cho KH, Kim SK, Videtic G, Neumann DR, Komaki R, Macapinlac H, Bradley JD, Alavi A. Prediction of survival by [18F]fluorodeoxyglucose positron emission tomography in patients with locally advanced non-small-cell lung cancer undergoing definitive chemoradiation therapy: results of the ACRIN 6668/RTOG 0235 trial. J Clin Oncol 2013; 31:3823-30. [PMID: 24043740 DOI: 10.1200/jco.2012.47.5947] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE In this prospective National Cancer Institute-funded American College of Radiology Imaging Network/Radiation Therapy Oncology Group cooperative group trial, we hypothesized that standardized uptake value (SUV) on post-treatment [(18)F]fluorodeoxyglucose positron emission tomography (FDG-PET) correlates with survival in stage III non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS Patients received conventional concurrent platinum-based chemoradiotherapy without surgery; postradiotherapy consolidation chemotherapy was allowed. Post-treatment FDG-PET was performed at approximately 14 weeks after radiotherapy. SUVs were analyzed both as peak SUV (SUVpeak) and maximum SUV (SUVmax; both institutional and central review readings), with institutional SUVpeak as the primary end point. Relationships between the continuous and categorical (cutoff) SUVs and survival were analyzed using Cox proportional hazards multivariate models. RESULTS Of 250 enrolled patients (226 were evaluable for pretreatment SUV), 173 patients were evaluable for post-treatment SUV analyses. The 2-year survival rate for the entire population was 42.5%. Pretreatment SUVpeak and SUVmax (mean, 10.3 and 13.1, respectively) were not associated with survival. Mean post-treatment SUVpeak and SUVmax were 3.2 and 4.0, respectively. Post-treatment SUVpeak was associated with survival in a continuous variable model (hazard ratio, 1.087; 95% CI, 1.014 to 1.166; P = .020). When analyzed as a prespecified binary value (≤ v > 3.5), there was no association with survival. However, in exploratory analyses, significant results for survival were found using an SUVpeak cutoff of 5.0 (P = .041) or 7.0 (P < .001). All results were similar when SUVmax was used in univariate and multivariate models in place of SUVpeak. CONCLUSION Higher post-treatment tumor SUV (SUVpeak or SUVmax) is associated with worse survival in stage III NSCLC, although a clear cutoff value for routine clinical use as a prognostic factor is uncertain at this time.
Collapse
Affiliation(s)
- Mitchell Machtay
- Mitchell Machtay, University Hospitals Seidman Cancer Center, Case Comprehensive Cancer Center and Case Western Reserve University; Gregory Videtic, Donald R. Neumann, Cleveland Clinic and Lerner College of Medicine, Cleveland, OH; Fenghai Duan, Bradley S. Snyder, and Jeremy J. Gorelick, Brown University, Providence, RI; Barry A. Siegel and Jeffrey D. Bradley, Mallinckrodt Institute of Radiology and the Siteman Cancer Center, Washington University School of Medicine, St Louis, MO; Janet S. Reddin and Abass Alavi, University of Pennsylvania, Philadelphia; Albert DeNittis and Nancy Sherwin, Lankenau Hospital and Lankenau Institute for Medical Research, Lower Merion, PA; Reginald Munden, Ritsuko Komaki, and Homer Macapinlac, The University of Texas MD Anderson Cancer Center, Houston, TX; Douglas W. Johnson, Baptist Cancer Institute; Larry H. Wilf, Integrated Community Oncology Network, Jacksonville, FL; and Kwan Ho Cho and Seok-ki Kim, National Cancer Center of Korea, Goyang-si Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Several new tracers are being developed for use with PET to assess pathways that are altered in cancers, including energy use, cellular signaling, transport, and proliferation. Because increased proliferation is a hallmark of many cancers, several tracers have been tested to track the DNA synthesis pathway. Thymidine, which is incorporated into DNA but not RNA, has been used in laboratory studies to measure tumor growth. Because thymidine labeled with (11)C undergoes rapid biologic degradation and has a short physical half-life, tracers labeled with (18)F have been preferred in PET imaging. One such tracer is (18)F-labeled 3'-deoxy-3'-fluorothymidine ((18)F-FLT). (18)F-FLT is trapped after phosphorylation by thymidine kinase 1, whose expression is increased in replicating cells. Several studies on breast, lung, and brain tumors have demonstrated that retention of (18)F-FLT correlated with tumor proliferation. Although (18)F-FLT has been used to image and stage several tumor types, the standardized uptake value is generally lower than that obtained with (18)F-FDG. (18)F-FLT can be used to image many areas of the body, but background uptake is high in the liver, marrow, and renal system, limiting use in these organs. (18)F-FLT PET imaging has primarily been studied in the assessment of treatment response. Rapid declines in (18)F-FLT retention within days to weeks have been demonstrated in several tumor types treated with cytotoxic drugs, targeted agents, and radiotherapy. Further work is ongoing to validate this approach and determine its utility in the development of new drugs and in the clinical evaluation of standard treatment approaches.
Collapse
Affiliation(s)
- Omid S Tehrani
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | | |
Collapse
|
38
|
|
39
|
Rowe JA, Morandi F, Wall JS, Akula M, Kennel SJ, Osborne D, Martin EB, Galyon GD, Long MJ, Stuckey AC, LeBlanc AK. Whole-body biodistribution of 3'-deoxy-3'-[(18) f]fluorothymidine ((18) FLT) in healthy adult cats. Vet Radiol Ultrasound 2013; 54:299-306. [PMID: 23464567 DOI: 10.1111/vru.12024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/30/2013] [Accepted: 01/30/2013] [Indexed: 11/28/2022] Open
Abstract
Positron emission tomography/computed tomography (PET/CT) utilizing 3'-deoxy-3'-[(18) F]fluorothymidine ((18) FLT), a proliferation tracer, has been found to be a useful tool for characterizing neoplastic diseases and bone marrow function in humans. As PET and PET/CT imaging become increasingly available in veterinary medicine, knowledge of radiopharmaceutical biodistribution in veterinary species is needed for lesion interpretation in the clinical setting. The purpose of this study was to describe the normal biodistribution of (18) FLT in adult domestic cats. Imaging of six healthy young adult castrated male cats was performed using a commercially available PET/CT scanner consisting of a 64-slice helical CT scanner with an integrated whole-body, high-resolution lutetium oxy-orthosilicate (LSO) PET scanner. Cats were sedated and injected intravenously with 108.60 ± 2.09 (mean ± SD) MBq of (18) FLT (greater than 99% radiochemical purity by high-performance liquid chromatography). Imaging was performed in sternal recumbency under general anesthesia. Static images utilizing multiple bed positions were acquired 80.83 ± 7.52 (mean ± SD) minutes post-injection. Regions of interest were manually drawn over major parenchymal organs and selected areas of bone marrow and increased tracer uptake. Standardized uptake values were calculated. Notable areas of uptake included hematopoietic bone marrow, intestinal tract, and the urinary and hepatobiliary systems. No appreciable uptake was observed within brain, lung, myocardium, spleen, or skeletal muscle. Findings from this study can be used as baseline data for future studies of diseases in cats.
Collapse
Affiliation(s)
- Joshua A Rowe
- Biomedical and Diagnostic Sciences, College of Veterinary Medicine, 2407 River Drive, The University of Tennessee , Knoxville, TN 37996, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hoeben BAW, Troost EGC, Span PN, van Herpen CML, Bussink J, Oyen WJG, Kaanders JHAM. 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J Nucl Med 2013; 54:532-40. [PMID: 23345303 DOI: 10.2967/jnumed.112.105999] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED This prospective study used sequential PET with the proliferation tracer 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) to monitor the early response to treatment of head and neck cancer and evaluated the association between PET parameters and clinical outcome. METHODS Forty-eight patients with head and neck cancer underwent (18)F-FLT PET/CT before and during the second and fourth weeks of radiotherapy or chemoradiotherapy. Mean maximum standardized uptake values for the hottest voxel in the tumor and its 8 surrounding voxels in 1 transversal slice (SUVmax(9)) of the PET scans were calculated, as well as PET-segmented gross tumor volumes using visual delineation (GTVVIS) and operator-independent methods based on signal-to-background ratio (GTVSBR) and 50% isocontour of the maximum signal intensity (GTV50%). PET parameters were evaluated for correlations with outcome. RESULTS (18)F-FLT uptake decreased significantly between consecutive scans. An SUVmax(9) decline ≥ 45% and a GTVVIS decrease ≥ median during the first 2 treatment weeks were associated with better 3-y disease-free survival (88% vs. 63%, P = 0.035, and 91% vs. 65%, P = 0.037, respectively). A GTVVIS decrease ≥ median in the fourth treatment week was also associated with better 3-y locoregional control (100% vs. 68%, P = 0.021). These correlations were most prominent in the subset of patients treated with chemoradiotherapy. Because of low (18)F-FLT uptake levels during treatment, GTVSBR and GTV50% were unsuccessful in segmenting primary tumor volume. CONCLUSION In head and neck cancer, a change in (18)F-FLT uptake early during radiotherapy or chemoradiotherapy is a strong indicator for long-term outcome. (18)F-FLT PET may thus aid in personalized patient management by steering treatment modifications during an early phase of therapy.
Collapse
Affiliation(s)
- Bianca A W Hoeben
- Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
41
|
Mac Manus MP, Hicks RJ. The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer. Semin Nucl Med 2012; 42:308-19. [PMID: 22840596 DOI: 10.1053/j.semnuclmed.2012.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Positron emission tomography (PET)/computed tomography (CT) has rapidly assumed a critical role in the management of patients with locoregionally advanced lung cancers who are candidates for definitive radiation therapy (RT). Definitive RT is given with curative intent, but can only be successful in patients without distant metastasis and if all gross tumor is contained within the treated volume. An increasing body of evidence supports the use of PET-based imaging for selection of patients for both surgery and definitive RT. Similarly, the use of PET/CT images for accurate target volume definition in lung cancer is a dynamic area of research. Most available evidence on PET staging of lung cancer relates to non-small cell lung cancer (NSCLC). In general clinical use, (18)F-fluorodeoxyglucose (FDG) is the primary radiopharmaceutical useful in NSCLC. Other tracers, including proliferation markers and hypoxia tracers, may have significant roles in future. Much of the FDG-PET literature describing the impact of PET on actual patient management has concerned candidates for surgical resection. In the few prospective studies where PET was used for staging and patient selection in NSCLC candidates for definitive RT, 25%-30% of patients were denied definitive RT, generally because PET detected unsuspected advanced locoregional or distant metastatic disease. PET/CT and CT findings are often discordant in NSCLC but studies with clinical-pathological correlation always show that PET-assisted staging is more accurate than conventional assessment. In all studies in which "PET-defined" and "non-PET-defined" RT target volumes were compared, there were major differences between PET and non-PET volumes. Therefore, in cases where PET-assisted and non-PET staging are different and biopsy confirmation is unavailable, it is rational to use the most accurate modality (namely PET/CT) to define the target volume. The use of PET/CT in patient selection and target volume definition is likely to lead to improvements in outcome for patients with NSCLC.
Collapse
Affiliation(s)
- Michael P Mac Manus
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | |
Collapse
|
42
|
Kishino T, Hoshikawa H, Nishiyama Y, Yamamoto Y, Mori N. Usefulness of 3'-deoxy-3'-18F-fluorothymidine PET for predicting early response to chemoradiotherapy in head and neck cancer. J Nucl Med 2012; 53:1521-7. [PMID: 22872738 DOI: 10.2967/jnumed.111.099200] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED This study compared the utility of 3'-deoxy-3'-(18)F-fluorothymidine PET ((18)F-FLT PET) with that of (18)F-FDG PET for assessment of the early locoregional clinical outcomes of chemoradiotherapy for head and neck squamous cell carcinomas. METHODS From May 2006 to September 2010, 28 patients with head and neck squamous cell carcinomas underwent (18)F-FLT and (18)F-FDG PET before radiation therapy (RT), 4 wk after the initiation of RT, and 5 wk after completion of RT. PET images were evaluated qualitatively for regions of focally increased metabolism and were analyzed in relation to residual accumulation and local disease control. RESULTS During RT, (18)F-FLT uptake decreased more significantly than (18)F-FDG uptake. (18)F-FLT accumulations disappeared in 34 of 54 lesions (63%), and negative predictive value was 97%. (18)F-FDG PET during RT also had a high negative predictive value (100%), but only 9 lesions (16%) showed complete absence of accumulation. The specificity and overall accuracy of (18)F-FLT PET were significantly higher than those of (18)F-FDG PET both during and after RT. In particular, high significance was attributable to the results of the evaluations of primary lesions. There were significant differences in 3-y local control between the residual-accumulation and no-accumulation groups on both posttreatment (18)F-FLT PET (P < 0.0001) and posttreatment (18)F-FDG PET (P = 0.0081). CONCLUSION (18)F-FLT PET during RT and early follow-up facilitates the selection of optimal further therapy and the prediction of outcomes.
Collapse
Affiliation(s)
- Takehito Kishino
- Department of Otolaryngology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | |
Collapse
|
43
|
Lee P, Kupelian P, Czernin J, Ghosh P. Current concepts in F18 FDG PET/CT-based radiation therapy planning for lung cancer. Front Oncol 2012; 2:71. [PMID: 22798989 PMCID: PMC3393879 DOI: 10.3389/fonc.2012.00071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/25/2012] [Indexed: 11/13/2022] Open
Abstract
Radiation therapy is an important component of cancer therapy for early stage as well as locally advanced lung cancer. The use of F18 FDG PET/CT has come to the forefront of lung cancer staging and overall treatment decision-making. FDG PET/CT parameters such as standard uptake value and metabolic tumor volume provide important prognostic and predictive information in lung cancer. Importantly, FDG PET/CT for radiation planning has added biological information in defining the gross tumor volume as well as involved nodal disease. For example, accurate target delineation between tumor and atelectasis is facilitated by utilizing PET and CT imaging. Furthermore, there has been meaningful progress in incorporating metabolic information from FDG PET/CT imaging in radiation treatment planning strategies such as radiation dose escalation based on standard uptake value thresholds as well as using respiratory-gated PET and CT planning for improved target delineation of moving targets. In addition, PET/CT-based follow-up after radiation therapy has provided the possibility of early detection of local as well as distant recurrences after treatment. More research is needed to incorporate other biomarkers such as proliferative and hypoxia biomarkers in PET as well as integrating metabolic information in adaptive, patient-centered, tailored radiation therapy.
Collapse
Affiliation(s)
- Percy Lee
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
44
|
Erasmus JJ, Macapinlac HA. Low-Sensitivity FDG-PET Studies: Less Common Lung Neoplasms. Semin Nucl Med 2012; 42:255-60. [DOI: 10.1053/j.semnuclmed.2012.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
45
|
Kircher MF, Hricak H, Larson SM. Molecular imaging for personalized cancer care. Mol Oncol 2012; 6:182-95. [PMID: 22469618 PMCID: PMC5528375 DOI: 10.1016/j.molonc.2012.02.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/19/2022] Open
Abstract
Molecular imaging is rapidly gaining recognition as a tool with the capacity to improve every facet of cancer care. Molecular imaging in oncology can be defined as in vivo characterization and measurement of the key biomolecules and molecularly based events that are fundamental to the malignant state. This article outlines the basic principles of molecular imaging as applied in oncology with both established and emerging techniques. It provides examples of the advantages that current molecular imaging techniques offer for improving clinical cancer care as well as drug development. It also discusses the importance of molecular imaging for the emerging field of theranostics and offers a vision of how molecular imaging may one day be integrated with other diagnostic techniques to dramatically increase the efficiency and effectiveness of cancer care.
Collapse
Affiliation(s)
- Moritz F. Kircher
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room C-278, NY 10065, USA
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room C-278, NY 10065, USA
| | - Steven M. Larson
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Room C-278, NY 10065, USA
| |
Collapse
|
46
|
Pryor DI, Solomon B, Porceddu SV. The emerging era of personalized therapy in squamous cell carcinoma of the head and neck. Asia Pac J Clin Oncol 2012; 7:236-51. [PMID: 21884435 DOI: 10.1111/j.1743-7563.2011.01420.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Over the past three decades there has been a move toward organ preservation protocols in the management of locally advanced mucosal head and neck squamous cell carcinomas (LAHNSCC) with combinations of radiotherapy (RT), chemotherapy and, more recently, biological agents. Current standard chemoradiation strategies have reached the upper limits of toxicity. In addition, the traditional one size fits all approach of grouping patients according to traditional clinicopathological features fails to take into account the vast underlying biological heterogeneity of tumors and their host. A number of recent advances such as highly conformal RT, molecular profiling and targeted agents, and improvements in treatment response assessment have set the scene for a fundamental paradigm shift toward greater tailoring of therapy with the aim of improving outcomes and reducing the burden of survivorship. This review focuses on the recognition of the prognostic value of tumor human papillomavirus (HPV) status, the incorporation of biologically targeted therapies and the evolving role of molecular imaging in predicting tumor response and prognosis in the curative management of LAHNSCC.
Collapse
Affiliation(s)
- David I Pryor
- Division of Cancer Services, Princess Alexandra Hospital, Brisbane, Australia
| | | | | |
Collapse
|
47
|
|
48
|
|
49
|
McGuire SM, Menda Y, Boles Ponto LL, Gross B, Buatti J, Bayouth JE. 3'-deoxy-3'-[¹⁸F]fluorothymidine PET quantification of bone marrow response to radiation dose. Int J Radiat Oncol Biol Phys 2011; 81:888-93. [PMID: 21300484 PMCID: PMC3140551 DOI: 10.1016/j.ijrobp.2010.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/01/2010] [Accepted: 12/08/2010] [Indexed: 11/24/2022]
Abstract
PURPOSE The purpose of this study was to quantify the relationship of bone marrow response to radiation dose, using 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT)-labeled uptake quantified in positron-emission tomography (PET) scans. METHODS AND MATERIALS Pre- and post-Week 1 treatment [(18)F]FLT PET images were registered to the CT images used to create the radiation treatment plan. Changes in [(18)F]FLT uptake values were measured using profile data of standardized uptake values (SUVs) and doses along the vertebral bodies located at a field border where a range of radiation doses were present for 10 patients. Data from the profile measurements were grouped into 1 Gy dose bins from 1 to 9 Gy to compare SUV changes for all patients. Additionally, the maximum pretreatment, the post-Week 1 treatment, and the dose values located within the C6-T7 vertebrae that straddled the field edge were measured for all patients. RESULTS Both the profile and the individual vertebral data showed a strong correlation between SUV change and radiation dose. Relative differences in SUVs between bins >1 Gy and <7 Gy were statistically significant (p < 0.01, two-sample t test). The reduction in SUV was approximately linear until it reached a reduction threshold of 75%-80% in SUV for doses greater than 6 Gy/week for both the dose-binned data and the vertebral maximum SUVs. CONCLUSIONS The change in SUV observed in head and neck cancer patients treated with chemoradiation shows the potential for using [(18)F]FLT PET images for identifying active bone marrow and monitoring changes due to radiation dose. Additionally, the change in [(18)F]FLT uptake observed in bone marrow for different weekly doses suggests potential dose thresholds for reducing bone marrow toxicity.
Collapse
Affiliation(s)
- Sarah M McGuire
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Benz MR, Czernin J, Allen-Auerbach MS, Dry SM, Sutthiruangwong P, Spick C, Radu C, Weber WA, Tap WD, Eilber FC. 3'-deoxy-3'-[18F]fluorothymidine positron emission tomography for response assessment in soft tissue sarcoma: a pilot study to correlate imaging findings with tissue thymidine kinase 1 and Ki-67 activity and histopathologic response. Cancer 2011; 118:3135-44. [PMID: 22020872 DOI: 10.1002/cncr.26630] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/15/2011] [Accepted: 07/28/2011] [Indexed: 11/11/2022]
Abstract
BACKGROUND This study sought to determine whether [(18)F]fluorothymidine (FLT) positron emission tomography (PET)/computed tomography (CT) imaging allows assessment of tumor viability and proliferation in patients with soft tissue sarcomas who are treated with neoadjuvant therapy. METHODS Twenty patients with biopsy-proven, resectable, high-grade soft tissue sarcoma underwent [(18)F]FLT PET/CT imaging before and after neoadjuvant therapy. Histologic subtypes included sarcomas not otherwise specified (n = 5), malignant peripheral nerve sheath tumors (n = 3), gastrointestinal stromal tumors (n = 3), leiomyosarcomas (n = 3), angiosarcomas (n = 2), and others (n = 4). Changes in [(18)F]FLT peak standardized uptake value (SUVpeak) were correlated with percent necrosis in excised tissue, whereas posttreatment [(18)F]FLT tumor uptake was correlated with thymidine kinase 1 (TK1) expression and Ki-67 staining indices in excised tumor tissue. RESULTS Tumor FLT SUVpeak averaged 7.1 ± 3.7 g/mL (range, 1.9-16.1 g/mL) at baseline and decreased significantly to 2.7 ± 1.6 g/mL (range, 0.8-6.0 g/mL) at follow-up (P < .001); however, marked reductions in SUV were not specific for histopathological response. The posttreatment SUVpeak did not correlate with TK1 (P = .27) or Ki-67 expression (P = .21). CONCLUSIONS Marked reductions in [(18)F]FLT tumor uptake in response to neoadjuvant treatment were observed in most patients with sarcoma. However, these reductions were not specific for histopathologic response to neoadjuvant therapy. Furthermore, posttreatment [(18)F]FLT tumor uptake was unrelated to tumor proliferation by Ki-67 and TK1 staining. These results question the value of [(18)F]FLT PET imaging for treatment response assessments in patients with soft tissue sarcoma.
Collapse
Affiliation(s)
- Matthias R Benz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90095-1782, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|