1
|
Meng H, Zhang B, Liu P, Du Y, Zhang C, Duan W, Chen Z. The efficacy and safety of tyrosine kinase inhibitors in the treatment of advanced or metastatic chordoma: a single-arm meta-analysis. Neurosurg Rev 2025; 48:70. [PMID: 39836286 DOI: 10.1007/s10143-025-03204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 11/13/2024] [Accepted: 01/04/2025] [Indexed: 01/22/2025]
Abstract
Chordoma is a rare malignant tumor with a higher incidence in males than in females. There is an increasing number of clinical studies related to tyrosine kinase inhibitors (TKIs), yet the efficacy and safety of different drugs vary. In this single-arm meta-analysis evaluating the efficacy and safety of TKIs for chordoma treatment, 12 studies involving 365 patients were analyzed. The findings suggest that TKIs can improve outcomes, with an objective response rate of 1.7% and 29% based on RECIST and Choi criteria, a median progression-free survival (mPFS) of 8.41 months and a median overall survival (mOS) of 36.6 months. Imatinib, in particular, showed a longer mOS of 39.3 months compared to 25.0 months for other TKIs. However, high toxicity was noted, with a 95% overall incidence of adverse events (AEs), including hypertension, nausea and vomiting, and edema. Serious AEs occurred at a rate of 55%. In subgroup analysis, Imatinib showed a lower incidence of AEs compared to other TKIs. Combination therapy reduced the risk of severe adverse events compared to monotherapy. The study underscores the potential of TKIs to extend survival in chordoma patients but also highlights the need for careful management of treatment-related toxicity. Combining TKIs, especially imatinib, with other treatments may avoid serious adverse events. Further high-quality clinical trials are needed to confirm these findings and optimize treatment protocols.
Collapse
Affiliation(s)
- Hongfeng Meng
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Boyan Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Penghao Liu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Yueqi Du
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Can Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Wanru Duan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China
| | - Zan Chen
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45# Changchun Street, Xicheng District, Beijing, China.
- Lab of Spinal Cord Injury and Functional Reconstruction, China International Neuroscience Institute (CHINA-INI), Beijing, China.
| |
Collapse
|
2
|
Salmaso S, Mastrotto F, Roverso M, Gandin V, De Martin S, Gabbia D, De Franco M, Vaccarin C, Verona M, Chilin A, Caliceti P, Bogialli S, Marzaro G. Tyrosine kinase inhibitor prodrug-loaded liposomes for controlled release at tumor microenvironment. J Control Release 2021; 340:318-330. [PMID: 34748872 DOI: 10.1016/j.jconrel.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) represent one of the most advanced class of therapeutics for cancer treatment. Most of them are also cytochrome P450 (CYP) inhibitors and/or substrates thereof. Accordingly, their efficacy and/or toxicity can be affected by CYP-mediated metabolism and by metabolism-derived drug-drug interactions. In order to enhance the therapeutic performance of these drugs, we developed a prodrug (Pro962) of our TKI TK962 specifically designed for liposome loading and pH-controlled release in the tumor. A cholesterol moiety was linked to TK962 through pH-sensitive hydrazone bond for anchoring to the liposome phospholipid bilayer to prevent leakage of the prodrug from the nanocarrier. Bioactivity studies performed on isolated target kinases showed that the prodrug maintains only partial activity against them and the release of TK962 is required. Biopharmaceutical studies carried out with prodrug loaded liposomes showed that the prodrug was firmly associated with the vesicles and the drug release was prevented under blood-mimicking conditions. Conversely, conventional liposome loaded with TK962 readily released the drug. Flow cytometric studies showed that liposomes efficiently provided for intracellular prodrug delivery. The use of the hydrazone linker yielded a pH-controlled drug release, which resulted in about 50% drug release at pH 4 and 5 in 2 h. Prodrug, prodrug loaded liposomes and active lead compound have been tested against cancer cell lines in either 2D or 3D models. The liposome formulation showed higher cytotoxicity than the unformulated lead TK962 in both 2D and 3D models. The stability of prodrug, prodrug loaded liposomes and active lead compound in human serum and against human, mouse, and rat microsomes was also assessed, demonstrating that liposome formulations impair the metabolic reactions and protect the loaded compounds from catabolism. The results suggest that the liposomal formulation of pH releasable TKI prodrugs is a promising strategy to improve the metabolic stability, intracellular cancer cell delivery and release, and in turn the efficacy of this class of anticancer drugs.
Collapse
Affiliation(s)
- Stefano Salmaso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Marco Roverso
- Department of Chemistry, University of Padova, via Marzolo 1, 35131, Italy
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Michele De Franco
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Christian Vaccarin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Marco Verona
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Paolo Caliceti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy
| | - Sara Bogialli
- Department of Chemistry, University of Padova, via Marzolo 1, 35131, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35131, Italy.
| |
Collapse
|
3
|
Design, synthesis, and biological evaluation of radioiodinated benzo[d]imidazole-quinoline derivatives for platelet-derived growth factor receptor β (PDGFRβ) imaging. Bioorg Med Chem 2019; 27:383-393. [DOI: 10.1016/j.bmc.2018.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/17/2022]
|
4
|
Cote GM, Barysauskas CM, DeLaney TF, Schwab J, Raskin K, Lozano-Calderon S, Bernstein K, Mullen JT, Haynes AB, Hornicek F, Chen YLE, Choy E. A Phase 1 Study of Nilotinib Plus Radiation in High-Risk Chordoma. Int J Radiat Oncol Biol Phys 2018; 102:1496-1504. [PMID: 30077789 DOI: 10.1016/j.ijrobp.2018.07.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/25/2018] [Accepted: 07/26/2018] [Indexed: 10/28/2022]
Abstract
PURPOSE Chordomas are malignant tumors arising from remnant notochordal tissue. Despite improved local control with preoperative/postoperative radiation therapy (RT), progression-free survival and overall survival (OS) remain poor in patients with high-risk features. Chordoma has been identified to express and activate platelet-derived growth factor receptor signaling. We conducted a phase 1 trial to identify the maximum tolerated dose (MTD), safety, and feasibility of nilotinib with RT as either preoperative or definitive treatment for patients with high-risk chordoma. METHODS AND MATERIALS We recruited 23 patients with high-risk, nonmetastatic chordoma. High risk was defined as the presence of any of the following: local recurrence after surgery, previous intralesional resection, unplanned incomplete resection, unresectable or marginally resectable disease based on locally advanced stage, or declining surgery because of excessive morbidity. Patients were treated with nilotinib and concurrent RT to 50.4 Gy relative biological effectiveness (RBE) followed by surgery and postoperative RT to a cumulative dose up to 70.2 Gy RBE or definitively up to 77.4 Gy RBE without surgery. On completion of RT, patients were eligible to continue nilotinib until disease progression. RESULTS In patients receiving nilotinib 200 mg twice daily with RT, 3 dose-limiting toxicities (DLT) occurred in 5 patients. One DLT was seen among 6 patients receiving nilotinib 200 mg daily with RT. Therefore, 200 mg daily was declared the maximum tolerated dose. Eleven additional patients received nilotinib with RT at the maximum tolerated dose, and 1 additional DLT occurred. The objective best response rate was 6% (1 of 18 patients, 95% confidence interval [CI], 0.1%-27%). The median progression-free survival was 58.15 months (95% CI, 39.10-∞). The median OS was 61.5 months (43.1-∞), and the 2-year OS rate was 95%. CONCLUSIONS Nilotinib 200 mg/d with RT is safe and tolerated in patients with high-risk chordoma. Long-term follow-up is needed to understand whether nilotinib combined with RT, with or without surgery, adds greater improvement to progression-free survival or OS than with RT with or without surgery alone in patients with high-risk chordoma.
Collapse
Affiliation(s)
- Gregory M Cote
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, Massachusetts; Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts.
| | | | - Thomas F DeLaney
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Joseph Schwab
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts; Orthopaedic Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Raskin
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts; Orthopaedic Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Santiago Lozano-Calderon
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts; Orthopaedic Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Karen Bernstein
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - John T Mullen
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts; Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Alex B Haynes
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts; Division of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Francis Hornicek
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts; Orthopaedic Surgery, University of California, Los Angeles, Los Angeles, California
| | - Yen-Lin E Chen
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Edwin Choy
- Division of Hematology-Oncology, Massachusetts General Hospital, Boston, Massachusetts; Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
5
|
Effendi N, Mishiro K, Takarada T, Makino A, Yamada D, Kitamura Y, Shiba K, Kiyono Y, Odani A, Ogawa K. Radiobrominated benzimidazole-quinoline derivatives as Platelet-derived growth factor receptor beta (PDGFRβ) imaging probes. Sci Rep 2018; 8:10369. [PMID: 29991770 PMCID: PMC6039436 DOI: 10.1038/s41598-018-28529-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/25/2018] [Indexed: 12/31/2022] Open
Abstract
Platelet-derived growth factor receptor beta (PDGFRβ) affects in numerous human cancers and has been recognized as a promising molecular target for cancer therapies. The overexpression of PDGFRβ could be a biomarker for cancer diagnosis. Radiolabeled ligands having high affinity for the molecular target could be useful tools for the imaging of overexpressed receptors in tumors. In this study, we aimed to develop radiobrominated PDGFRβ ligands and evaluate their effectiveness as PDGFRβ imaging probes. The radiolabeled ligands were designed by modification of 1-{2-[5-(2-methoxyethoxy)-1H- benzo[d]imidazol-1-yl]quinolin-8-yl}piperidin-4-amine (1), which shows selective inhibition profile toward PDGFRβ. The bromine atom was introduced directly into C-5 of the quinoline group of 1, or indirectly by the conjugation of 1 with the 3-bromo benzoyl group. [77Br]1-{5-Bromo-2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinoline-8-yl}piperidin-4-amine ([77Br]2) and [77Br]-N-3-bromobenzoyl-1-{2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinolin-8-yl}-piperidin-4-amine ([77Br]3) were prepared using a bromodestannylation reaction. In a cellular uptake study, [77Br]2 and [77Br]3 more highly accumulatd in BxPC3-luc cells (PDGFRβ-positive) than in MCF7 cells (PDGFRβ-negative), and their accumulation was significantly reduced by pretreatment with inhibitors. In biodistribution experiments, [77Br]2 accumulation was higher than [77Br]3 accumulation at 1 h postinjection. These findings suggest that [76Br]2 is more promising for positron emission tomography (PET) imaging of PDGFRβ than [76Br]3.
Collapse
Affiliation(s)
- Nurmaya Effendi
- Kanazawa University, Graduate School of Pharmaceutical Sciences, Kakuma-machi, Kanazawa, 920-1192, Japan
- Universitas Muslim Indonesia, Faculty of Pharmacy, Urip Sumiharjo KM. 10, Makassar, 90-231, Indonesia
| | - Kenji Mishiro
- Kanazawa University, Institute for Frontier Science Initiative, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Takeshi Takarada
- Okayama University, Graduate School of Medicine, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Akira Makino
- University of Fukui, Biomedical Imaging Research Center, 23-3 Matsuoka Shimoaizuki, Yoshida, 910-1193, Japan
| | - Daisuke Yamada
- Okayama University, Graduate School of Medicine, 2-5-1 Shikata-cho, Okayama, 700-8558, Japan
| | - Yoji Kitamura
- Kanazawa University, Advanced Science Research Centre, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Kazuhiro Shiba
- Kanazawa University, Advanced Science Research Centre, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Yasushi Kiyono
- University of Fukui, Biomedical Imaging Research Center, 23-3 Matsuoka Shimoaizuki, Yoshida, 910-1193, Japan
| | - Akira Odani
- Kanazawa University, Graduate School of Pharmaceutical Sciences, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Kazuma Ogawa
- Kanazawa University, Graduate School of Pharmaceutical Sciences, Kakuma-machi, Kanazawa, 920-1192, Japan.
- Kanazawa University, Institute for Frontier Science Initiative, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
6
|
Effendi N, Ogawa K, Mishiro K, Takarada T, Yamada D, Kitamura Y, Shiba K, Maeda T, Odani A. Synthesis and evaluation of radioiodinated 1-{2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinolin-8-yl}piperidin-4-amine derivatives for platelet-derived growth factor receptor β (PDGFRβ) imaging. Bioorg Med Chem 2017; 25:5576-5585. [PMID: 28838832 DOI: 10.1016/j.bmc.2017.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 01/07/2023]
Abstract
Platelet-derived growth factor receptor β (PDGFRβ) is a transmembrane tyrosine kinase receptor and it is upregulated in various malignant tumors. Radiolabeled PDGFRβ inhibitors can be a convenient tool for the imaging of tumors overexpressing PDGFRβ. In this study, [125I]-1-{5-iodo-2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinoline-8-yl}piperidin-4-amine ([125I]IIQP) and [125I]-N-3-iodobenzoyl-1-{2-[5-(2-methoxyethoxy)-1H-benzo[d]imidazol-1-yl]quinolin-8-yl}-piperidin-4-amine ([125I]IB-IQP) were designed and synthesized, and their potential as PDGFRβ imaging agents was evaluated. In cellular uptake experiments, [125I]IIQP and [125I]IB-IQP showed higher uptake by PDGFRβ-positive cells than by PDGFRβ-negative cells, and the uptake in PDGFRβ-positive cells was inhibited by co-culture with PDGFRβ ligands. The biodistribution of both radiotracers in normal mice exhibited hepatobiliary excretion as the main route. In mice inoculated with BxPC3-luc (PDGFRβ-positive), the tumor uptake of radioactivity at 1h after the injection of [125I]IIQP was significantly higher than that after the injection of [125I]IB-IQP. These results indicated that [125I]IIQP can be a suitable PDGFRβ imaging agent. However, further modification of its structure will be required to obtain a more appropriate PDGFRβ-targeted imaging agent with a higher signal/noise ratio.
Collapse
Affiliation(s)
- Nurmaya Effendi
- Kanazawa University, Graduate School of Pharmaceutical Sciences, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Universitas Muslim Indonesia, Faculty of Pharmacy, Urip Sumiharjo KM. 10, Makassar 90-231, Indonesia
| | - Kazuma Ogawa
- Kanazawa University, Graduate School of Pharmaceutical Sciences, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Kanazawa University, Institute for Frontier Science Initiative, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Kenji Mishiro
- Kanazawa University, Institute for Frontier Science Initiative, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Takarada
- Okayama University, Graduate School of Medicine, Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Daisuke Yamada
- Okayama University, Graduate School of Medicine, Department of Regenerative Science, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; Niigata University of Pharmacy and Applied Sciences, Division of Pharmacology, 265-1 Higashijima, Akiha-ku, Niigata-shi, Niigata-ken, 956-8603, Japan
| | - Yoji Kitamura
- Kanazawa University, Advanced Science Research Centre, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Kazuhiro Shiba
- Kanazawa University, Advanced Science Research Centre, Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takehiko Maeda
- Niigata University of Pharmacy and Applied Sciences, Division of Pharmacology, 265-1 Higashijima, Akiha-ku, Niigata-shi, Niigata-ken, 956-8603, Japan
| | - Akira Odani
- Kanazawa University, Graduate School of Pharmaceutical Sciences, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
7
|
Seshacharyulu P, Baine MJ, Souchek JJ, Menning M, Kaur S, Yan Y, Ouellette MM, Jain M, Lin C, Batra SK. Biological determinants of radioresistance and their remediation in pancreatic cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:69-92. [PMID: 28249796 PMCID: PMC5548591 DOI: 10.1016/j.bbcan.2017.02.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/17/2022]
Abstract
Despite recent advances in radiotherapy, a majority of patients diagnosed with pancreatic cancer (PC) do not achieve objective responses due to the existence of intrinsic and acquired radioresistance. Identification of molecular mechanisms that compromise the efficacy of radiation therapy and targeting these pathways is paramount for improving radiation response in PC patients. In this review, we have summarized molecular mechanisms associated with the radio-resistant phenotype of PC. Briefly, we discuss the reversible and irreversible biological consequences of radiotherapy, such as DNA damage and DNA repair, mechanisms of cancer cell survival and radiation-induced apoptosis following radiotherapy. We further describe various small molecule inhibitors and molecular targeting agents currently being tested in preclinical and clinical studies as potential radiosensitizers for PC. Notably, we draw attention towards the confounding effects of cancer stem cells, immune system, and the tumor microenvironment in the context of PC radioresistance and radiosensitization. Finally, we discuss the need for examining selective radioprotectors in light of the emerging evidence on radiation toxicity to non-target tissue associated with PC radiotherapy.
Collapse
Affiliation(s)
- Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michael J Baine
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Joshua J Souchek
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Melanie Menning
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Ying Yan
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Michel M. Ouellette
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Chi Lin
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| |
Collapse
|
8
|
Gouazé-Andersson V, Delmas C, Taurand M, Martinez-Gala J, Evrard S, Mazoyer S, Toulas C, Cohen-Jonathan-Moyal E. FGFR1 Induces Glioblastoma Radioresistance through the PLCγ/Hif1α Pathway. Cancer Res 2016; 76:3036-44. [PMID: 26896280 DOI: 10.1158/0008-5472.can-15-2058] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/28/2016] [Indexed: 11/16/2022]
Abstract
FGF2 signaling in glioblastoma induces resistance to radiotherapy, so targeting FGF2/FGFR pathways might offer a rational strategy for tumor radiosensitization. To investigate this possibility, we evaluated a specific role for FGFR1 in glioblastoma radioresistance as modeled by U87 and LN18 glioblastomas in mouse xenograft models. Silencing FGFR1 decreased radioresistance in a manner associated with radiation-induced centrosome overduplication and mitotic cell death. Inhibiting PLCγ (PLCG1), a downstream effector signaling molecule for FGFR1, was sufficient to produce similar effects, arguing that PLCγ is an essential mediator of FGFR1-induced radioresistance. FGFR1 silencing also reduced expression of HIF1α, which in addition to its roles in hypoxic responses exerts an independent effect on radioresistance. Finally, FGFR1 silencing delayed the growth of irradiated tumor xenografts, in a manner that was associated with reduced HIF1α levels but not blood vessel alterations. Taken together, our results offer a preclinical proof of concept that FGFR1 targeting can degrade radioresistance in glioblastoma, a widespread problem in this tumor, prompting clinical investigations of the use of FGFR1 inhibitors for radiosensitization. Cancer Res; 76(10); 3036-44. ©2016 AACR.
Collapse
Affiliation(s)
- Valérie Gouazé-Andersson
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Team 11, Toulouse, France
| | - Caroline Delmas
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Team 11, Toulouse, France. Institut Claudius Regaud, IUCT-O, Toulouse, France
| | - Marion Taurand
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Team 11, Toulouse, France
| | - Judith Martinez-Gala
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Team 11, Toulouse, France. Institut Claudius Regaud, IUCT-O, Toulouse, France
| | - Solène Evrard
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Team 11, Toulouse, France
| | - Sandrine Mazoyer
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Team 11, Toulouse, France
| | - Christine Toulas
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Team 11, Toulouse, France. Institut Claudius Regaud, IUCT-O, Toulouse, France.
| | - Elizabeth Cohen-Jonathan-Moyal
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR1037/Université Toulouse III Paul Sabatier, Cancer Research Center of Toulouse (CRCT), Team 11, Toulouse, France. Institut Claudius Regaud, IUCT-O, Toulouse, France.
| |
Collapse
|
9
|
Gandin V, Ferrarese A, Dalla Via M, Marzano C, Chilin A, Marzaro G. Targeting kinases with anilinopyrimidines: discovery of N-phenyl-N'-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives as selective inhibitors of class III receptor tyrosine kinase subfamily. Sci Rep 2015; 5:16750. [PMID: 26568452 PMCID: PMC4645160 DOI: 10.1038/srep16750] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022] Open
Abstract
Kinase inhibitors are attractive drugs/drug candidates for the treatment of cancer. The most recent literature has highlighted the importance of multi target kinase inhibitors, although a correct balance between specificity and non-specificity is required. In this view, the discovery of multi-tyrosine kinase inhibitors with subfamily selectivity is a challenging goal. Herein we present the synthesis and the preliminary kinase profiling of a set of novel 4-anilinopyrimidines. Among the synthesized compounds, the N-phenyl-N’-[4-(pyrimidin-4-ylamino)phenyl]urea derivatives selectively targeted some members of class III receptor tyrosine kinase family. Starting from the structure of hit compound19 we synthesized a further compound with an improved affinity toward the class III receptor tyrosine kinase members and endowed with a promising antitumor activity both in vitro and in vivo in a murine solid tumor model. Molecular modeling simulations were used in order to rationalize the behavior of the title compounds.
Collapse
Affiliation(s)
- Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo, I-35131, Padova (Italy)
| | - Alessandro Ferrarese
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo, I-35131, Padova (Italy)
| | - Martina Dalla Via
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo, I-35131, Padova (Italy)
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo, I-35131, Padova (Italy)
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo, I-35131, Padova (Italy)
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo, I-35131, Padova (Italy)
| |
Collapse
|
10
|
Radiosensitizing potential of Plumbagin in B16F1 melanoma tumor cells through mitochondrial mediated programmed cell death. J Appl Biomed 2015. [DOI: 10.1016/j.jab.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
11
|
Mu X, Ma J, Zhang Z, Zhou H, Xu S, Qin Y, Huang J, Yang K, Wu G. Famitinib enhances nasopharyngeal cancer cell radiosensitivity by attenuating radiation-induced phosphorylation of platelet-derived growth factor receptor and c-kit and inhibiting microvessel formation. Int J Radiat Biol 2015; 91:771-6. [PMID: 26073526 DOI: 10.3109/09553002.2015.1062574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE Famitinib is a novel tyrosine kinase inhibitor. We investigated the effects of famitinib on the radiosensitivity of human nasopharyngeal carcinoma (NPC) cell radiosensitivity in vitro and in vivo, and explored its possible mechanisms. MATERIALS AND METHODS Human nasopharyngeal carcinoma cell line (CNE-2) were treated with famitinib and radiation, and analyzed by3-(4,5-dimethylthaizol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clonogenic survival assay, and Western blot. A xenograft model using CNE-2 cells was established to analyze the effects of famitinib and radiation on tumor volume and microvessel density (MVD). RESULTS Famitinib dose-dependently inhibited CNE-2 cells growth and significantly reduced clonogenic survival (p < 0.05), with a sensitivity enhancement ratio (SER) of 1.45. The tumor inhibition rate of the combined treatment group was 91%, which was significantly higher than the radiation group (35%, p < 0.05) and famitinib group (46%, p < 0.05). Famitinib attenuated radiation-induced phosphorylation of the platelet-derived growth factor receptor (PDGFR) and stem cell factor (c-kit) at 0, 30, 60 min after radiation treatment. Furthermore, radiation combined with famitinib decreased tumor MVD (p < 0.05). CONCLUSIONS Famitinib significantly increased CNE-2 cell radiosensitivity in vitro and in vivo by attenuating radiation-induced PDGFR and c-kit phosphorylation and by inhibiting microvessel formation.
Collapse
Affiliation(s)
- Xiaoqian Mu
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China.,b Department of Medical Oncology , Affiliated Cancer Hospital of Zhengzhou University , Zhengzhou , Henan, China
| | - Jia Ma
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zhanjie Zhang
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Hongxia Zhou
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Shuangbing Xu
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - You Qin
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jing Huang
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Kunyu Yang
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Gang Wu
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
12
|
Lee MJ, Na K, Jeong SK, Lim JS, Kim SA, Lee MJ, Song SY, Kim H, Hancock WS, Paik YK. Identification of human complement factor B as a novel biomarker candidate for pancreatic ductal adenocarcinoma. J Proteome Res 2014; 13:4878-88. [PMID: 25057901 DOI: 10.1021/pr5002719] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer (PC; pancreatic ductal adenocarcinoma) is characterized by significant morbidity and mortality worldwide. Although carbohydrate antigen (CA) 19-9 has been known as a PC biomarker, it is not commonly used for general screening because of its low sensitivity and specificity. Therefore, there is an urgent need to develop a new biomarker for PC diagnosis in the earlier stage of cancer. To search for a novel serologic PC biomarker, we carried out an integrated proteomic analysis for a total of 185 pooled or individual plasma from healthy donors and patients with five disease groups including chronic pancreatitis (CP), PC, and other cancers (e.g., hepatocellular carcinoma, cholangiocarcinoma, and gastric cancer) and identified complement factor b (CFB) as a candidate serologic biomarker for PC diagnosis. Immunoblot analysis of CFB revealed more than two times higher expression in plasma samples from PC patients compared with plasma from individuals without PC. Immunoprecipitation coupled to mass spectrometry analysis confirmed both molecular identity and higher expression of CFB in PC samples. CFB showed distinctly higher specificity than CA 19-9 for PC against other types of digestive cancers and in discriminating PC patients from non-PC patients (p < 0.0001). In receiver operator characteristic curve analysis, CFB showed an area under curve of 0.958 (95% CI: 0.956 to 0.959) compared with 0.833 (95% CI: 0.829 to 0.837) for CA 19-9. Furthermore, the Y-index of CFB was much higher than that of CA 19-9 (71.0 vs 50.4), suggesting that CFB outperforms CA 19-9 in discriminating PC from CP and other gastrointestinal cancers. This was further supported by immunoprecipitation and qRT-PCR assays showing higher expression of CFB in PC cell lines than in normal cell lines. A combination of CFB and CA 19-9 showed markedly improved sensitivity (90.1 vs 73.1%) over that of CFB alone in the diagnosis of PC against non-PC, with similar specificity (97.2 vs 97.9%). Thus, our results identify CFB as a novel serologic PC biomarker candidate and warrant further investigation into a large-scale validation and its role in molecular mechanism of pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Min Jung Lee
- Yonsei Proteome Research Center and ‡Department of Integrated OMICS for Biomedical Science and Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University , 50 Yonsei-ro, Sudaemoon-ku, Seoul 120-749, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Askoxylakis V, Marr A, Altmann A, Markert A, Mier W, Debus J, Huber PE, Haberkorn U. Peptide-based targeting of the platelet-derived growth factor receptor beta. Mol Imaging Biol 2013; 15:212-21. [PMID: 22791264 PMCID: PMC3591530 DOI: 10.1007/s11307-012-0578-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Purpose The aim of this work is to identify new ligands targeting the platelet-derived growth factor receptor beta (PDGFRβ). Procedures Biopanning was carried out with a 12-amino-acid phage display library against the recombinant extracellular domain of PDGFRβ. The identified peptide PDGFR-P1 was chemically synthesized and labeled with 125I or 131I. In vitro studies were performed on the PDGFRβ-expressing cell lines BxPC3 and MCF7 and on PDGFRβ-transfected HEK cells in comparison to negative control wtHEK293 and CaIX-transfected HEK cells. Biodistribution experiments were performed in Balb/c nude mice, carrying subcutaneously BxPC3 tumors. Results In vitro studies demonstrated a higher binding to BxPC3, MCF7, and PDGFRβ-tr-HEK cells in comparison to negative control cell lines. Binding was inhibited up to 90% by the unlabeled PDGFR-P1 peptide. Organ distribution studies revealed a higher accumulation in BxPC3 tumors than in most organs. Conclusions PDGFR-P1 is a promising candidate for targeting human PDGFRβ.
Collapse
Affiliation(s)
- Vasileios Askoxylakis
- Department of Radiation Oncology, University of Heidelberg and German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Design, synthesis and biological evaluation of novel acrylamide analogues as inhibitors of BCR–ABL kinase. Bioorg Med Chem Lett 2012; 22:5279-82. [DOI: 10.1016/j.bmcl.2012.06.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 05/28/2012] [Accepted: 06/14/2012] [Indexed: 11/17/2022]
|
16
|
Tang J, Wang JY, Parker LL. Detection of early Abl kinase activation after ionizing radiation by using a peptide biosensor. Chembiochem 2012; 13:665-73. [PMID: 22334513 PMCID: PMC3429332 DOI: 10.1002/cbic.201100763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Indexed: 12/15/2022]
Abstract
The ubiquitously expressed Abl protein is a non-receptor tyrosine kinase that undergoes nuclear-cytoplasmic shuttling and is involved in many signaling pathways in the cell. Nuclear Abl is activated by DNA damage to regulate DNA repair, cell-cycle checkpoints and apoptosis. Previous studies have established that ataxia telangiectasia mutated (ATM) activates nuclear Abl by phosphorylating serine 465 (S465) in the kinase domain in response to ionizing radiation (IR). Using a peptide biosensor that specifically reports on the Abl kinase activity, we found that an Abl-S465A mutant, which is not capable of being activated by ATM through the canonical site, was still activated rapidly after IR. We established that DNA-dependent protein kinase (DNAPK) is likely to be responsible for a second pathway to activate Abl early on in the response to IR through phosphorylation at a site other than S465. Our findings show that nuclear and cytoplasmic Abl kinase is activated early on (within 5 min) in response to IR by both ATM and DNAPK, and that although one or the other of these kinases is required, either one is sufficient to activate Abl. These results support the concept of early Abl recruitment by both the ATM and the DNAPK pathways to regulate nuclear events triggered by DNA damage and potentially communicate them to proteins in the cytoplasm.
Collapse
Affiliation(s)
- Jiabin Tang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, Fax: (+001) 765-496-1496
| | - Jean Y. Wang
- Department of Medicine and Division of Hematology-Oncology, Moores Cancer Center, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Laurie L. Parker
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Center for Cancer Research, Purdue University, West Lafayette, IN 47907, Fax: (+001) 765-496-1496
| |
Collapse
|
17
|
Role of α(5)β(1) Integrin Up-regulation in Radiation-Induced Invasion by Human Pancreatic Cancer Cells. Transl Oncol 2011; 4:282-92. [PMID: 21966545 DOI: 10.1593/tlo.11133] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 05/09/2011] [Accepted: 05/16/2011] [Indexed: 01/02/2023] Open
Abstract
RADIOTHERAPY IS USED IN THE MANAGEMENT OF PANCREATIC CANCER BECAUSE OF ITS HIGH PROPENSITY FOR LOCOREGIONAL RELAPSE: one third of patients succumb to localized disease. Thus, strategies to improve the efficacy of radiotherapy in pancreatic cancer are important to pursue. We used naturally serum-free, selectively permeable basement membranes and confocal microscopy of fluorescent antibody-stained human Panc-1, MiaPaCa-2, and BxPC-3 pancreatic cancer cell lines to investigate the effects of ionizing radiation on α(5)β(1) integrin fibronectin receptor expression and on α(5)β(1)-mediated invasion. We report that radiation rapidly induces pancreatic cancer cell invasion, and that radiation-induced invasion is caused by up-regulation of α(5)β(1) integrin fibronectin receptors by transcriptional and/or postendocytic recycling mechanisms. We also report that radiation causes α(5)β(1) up-regulation in Panc-1, MiaPaCa-2, and BxPC-3 tumor xenografts and that upregulated α(5)β(1) colocalizes with upregulated early or late endosomes in Panc-1 or BxPC-3 tumors, respectively, although it may colocalize significantly with both endosome types in MiaPaCa-2 tumors. Our results suggest that systemic inhibition of α(5)β(1)-mediated invasion might be an effective way to reduce radiation-induced pancreatic cancer cell invasion, thereby improving the efficacy of radiotherapy.
Collapse
|
18
|
Aithal KB, Kumar S, Rao BN, Udupa N, Rao SBS. Tumor Growth Inhibitory Effect of Juglone and Its Radiation Sensitizing Potential. Integr Cancer Ther 2011; 11:68-80. [DOI: 10.1177/1534735411403477] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The present study aimed at evaluating the anticancer and radiosensitizing potential of juglone against a chemoresistant and radioresistant tumor (B16F1 melanoma) growing on C57BL/6J mice. Volume doubling time, growth delay, and median survival were used to assess the in vivo anticancer and radiosensitizing potential of juglone. In vitro radiosensitizing potential of juglone was studied using clonogenic, comet, and reactive oxygen species induction assays. Treatment of tumor-bearing mice with sublethal doses of juglone caused a dose-dependent inhibition of tumor growth as evident from the growth delay and median survival values. Comet assay using tumor tissue and blood showed differential toxicity of juglone, where higher levels of DNA damage was seen in tumor tissue compared with blood cells. Pretreatment of tumor-bearing mice with optimum dose of juglone before radiation resulted in significant tumor growth inhibition compared with radiation alone. From the clonogenic assay, the authors observed a sensitization enhancement ratio of 1.37 for the combination treatment compared with radiation alone. Furthermore, comet assay studies revealed the potential of juglone to enhance the radiation-induced DNA damage and cause a delay in its repair. Juglone pretreatment before radiation also resulted in a significant elevation in the intracellular reactive oxygen species levels compared with radiation alone. In conclusion, the results of this study show the potential of juglone to inhibit the growth of melanoma in vivo. The study also revealed the potential of juglone to augment the radiation-induced cell death of melanoma cells, which may be attributed to oxidative stress–mediated DNA damage and its delayed repair.
Collapse
Affiliation(s)
| | - Sunil Kumar
- Manipal University, Manipal, Karnataka, India
| | | | | | | |
Collapse
|
19
|
Weigel MT, Dahmke L, Schem C, Bauerschlag DO, Weber K, Niehoff P, Bauer M, Strauss A, Jonat W, Maass N, Mundhenke C. In vitro effects of imatinib mesylate on radiosensitivity and chemosensitivity of breast cancer cells. BMC Cancer 2010; 10:412. [PMID: 20691121 PMCID: PMC2925350 DOI: 10.1186/1471-2407-10-412] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 08/09/2010] [Indexed: 01/08/2023] Open
Abstract
Background Breast cancer treatment is based on a combination of adjuvant chemotherapy followed by radiotherapy effecting intracellular signal transduction. With the tyrosine kinase inhibitors new targeted drugs are available. Imatinib mesylate is a selective inhibitor of bcr-abl, PRGFR alpha, beta and c-kit. The purpose of this study was to determine whether Imatinib has an influence on the effectiveness of radiotherapy in breast cancer cell lines and if a combination of imatinib with standard chemotherapy could lead to increased cytoreduction. Methods Colony-forming tests of MCF 7 and MDA MB 231 were used to study differences in cell proliferation under incubation with imatinib and radiation. Changes in expression and phosphorylation of target receptors were detected using western blot. Cell proliferation, migration and apoptosis assays were performed combining imatinib with doxorubicin. Results The combination of imatinib and radiotherapy showed a significantly stronger inhibition of cell proliferation compared to single radiotherapy. Differences in PDGFR expression could not be detected, but receptor phosphorylation was significantly inhibited when treated with imatinib. Combination of imatinib with standard chemotherapy lead to an additive effect on cell growth inhibition compared to single treatment. Conclusions Imatinib treatment combined with radiotherapy leads in breast cancer cell lines to a significant benefit which might be influenced through inhibition of PDGFR phosphorylation. Combining imatinib with chemotherapy enhances cytoreductive effects. Further in vivo studies are needed to evaluate the benefit of Imatinib in combination with radiotherapy and chemotherapy on the treatment of breast cancer.
Collapse
Affiliation(s)
- Marion T Weigel
- Department of Obstetrics and Gynecology, Breast Center, University of Kiel, Arnold-Heller Strasse 3, 24105 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|