1
|
Lyng FM, Azzam EI. Abscopal Effects, Clastogenic Effects and Bystander Effects: 70 Years of Non-Targeted Effects of Radiation. Radiat Res 2024; 202:355-367. [PMID: 38986531 DOI: 10.1667/rade-24-00040.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 07/12/2024]
Abstract
In vitro and in vivo observations accumulated over several decades have firmly shown that the biological effects of ionizing radiation can spread from irradiated cells/tissues to non-targeted cells/tissues. Redox-modulated intercellular communication mechanisms that include a role for secreted factors and gap junctions, can mediate these non-targeted effects. Clearly, the expression of such effects and their transmission to progeny cells has implications for issues related to radiation protection. Their elucidation is also relevant towards enhancing the efficacy of cancer radiotherapy and reducing its impact on the development of normal tissue toxicities. In addition, the study of non-targeted effects is pertinent to our basic understanding of intercellular communications under conditions of oxidative stress. This review will trace the history of non-targeted effects of radiation starting with early reports of abscopal effects which described radiation induced effects in tissues distant from the site of radiation exposure. A related effect involved the production of clastogenic factors in plasma following irradiation which can induce chromosome damage in unirradiated cells. Despite these early reports suggesting non-targeted effects of radiation, the classical paradigm that a direct deposition of energy in the nucleus was required still dominated. This paradigm was challenged by papers describing radiation induced bystander effects. This review will cover mechanisms of radiation-induced bystander effects and the potential impacts on radiation protection and radiation therapy.
Collapse
Affiliation(s)
- Fiona M Lyng
- Radiation and Environmental Science Centre, FOCAS Research Institute
- School of Physics, Clinical and Optometric Sciences, Technological University Dublin, Dublin, Ireland
| | - Edouard I Azzam
- Department of Radiology, Rutgers New Jersey Medical School Cancer Center, Newark, New Jersey
| |
Collapse
|
2
|
Mothersill C, Seymour C, Cocchetto A, Williams D. Factors Influencing Effects of Low-dose Radiation Exposure. HEALTH PHYSICS 2024; 126:296-308. [PMID: 38526248 DOI: 10.1097/hp.0000000000001816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
ABSTRACT It is now well accepted that the mechanisms induced by low-dose exposures to ionizing radiation (LDR) are different from those occurring after high-dose exposures. However, the downstream effects of these mechanisms are unclear as are the quantitative relationships between exposure, effect, harm, and risk. In this paper, we will discuss the mechanisms known to be important with an overall emphasis on how so-called "non-targeted effects" (NTE) communicate and coordinate responses to LDR. Targeted deposition of ionizing radiation energy in cells causing DNA damage is still regarded as the dominant trigger leading to all downstream events whether targeted or non-targeted. We regard this as an over-simplification dating back to formal target theory. It ignores that last 100 y of biological research into stress responses and signaling mechanisms in organisms exposed to toxic substances, including ionizing radiation. We will provide evidence for situations where energy deposition in cellular targets alone cannot be plausible as a mechanism for LDR effects. An example is where the energy deposition takes place in an organism not receiving the radiation dose. We will also discuss how effects after LDR depend more on dose rate and radiation quality rather than actual dose, which appears rather irrelevant. Finally, we will use recent evidence from studies of cataract and melanoma induction to suggest that after LDR, post-translational effects, such as protein misfolding or defects in energy metabolism or mitochondrial function, may dominate the etiology and progression of the disease. A focus on such novel pathways may open the way to successful prophylaxis and development of new biomarkers for better risk assessment after low dose exposures.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Colin Seymour
- Department of Biology, McMaster University, 1280 Main St., Hamilton, ON, Canada L8S 4L8
| | - Alan Cocchetto
- The National CFIDS Foundation, 285 Beach Ave., Hull, MA 02045
| | - David Williams
- Cambridge University, The Old Schools, Trinity Lane, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
3
|
Expression of miRNA-Targeted and Not-Targeted Reporter Genes Shows Mutual Influence and Intercellular Specificity. Int J Mol Sci 2022; 23:ijms232315059. [PMID: 36499386 PMCID: PMC9740606 DOI: 10.3390/ijms232315059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
The regulation of translation by RNA-induced silencing complexes (RISCs) composed of Argonaute proteins and micro-RNAs is well established; however, the mechanisms underlying specific cellular responses to miRNAs and how specific complexes arise are not completely clear. To explore these questions, we performed experiments with Renilla and firefly luciferase reporter genes transfected in a psiCHECK-2 plasmid into human HCT116 or Me45 cells, where only the Renilla gene contained sequences targeted by microRNAs (miRNAs) in the 3'UTR. The effects of targeting were miRNA-specific; miRNA-21-5p caused strong inhibition of translation, whereas miRNA-24-3p or Let-7 family caused no change or an increase in reporter Renilla luciferase synthesis. The mRNA-protein complexes formed by transcripts regulated by different miRNAs differed from each other and were different in different cell types, as shown by sucrose gradient centrifugation. Unexpectedly, the presence of miRNA targets on Renilla transcripts also affected the expression of the co-transfected but non-targeted firefly luciferase gene in both cell types. Renilla and firefly transcripts were found in the same sucrose gradient fractions and specific anti-miRNA oligoribonucleotides, which influenced the expression of the Renilla gene, and also influenced that of firefly gene. These results suggest that, in addition to targeted transcripts, miRNAs may also modulate the expression of non-targeted transcripts, and using the latter to normalize the results may cause bias. We discuss some hypothetical mechanisms which could explain the observed miRNA-induced effects.
Collapse
|
4
|
Mukherjee S, Dutta A, Chakraborty A. The interaction of oxidative stress with MAPK, PI3/AKT, NF-κB, and DNA damage kinases influences the fate of γ-radiation-induced bystander cells. Arch Biochem Biophys 2022; 725:109302. [DOI: 10.1016/j.abb.2022.109302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022]
|
5
|
Rzeszowska-Wolny J, Hudy D, Biernacki K, Ciesielska S, Jaksik R. Involvement of miRNAs in cellular responses to radiation. Int J Radiat Biol 2022; 98:479-488. [PMID: 35030053 DOI: 10.1080/09553002.2022.2028923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Exposure of living cells to ionizing radiation has different consequences, depending on the dose and cell type. Changes of gene expression at the level of transcription and translation, including those regulated by microRNAs (miRNAs), play a role in intrinsic radiosensitivity of different cells and define their fate, survival or death. The aim of our work was to examine how ionizing radiation may influence the expression of genes regulated by different miRNAs and miRNA biogenesis. MATERIALS AND METHODS The work was performed on cultured human melanoma Me45 cells, transiently transfected with plasmids containing Renilla luciferase reporter gene targeted by miRNAs Let-7, miR-21 or miR-24. The levels of reporter mRNAs and mRNAs coding for proteins participating in miRNA biogenesis were assayed at different time points in irradiated and non-irradiated cells using RT-qPCR, and reporter protein by luciferase activity assays. MiRNA-targeted motifs in mRNAs coding for proteins engaged in miRNA biogenesis were extracted from the miRTarBase database. RESULTS Messenger RNA and protein levels of transfected luciferase genes fluctuated in time in patterns which depended on the type of miRNA regulation and changed upon irradiation of the cells. The average levels of reporter mRNAs were higher in irradiated cells, whereas the levels of proteins changed in either direction. Radiation also influenced the levels of miRNAs and the expression of genes engaged in their biogenesis suggesting that the changes in gene expression following ionizing radiation result mainly from these changes in expression of genes regulating miRNA biogenesis and the influence of miRNA on mRNA translation. CONCLUSIONS Currently, the responses of cells to ionizing radiation are mainly ascribed to changes of their redox conditions and increased intracellular levels of ROS, but the experiments described here suggest that a further important factor is modulation of translation through changes in biogenesis and levels of miRNAs.
Collapse
Affiliation(s)
- Joanna Rzeszowska-Wolny
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Dorota Hudy
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Krzysztof Biernacki
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Roman Jaksik
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland.,Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| |
Collapse
|
6
|
Calaf GM, Crispin LA, Roy D, Aguayo F, Muñoz JP, Bleak TC. Gene Signatures Induced by Ionizing Radiation as Prognostic Tools in an In Vitro Experimental Breast Cancer Model. Cancers (Basel) 2021; 13:4571. [PMID: 34572798 PMCID: PMC8465284 DOI: 10.3390/cancers13184571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to analyze the expression of genes involved in radiation, using an Affymetrix system with an in vitro experimental breast cancer model developed by the combined treatment of low doses of high linear energy transfer (LET) radiation α particle radiation and estrogen yielding different stages in a malignantly transformed breast cancer cell model called Alpha model. Altered expression of different molecules was detected in the non-tumorigenic Alpha3, a malignant cell line transformed only by radiation and originally derived from the parental MCF-10F human cell line; that was compared with the Alpha 5 cell line, another cell line exposed to radiation and subsequently grown in the presence 17β-estradiol. This Alpha5, a tumorigenic cell line, originated the Tumor2 cell line. It can be summarized that the Alpha 3 cell line was characterized by greater gene expression of ATM and IL7R than control, Alpha5, and Tumor2 cell lines, it presented higher selenoprotein gene expression than control and Tumor2; epsin 3 gene expression was higher than control; stefin A gene expression was higher than Alpha5; and metallothionein was higher than control and Tumor2 cell line. Therefore, radiation, independently of estrogen, induced increased ATM, IL7R, selenoprotein, GABA receptor, epsin, stefin, and metallothioneins gene expression in comparison with the control. Results showed important findings of genes involved in cancers of the breast, lung, nervous system, and others. Most genes analyzed in these studies can be used for new prognostic tools and future therapies since they affect cancer progression and metastasis. Most of all, it was revealed that in the Alpha model, a breast cancer model developed by the authors, the cell line transformed only by radiation, independently of estrogen, was characterized by greater gene expression than other cell lines. Understanding the effect of radiotherapy in different cells will help us improve the clinical outcome of radiotherapies. Thus, gene signature has been demonstrated to be specific to tumor types, hence cell-dependency must be considered in future treatment planning. Molecular and clinical features affect the results of radiotherapy. Thus, using gene technology and molecular information is possible to improve therapies and reduction of side effects while providing new insights into breast cancer-related fields.
Collapse
Affiliation(s)
- Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | - Leodan A. Crispin
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Debasish Roy
- Department of Natural Sciences, Hostos College of the City University of New York, Bronx, NY 10451, USA;
| | - Francisco Aguayo
- Laboratorio Oncovirología, Programa de Virología, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago 8380000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| | - Tammy C. Bleak
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (L.A.C.); (J.P.M.); (T.C.B.)
| |
Collapse
|
7
|
Du Y, Du S, Liu L, Gan F, Jiang X, Wangrao K, Lyu P, Gong P, Yao Y. Radiation-Induced Bystander Effect can be Transmitted Through Exosomes Using miRNAs as Effector Molecules. Radiat Res 2020; 194:89-100. [PMID: 32343639 DOI: 10.1667/rade-20-00019.1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 02/05/2023]
Abstract
The radiation-induced bystander effect (RIBE) is a destructive reaction in nonirradiated cells and is one primary factor in determining the efficacy and success of radiation therapy in the field of cancer treatment. Previously reported studies have shown that the RIBE can be mediated by exosomes that carry miRNA components within. Exosomes, which are one type of cell-derived vesicle, exist in different biological conditions and serve as an important additional pathway for signal exchange between cells. In addition, exosome-derived miRNAs are confirmed to play an important role in RIBE, activating the bystander effect and genomic instability after radiotherapy. After investigating the field of RIBE, it is important to understand the mechanisms and consequences of biological effects as well as the role of exosomes and exosomal miRNAs therein, from different sources and under different circumstances, respectively. More discoveries could help to establish early interventions against RIBE while improving the efficacy of radiotherapy. Meanwhile, measures that would alleviate or even inhibit RIBE to some extent may exist in the near future.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shufang Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feihong Gan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoge Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kaijuan Wangrao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Ghasemi Z, Tahmasebi-Birgani MJ, Ghafari Novin A, Motlagh PE, Teimoori A, Ghadiri A, Pourghadamyari H, Sarli A, Khanbabaei H. Fractionated radiation promotes proliferation and radioresistance in bystander A549 cells but not in bystander HT29 cells. Life Sci 2020; 257:118087. [PMID: 32702442 DOI: 10.1016/j.lfs.2020.118087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
AIMS Recent studies suggest that direct exposure of cells to fractionated radiotherapy might induce radioresistance. However, the effects of fractionated radiotherapy on the non-irradiated bystander cells remain unclear. We hypothesized that fractionated radiotherapy could enhance radioresistance and proliferation of bystander cells. MAIN METHODS Human tumor cell lines, including A549 and HT29 were irradiated (2 Gy per day). The irradiated cells (either A549 or HT29) were co-cultured with non-irradiated cells of the same line using transwell co-culture system. Tumor cell proliferation, radioresistance and apoptosis were measured using MTT assay, clonogenic survival assay and Annexin-V in bystander cells, respectively. In addition, activation of Chk1 (Ser 317), Chk2 (Thr 68) and Akt (Ser473) were measured via western blot. KEY FINDINGS Irradiated HT29 cells induced conventional bystander effects detected as modulation of clonogenic survival parameters (decreased area under curve, D10 and ED50 and increased α) and proliferation in recipient neighbors. While, irradiated A549 cells significantly enhanced the radioresistance and proliferation of bystander cells. These changes were accompanied with enhanced activation of Chk1, Chk2 and Akt in non-irradiated bystander A549 cells. Moreover, both bystander effects (damaging and protective) were mediated through secreted factors. SIGNIFICANCE These findings suggest that fractionated radiotherapy could promote proliferation and radioresistance of bystander cells probably through survival and proliferation pathways.
Collapse
Affiliation(s)
- Zahra Ghasemi
- Department of Molecular Genetics, Faculty of Modern Sciences, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | | | - Arefeh Ghafari Novin
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Esmaili Motlagh
- Department of Molecular and Cell Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, General Campus, Tehran, Iran
| | - Ali Teimoori
- Department of Virology, Faculty of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Ata Ghadiri
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Pourghadamyari
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolazim Sarli
- Department of Medical Genetics, Medical Science School, Tarbiat Modares University, Tehran, Iran
| | - Hashem Khanbabaei
- Department of Medical Physics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
9
|
Bil P, Ciesielska S, Jaksik R, Rzeszowska-Wolny J. Circuits Regulating Superoxide and Nitric Oxide Production and Neutralization in Different Cell Types: Expression of Participating Genes and Changes Induced by Ionizing Radiation. Antioxidants (Basel) 2020; 9:antiox9080701. [PMID: 32756515 PMCID: PMC7463469 DOI: 10.3390/antiox9080701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/21/2022] Open
Abstract
Superoxide radicals, together with nitric oxide (NO), determine the oxidative status of cells, which use different pathways to control their levels in response to stressing conditions. Using gene expression data available in the Cancer Cell Line Encyclopedia and microarray results, we compared the expression of genes engaged in pathways controlling reactive oxygen species and NO production, neutralization, and changes in response to the exposure of cells to ionizing radiation (IR) in human cancer cell lines originating from different tissues. The expression of NADPH oxidases and NO synthases that participate in superoxide radical and NO production was low in all cell types. Superoxide dismutase, glutathione peroxidase, thioredoxin, and peroxiredoxins participating in radical neutralization showed high expression in nearly all cell types. Some enzymes that may indirectly influence superoxide radical and NO levels showed tissue-specific expression and differences in response to IR. Using fluorescence microscopy and specific dyes, we followed the levels and the distribution of superoxide and NO radicals in living melanoma cells at different times after exposure to IR. Directly after irradiation, we observed an increase of superoxide radicals and NO coexistent in the same subcellular locations, suggesting a switch of NO synthase to the production of superoxide radicals.
Collapse
Affiliation(s)
- Patryk Bil
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (S.C.); (R.J.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (S.C.); (R.J.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Roman Jaksik
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (S.C.); (R.J.)
| | - Joanna Rzeszowska-Wolny
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; (P.B.); (S.C.); (R.J.)
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
- Correspondence:
| |
Collapse
|
10
|
Ding N, Hua J, He J, Lu D, Wei W, Zhang Y, Zhou H, Zhang L, Liu Y, Zhou G, Wang J. The Role of MiR-5094 as a Proliferation Suppressor during Cellular Radiation Response via Downregulating STAT5b. J Cancer 2020; 11:2222-2233. [PMID: 32127949 PMCID: PMC7052932 DOI: 10.7150/jca.39679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/22/2019] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in the regulation of cellular stress responses. We previously uncovered 10 novel human miRNAs which are induced by X-ray irradiation in HeLa cells using Solexa deep sequencing. The most highly expressed new miRNA, miR-5094, was predicted to target STAT5b. This study wonders whether miR-5094 participates in cellular radiation response via STAT5b. Firstly, direct interaction between miRNA-5094 and the STAT5b 3'-UTR was confirmed by luciferase reporter assay. Then, the radiation responsive expression of miR-5094 and STAT5b were measured in HeLa and Jurkat cells, and the expressions of down-stream genes of STAT5b after ionizing radiation (IR) were detected in HeLa cells. At last, the effects of miR-5094 on survival fraction, cell proliferation, cell cycle arrest and apoptosis induced by IR were investigated in HeLa cells, Jurkat cells and human peripheral blood T cells. It was found that up-regulation of miR-5094 by radiation induction or miRNA mimic transfection suppressed expression of STAT5b, and consequently decreased the transcription of down-stream Igf-1 and Bcl-2. Additionally, over expression of miR-5094 resulted in proliferation suppression and knockdown of miR-5094 by miRNA inhibitor after irradiation partially reversed the proliferation suppression induced by miR-5094 in HeLa cells, Jurkat cells and CD4+ T cells. Collectively, our findings demonstrate that up-regulation of miR-5094 down-regulated the expression of STAT5b, thereby suppressing cell proliferation after X-ray irradiation.
Collapse
Affiliation(s)
- Nan Ding
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junrui Hua
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jinpeng He
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Dong Lu
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Wenjun Wei
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanan Zhang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Heng Zhou
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Liying Zhang
- Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Guangming Zhou
- Medical College of Soochow University, Suzhou 215123, China
| | - Jufang Wang
- Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
11
|
Mura M, Jaksik R, Lalik A, Biernacki K, Kimmel M, Rzeszowska-Wolny J, Fujarewicz K. A mathematical model as a tool to identify microRNAs with highest impact on transcriptome changes. BMC Genomics 2019; 20:114. [PMID: 30727966 PMCID: PMC6366035 DOI: 10.1186/s12864-019-5464-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 01/21/2019] [Indexed: 01/06/2023] Open
Abstract
Background Rapid changes in the expression of many messenger RNA (mRNA) species follow exposure of cells to ionizing radiation. One of the hypothetical mechanisms of this response may include microRNA (miRNA) regulation, since the amounts of miRNAs in cells also vary upon irradiation. To address this possibility, we designed experiments using cancer-derived cell lines transfected with luciferase reporter gene containing sequences targeted by different miRNA species in its 3′- untranslated region. We focus on the early time-course response (1 h past irradiation) to eliminate secondary mRNA expression waves. Results Experiments revealed that the irradiation-induced changes in the mRNA expression depend on the miRNAs which interact with mRNA. To identify the strongest interactions, we propose a mathematical model which predicts the mRNA fold expression changes, caused by perturbation of microRNA-mRNA interactions. Model was applied to experimental data including various cell lines, irradiation doses and observation times, both ours and literature-based. Comparison of modelled and experimental mRNA expression levels given miRNA level changes allows estimating how many and which miRNAs play a significant role in transcriptome response to stress conditions in different cell types. As an example, in the human melanoma cell line the comparison suggests that, globally, a major part of the irradiation-induced changes of mRNA expression can be explained by perturbed miRNA-mRNA interactions. A subset of about 30 out of a few hundred miRNAs expressed in these cells appears to account for the changes. These miRNAs play crucial roles in regulatory mechanisms observed after irradiation. In addition, these miRNAs have a higher average content of GC and a higher number of targeted transcripts, and many have been reported to play a role in the development of cancer. Conclusions Our proposed mathematical modeling approach may be used to identify miRNAs which participate in responses of cells to ionizing radiation, and other stress factors such as extremes of temperature, exposure to toxins, and drugs. Electronic supplementary material The online version of this article (10.1186/s12864-019-5464-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marzena Mura
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland. .,, Ardigen S.A., ul. Bobrzyńskiego 14, 30-348, Cracow, Poland.
| | - Roman Jaksik
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland
| | - Anna Lalik
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland
| | - Krzysztof Biernacki
- Department of Medical and Molecular Biology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Katowice, USA
| | - Marek Kimmel
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland.,Departments of Statistics and Bioengineering, Rice University, MS 138, 6100 Main, Houston, TX, 77005, USA
| | - Joanna Rzeszowska-Wolny
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland. .,Centre of Biotechnology, Silesian University of Technology, ul. Bolesława Krzywoustego 8, 44-100, Gliwice, Poland.
| | - Krzysztof Fujarewicz
- Department of Systems Engineering, Institute of Automatic Control, Silesian University of Technology, ul. Akademicka 16, 44-100, Gliwice, Poland
| |
Collapse
|
12
|
Sokolov M, Neumann R. Changes in gene expression as one of the key mechanisms involved in radiation-induced bystander effect. Biomed Rep 2018; 9:99-111. [PMID: 30013775 PMCID: PMC6036822 DOI: 10.3892/br.2018.1110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022] Open
Abstract
The radiation-induced bystander effect (RIBE) refers to the manifestation of responses by non-targeted/non-hit cells or tissues situated in proximity to cells and tissues directly exposed to ionizing radiation (IR). The RIBE is elicited by agents and factors released by IR-hit cells. The growing body of data suggests that the underlying mechanisms of the RIBE are multifaceted depending both on the biological (characteristics of directly IR-exposed cells, bystander cells, intercellular milieu) and the physical (dose, rate and type of IR, time after exposure) factors/parameters. Although the exact identity of bystander signal(s) is yet to be identified, the published data indicate changes in gene expression for multiple types of RNA (mRNA, microRNA, mitochondrial RNA, long non-coding RNA, small nucleolar RNA) as being one of the major responses of cells and tissues in the context of the RIBE. Gene expression profiles demonstrate a high degree of variability between distinct bystander cell and tissue types. These alterations could independently, or in a signaling cascade, result in the manifestation of readily observable endpoints, including changes in viability and genomic instability. Here, the relevant publications on the gene candidates and signaling pathways involved in the RIBE are reviewed, and a framework for future studies, both in vitro and in vivo, on the genetic aspect of the RIBE is provided.
Collapse
Affiliation(s)
- Mykyta Sokolov
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald Neumann
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
13
|
Significance and nature of bystander responses induced by various agents. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:104-121. [DOI: 10.1016/j.mrrev.2017.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/05/2017] [Indexed: 02/07/2023]
|
14
|
Decrock E, Hoorelbeke D, Ramadan R, Delvaeye T, De Bock M, Wang N, Krysko DV, Baatout S, Bultynck G, Aerts A, Vinken M, Leybaert L. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1099-1120. [DOI: 10.1016/j.bbamcr.2017.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
|
15
|
Broustas CG, Xu Y, Harken AD, Chowdhury M, Garty G, Amundson SA. Impact of Neutron Exposure on Global Gene Expression in a Human Peripheral Blood Model. Radiat Res 2017; 187:433-440. [PMID: 28140791 DOI: 10.1667/rr0005.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The detonation of an improvised nuclear device would produce prompt radiation consisting of both photons (gamma rays) and neutrons. While much effort in recent years has gone into the development of radiation biodosimetry methods suitable for mass triage, the possible effect of neutrons on the endpoints studied has remained largely uninvestigated. We have used a novel neutron irradiator with an energy spectrum based on that 1-1.5 km from the epicenter of the Hiroshima blast to begin examining the effect of neutrons on global gene expression, and the impact this may have on the development of gene expression signatures for radiation biodosimetry. We have exposed peripheral blood from healthy human donors to 0.1, 0.3, 0.5 or 1 Gy of neutrons ex vivo using our neutron irradiator, and compared the transcriptomic response 24 h later to that resulting from sham exposure or exposure to 0.1, 0.3, 0.5, 1, 2 or 4 Gy of photons (X rays). We identified 125 genes that responded significantly to both radiation qualities as a function of dose, with the magnitude of response to neutrons generally being greater than that seen after X-ray exposure. Gene ontology analysis suggested broad involvement of the p53 signaling pathway and general DNA damage response functions across all doses of both radiation qualities. Regulation of immune response and chromatin-related functions were implicated only following the highest doses of neutrons, suggesting a physiological impact of greater DNA damage. We also identified several genes that seem to respond primarily as a function of dose, with less effect of radiation quality. We confirmed this pattern of response by quantitative real-time RT-PCR for BAX, TNFRSF10B, ITLN2 and AEN and suggest that gene expression may provide a means to differentiate between total dose and a neutron component.
Collapse
Affiliation(s)
- Constantinos G Broustas
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032; and
| | - Yanping Xu
- b Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Andrew D Harken
- b Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Mashkura Chowdhury
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032; and
| | - Guy Garty
- b Radiological Research Accelerator Facility, Columbia University, Irvington, New York 10533
| | - Sally A Amundson
- a Center for Radiological Research, Columbia University Medical Center, New York, New York 10032; and
| |
Collapse
|
16
|
Al-Mayah AHJ, Bright SJ, Bowler DA, Slijepcevic P, Goodwin E, Kadhim MA. Exosome-Mediated Telomere Instability in Human Breast Epithelial Cancer Cells after X Irradiation. Radiat Res 2016; 187:98-106. [PMID: 27959588 DOI: 10.1667/rr14201.1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In directly irradiating cells, telomere metabolism is altered and similar effects have been observed in nontargeted cells. Exosomes and their cargo play dominant roles in communicating radiation-induced bystander effects with end points related to DNA damage. Here we report novel evidence that exosomes are also responsible for inducing telomere-related bystander effects. Breast epithelial cancer cells were exposed to either 2 Gy X rays, or exposed to irradiated cell conditioned media (ICCM), or exosomes purified from ICCM. Compared to control cells, telomerase activity decreased in the 2 Gy irradiated cells and both bystander samples after one population doubling. At the first population doubling, telomere length was shorter in the 2 Gy irradiated sample but not in the bystander samples. By 24 population doublings telomerase activity recovered to control levels in all samples; however, the 2 Gy irradiated sample continued to demonstrate short telomeres and both bystander samples acquired shorter telomeres. RNase treatment of exosomes prevented the bystander effects on telomerase and telomere length that were observed at 1 population doubling and 24 population doublings, respectively. Thermal denaturation by boiling eliminated the reduction of telomere length in bystander samples, suggesting that the protein fraction of exosomes also contributes to the telomeric effect. RNase treatment plus boiling abrogated all telomere-related effects in directly irradiated and bystander cell populations. These findings suggest that both proteins and RNAs of exosomes can induce alterations in telomeric metabolism, which can instigate genomic instability in epithelial cancer cells after X-ray irradiation.
Collapse
Affiliation(s)
- Ammar H J Al-Mayah
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Scott J Bright
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Debbie A Bowler
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Predrag Slijepcevic
- b Department of Life Sciences, College of Health and Life Sciences, Brunel University, London UB8 3PH, United Kingdom
| | - Edwin Goodwin
- c The New Mexico Consortium, Los Alamos, New Mexico 87544
| | - Munira A Kadhim
- a Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
17
|
Li J, Xu J, Lu Y, Qiu L, Xu W, Lu B, Hu Z, Chu Z, Chai Y, Zhang J. MASM, a Matrine Derivative, Offers Radioprotection by Modulating Lethal Total-Body Irradiation-Induced Multiple Signaling Pathways in Wistar Rats. Molecules 2016; 21:molecules21050649. [PMID: 27196884 PMCID: PMC6273364 DOI: 10.3390/molecules21050649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/25/2016] [Accepted: 05/06/2016] [Indexed: 01/09/2023] Open
Abstract
Matrine is an alkaloid extracted from Sophora flavescens Ait and has many biological activities, such as anti-inflammatory, antitumor, anti-fibrosis, and immunosuppressive properties. In our previous studies, the matrine derivative MASM was synthesized and exhibited potent inhibitory activity against liver fibrosis. In this study, we mainly investigated its protection against lethal total-body irradiation (TBI) in rats. Administration of MASM reduced the radiation sickness characteristics and increased the 30-day survival of rats before or after lethal TBI. Ultrastructural observation illustrated that pretreatment of rats with MASM significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed that pretreatment with MASM had a dramatic effect on gene expression changes caused by TBI. Pretreatment with MASM prevented differential expression of 53% (765 genes) of 1445 differentially expressed genes induced by TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 21 pathways, such as metabolic pathways, pathways in cancer, and mitogen-activated protein kinase (MAPK) pathways. Our data indicated that pretreatment of rats with MASM modulated these pathways induced by TBI, suggesting that the pretreatment with MASM might provide the protective effects on lethal TBI mainly or partially through the modulation of these pathways, such as multiple MAPK pathways. Therefore, MASM has the potential to be used as an effective therapeutic or radioprotective agent to minimize irradiation damages and in combination with radiotherapy to improve the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Jianzhong Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Jing Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
- Department of Pharmacy, East Hospital, Dongji University, Shanghai 200085, China.
| | - Yiming Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Lei Qiu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Weiheng Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Bin Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhenlin Hu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhiyong Chu
- The Naval Medical Research Institute, Shanghai 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Junping Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
18
|
Multidimensional extended spatial evolutionary games. Comput Biol Med 2016; 69:315-27. [DOI: 10.1016/j.compbiomed.2015.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 10/23/2022]
|
19
|
Li J, Xu J, Xu W, Qi Y, Lu Y, Qiu L, Hu Z, Chu Z, Chai Y, Zhang J. Protective Effects of Hong Shan Capsule against Lethal Total-Body Irradiation-Induced Damage in Wistar Rats. Int J Mol Sci 2015; 16:18938-55. [PMID: 26274957 PMCID: PMC4581280 DOI: 10.3390/ijms160818938] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 01/15/2023] Open
Abstract
Hong Shan Capsule (HSC), a crude drug of 11 medicinal herbs, was used in clinical practice for the treatment of radiation injuries in China. In this study, we investigated its protection in rats against acute lethal total-body irradiation (TBI). Pre-administration of HSC reduced the radiation sickness characteristics, while increasing the 30-day survival of the irradiated rats. Administration of HSC also reduced the radiation sickness characteristics and increased the 30-day survival of mice after exposure to lethal TBI. Ultrastructural observation illustrated that the pretreatment of rats with HSC significantly attenuated the TBI-induced morphological changes in the different organs of irradiated rats. Gene expression profiles revealed the dramatic effect of HSC on alterations of gene expression caused by lethal TBI. Pretreatment with HSC prevented differential expression of 66% (1398 genes) of 2126 genes differentially expressed in response to TBI. Pathway enrichment analysis indicated that these genes were mainly involved in a total of 32 pathways, such as pathways in cancer and the mitogen-activated protein kinase (MAPK) signaling pathway. Our analysis indicated that the pretreatment of rats with HSC modulated these pathways induced by lethal TBI, such as multiple MAPK pathways, suggesting that pretreatment with HSC might provide protective effects on lethal TBI mainly or partially through the modulation of these pathways. Our data suggest that HSC has the potential to be used as an effective therapeutic or radio-protective agent to minimize irradiation damage.
Collapse
Affiliation(s)
- Jianzhong Li
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Jing Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
- Department of Pharmacy, East Hospital, Dongji University, Shanghai 200085, China.
| | - Weiheng Xu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yang Qi
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Yiming Lu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Lei Qiu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhenlin Hu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Zhiyong Chu
- Department of Preventive Medicine, Naval Medical Research Institute, Shanghai 200433, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Junping Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
20
|
Radiation quality-dependence of bystander effect in unirradiated fibroblasts is associated with TGF-β1-Smad2 pathway and miR-21 in irradiated keratinocytes. Sci Rep 2015; 5:11373. [PMID: 26080011 PMCID: PMC4468817 DOI: 10.1038/srep11373] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/21/2015] [Indexed: 01/02/2023] Open
Abstract
Traditional radiation biology states that radiation causes damage only in cells traversed by ionizing radiation. But radiation-induced bystander effect (RIBE), which refers to the biological responses in unirradiated cells when the neighboring cells are exposed to radiation, challenged this old dogma and has become a new paradigm of this field. By nature, RIBEs are the consequences of intercellular communication between irradiated and unirradiated cells. However, there are still some important questions remain unanswered such as whether RIBE is dependent on radiation quality, what are the determining factors if so, etc. Using a transwell co-culture system, we found that HaCaT keratinocytes irradiated with α-particles but not X-rays could induce bystander micronucleus formation in unirradiated WS1 fibroblasts after co-culture. More importantly, the activation of TGF-β1-Smad2 pathway and the consistent decrease of miR-21 level in α-irradiated HaCaT cells were essential to the micronucleus induction in bystander WS1 cells. On the other hand, X-irradiation did not induce bystander effect in unirradiated WS1 cells, accompanied by lack of Smad2 activation and consistent decrease of miR-21 in X-irradiated HaCaT cells. Taken together, these results suggest that the radiation quality-dependence of bystander effect may be associated with the TGF-β1-Smad2 pathway and miR-21 in irradiated cells.
Collapse
|
21
|
Al-Mayah A, Bright S, Chapman K, Irons S, Luo P, Carter D, Goodwin E, Kadhim M. The non-targeted effects of radiation are perpetuated by exosomes. Mutat Res 2014; 772:38-45. [PMID: 25772109 DOI: 10.1016/j.mrfmmm.2014.12.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/05/2014] [Accepted: 12/22/2014] [Indexed: 12/12/2022]
Abstract
Exosomes contain cargo material from endosomes, cytosol, plasma membrane and microRNA molecules, they are released by a number of non-cancer and cancer cells into both the extracellular microenvironment and body fluids such as blood plasma. Recently we demonstrated radiation-induced non-targeted effects [NTE: genomic instability (GI) and bystander effects (BE)] are partially mediated by exosomes, particularly the RNA content. However the mechanistic role of exosomes in NTE is yet to be fully understood. The present study used MCF7 cells to characterise the longevity of exosome-induced activity in the progeny of irradiated and unirradiated bystander cells. Exosomes extracted from conditioned media of irradiated and bystander progeny were added to unirradiated cells. Analysis was carried out at 1 and 20/24 population doublings following medium/exosome transfer for DNA/chromosomal damage. Results confirmed exosomes play a significant role in mediating NTE of ionising radiation (IR). This effect was remarkably persistent, observed >20 doublings post-irradiation in the progeny of bystander cells. Additionally, cell progeny undergoing a BE were themselves capable of inducing BE in other cells via exosomes they released. Furthermore we investigated the role of exosome cargo. Culture media from cells exposed to 2 Gy X-rays was subjected to ultracentrifugation and four inoculants prepared, (a) supernatants with exosomes removed, and pellets with (b) exosome proteins denatured, (c) RNA degraded, and (d) a combination of protein-RNA inactivation. These were added to separate populations of unirradiated cells. The BE was partially inhibited when either exosome protein or exosome RNA were inactivated separately, whilst combined RNA-protein inhibition significantly reduced or eliminated the BE. These results demonstrate that exosomes are associated with long-lived signalling of the NTE of IR. Both RNA and protein molecules of exosomes work in a synergistic manner to initiate NTE, spread these effects to naïve cells, and perpetuate GI in the affected cells.
Collapse
Affiliation(s)
- Ammar Al-Mayah
- Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Scott Bright
- Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Kim Chapman
- Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Sarah Irons
- Insect Virus Research Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Ping Luo
- Izon Science Ltd., The Oxford Science Park, Magdalen Centre, Robert Robinson Avenue, Oxford OX4 4GA, United Kingdom
| | - David Carter
- Chromatin and non-coding RNA, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom
| | - Edwin Goodwin
- The New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Munira Kadhim
- Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP, United Kingdom.
| |
Collapse
|
22
|
Jiang Y, Chen X, Tian W, Yin X, Wang J, Yang H. The role of TGF-β1-miR-21-ROS pathway in bystander responses induced by irradiated non-small-cell lung cancer cells. Br J Cancer 2014; 111:772-80. [PMID: 24992582 PMCID: PMC4134503 DOI: 10.1038/bjc.2014.368] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/23/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022] Open
Abstract
Background: Many studies have indicated an important implication of radiation-induced bystander effects (RIBEs) in cancer radiotherapy, but the detailed signalling remains unclear. Methods: The roles of tumour growth factor-beta1 (TGF-β1) and miR-21 in medium-mediated RIBEs in H1299 non-small-cell lung cancer cells were investigated using DNA damage, changes in proliferation and levels of reactive oxygen species (ROS) as end points. SB431542, a specific inhibitor of TGF-β type 1 receptor kinases, was used to inhibit TGF-β1 pathways in irradiated and bystander cells. Exogenous miR-21 regulation was achieved through inhibitor or mimic transfection. Results: Compared with relative sham-radiation-conditioned medium, radiation-conditioned medium (RCM) from irradiated cells 1 h post radiation (1-h RCM) caused an increase in ROS levels and DNA damage in bystander cells, while 18-h RCM induced cell cycle delay and proliferation inhibition. All these effects were eliminated by TGF-βR1 inhibition. One-hour RCM upregulated miR-21 expression in bystander cells, and miR-21 inhibitor abolished bystander oxidative stress and DNA damage. Eighteen-hour RCM downregulated miR-21 of bystander cells, and miR-21 mimic eliminated bystander proliferation inhibition. Furthermore, the dysregulation of miR-21 was attenuated by TGF-βR1 inhibition. Conclusions: The TGF-β1–miR-21–ROS pathway of bystander cells has an important mediating role in RIBEs in H1299 cells.
Collapse
Affiliation(s)
- Y Jiang
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - X Chen
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - W Tian
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - X Yin
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - J Wang
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| | - H Yang
- 1] School of Radiation Medicine and Protection, Medical College of Soochow University/School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Renai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province 215123, China [2] Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123, China
| |
Collapse
|
23
|
Chaudhry MA. Small Nucleolar RNA Host Genes and Long Non-Coding RNA Responses in Directly Irradiated and Bystander Cells. Cancer Biother Radiopharm 2014; 29:135-41. [DOI: 10.1089/cbr.2013.1574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, Vermont
| |
Collapse
|
24
|
MicroRNAs and reactive oxygen species: Are they in the same regulatory circuit? MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 764-765:64-71. [DOI: 10.1016/j.mrgentox.2013.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/06/2013] [Indexed: 12/20/2022]
|
25
|
Pereira S, Malard V, Ravanat JL, Davin AH, Armengaud J, Foray N, Adam-Guillermin C. Low doses of gamma-irradiation induce an early bystander effect in zebrafish cells which is sufficient to radioprotect cells. PLoS One 2014; 9:e92974. [PMID: 24667817 PMCID: PMC3965492 DOI: 10.1371/journal.pone.0092974] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/27/2014] [Indexed: 11/18/2022] Open
Abstract
The term “bystander effect” is used to describe an effect in which cells that have not been exposed to radiation are affected by irradiated cells though various intracellular signaling mechanisms. In this study we analyzed the kinetics and mechanisms of bystander effect and radioadaptation in embryonic zebrafish cells (ZF4) exposed to chronic low dose of gamma rays. ZF4 cells were irradiated for 4 hours with total doses of gamma irradiation ranging from 0.01–0.1 Gy. In two experimental conditions, the transfer of irradiated cells or culture medium from irradiated cells results in the occurrence of DNA double strand breaks in non-irradiated cells (assessed by the number of γ-H2AX foci) that are repaired at 24 hours post-irradiation whatever the dose. At low total irradiation doses the bystander effect observed does not affect DNA repair mechanisms in targeted and bystander cells. An increase in global methylation of ZF4 cells was observed in irradiated cells and bystander cells compared to control cells. We observed that pre-irradiated cells which are then irradiated for a second time with the same doses contained significantly less γ-H2AX foci than in 24 h gamma-irradiated control cells. We also showed that bystander cells that have been in contact with the pre-irradiated cells and then irradiated alone present less γ-H2AX foci compared to the control cells. This radioadaptation effect is significantly more pronounced at the highest doses. To determine the factors involved in the early events of the bystander effect, we performed an extensive comparative proteomic study of the ZF4 secretomes upon irradiation. In the experimental conditions assayed here, we showed that the early events of bystander effect are probably not due to the secretion of specific proteins neither the oxidation of these secreted proteins. These results suggest that early bystander effect may be due probably to a combination of multiple factors.
Collapse
Affiliation(s)
- Sandrine Pereira
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-Environnement/SERIS, Laboratoire d’Ecotoxicologie des Radionucléides, Cadarache, St Paul Lez Durance, France
- CRCL - UMR INSERM 1052 - CNRS 5286, Equipe de Radiobiologie, Cheney A- 1éme étage, Lyon, France
- * E-mail:
| | - Véronique Malard
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Jean-Luc Ravanat
- Laboratoire des Lésions des Acides Nucléiques, INAC/Scib UMR E3 CEA-UJF, CEA Grenoble, Grenoble, France
| | - Anne-Hélène Davin
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- CEA, DSV, IBEB, Lab Biochim System Perturb, Bagnols-sur-Cèze, France
| | - Nicolas Foray
- CRCL - UMR INSERM 1052 - CNRS 5286, Equipe de Radiobiologie, Cheney A- 1éme étage, Lyon, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire, PRP-Environnement/SERIS, Laboratoire d’Ecotoxicologie des Radionucléides, Cadarache, St Paul Lez Durance, France
| |
Collapse
|
26
|
Campa A, Balduzzi M, Dini V, Esposito G, Tabocchini MA. The complex interactions between radiation induced non-targeted effects and cancer. Cancer Lett 2013; 356:126-36. [PMID: 24139968 DOI: 10.1016/j.canlet.2013.09.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/11/2013] [Accepted: 09/26/2013] [Indexed: 01/19/2023]
Abstract
Radiation induced non-targeted effects have been widely investigated in the last two decades for their potential impact on low dose radiation risk. In this paper we will give an overview of the most relevant aspects related to these effects, starting from the definition of the low dose scenarios. We will underline the role of radiation quality, both in terms of mechanisms of interaction with the biological matter and for the importance of charged particles as powerful tools for low dose effects investigation. We will focus on cell communication, representing a common feature of non-targeted effects, giving also an overview of cancer models that have explicitly considered such effects.
Collapse
Affiliation(s)
- Alessandro Campa
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Balduzzi
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy; Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - Valentina Dini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Giuseppe Esposito
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy
| | - Maria Antonella Tabocchini
- Istituto Superiore di Sanità (ISS), Rome, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione Roma1, Gruppo Collegato Sanità, Rome, Italy.
| |
Collapse
|
27
|
Sprung CN, Ivashkevich A, Forrester HB, Redon CE, Georgakilas A, Martin OA. Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects. Cancer Lett 2013; 356:72-81. [PMID: 24041866 DOI: 10.1016/j.canlet.2013.09.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/30/2013] [Accepted: 09/08/2013] [Indexed: 12/25/2022]
Abstract
A spectrum of radiation-induced non-targeted effects has been reported during the last two decades since Nagasawa and Little first described a phenomenon in cultured cells that was later called the "bystander effect". These non-targeted effects include radiotherapy-related abscopal effects, where changes in organs or tissues occur distant from the irradiated region. The spectrum of non-targeted effects continue to broaden over time and now embrace many types of exogenous and endogenous stressors that induce a systemic genotoxic response including a widely studied tumor microenvironment. Here we discuss processes and factors leading to DNA damage induction in non-targeted cells and tissues and highlight similarities in the regulation of systemic effects caused by different stressors.
Collapse
Affiliation(s)
- Carl N Sprung
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia.
| | - Alesia Ivashkevich
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Helen B Forrester
- Centre for Innate Immunity and Infectious Diseases, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Christophe E Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Alexandros Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, Athens, Greece
| | - Olga A Martin
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Molecular Radiation Biology Laboratory, Peter MacCallum Cancer Centre and the University of Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Jella KK, Garcia A, McClean B, Byrne HJ, Lyng FM. Cell death pathways in directly irradiated cells and cells exposed to medium from irradiated cells. Int J Radiat Biol 2012; 89:182-90. [DOI: 10.3109/09553002.2013.734942] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Wakatsuki M, Magpayo N, Kawamura H, Held KD. Differential Bystander Signaling Between Radioresistant Chondrosarcoma Cells and Fibroblasts After X-Ray, Proton, Iron Ion and Carbon Ion Exposures. Int J Radiat Oncol Biol Phys 2012; 84:e103-8. [DOI: 10.1016/j.ijrobp.2012.02.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/16/2012] [Accepted: 02/23/2012] [Indexed: 11/30/2022]
|
30
|
Chaudhry MA, Omaruddin RA. Differential regulation of MicroRNA expression in irradiated and bystander cells. Mol Biol 2012. [DOI: 10.1134/s0026893312030041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Jin C, Wu S, Lu X, Liu Q, Zhang L, Yang J, Xi Q, Cai Y. Conditioned medium from actinomycin D-treated apoptotic cells induces mitochondria-dependent apoptosis in bystander cells. Toxicol Lett 2012; 211:45-53. [PMID: 22421271 DOI: 10.1016/j.toxlet.2012.02.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/25/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
Chemical-induced bystander effects have been known for several years, but the underlying mechanism is still seldom investigated. Previous researchers have found that mitomycin C and phleomycin induced micronuclei in bystander cells the same as in exposed cells. We previously demonstrated the ability of actinomycin D (ACTD) to induce bystander effects in normal Chinese hamster fibroblast V79 cells and found that conditioned medium (CM) obtained from ACTD-exposed apoptotic cells induced apoptosis in bystander cells. The present study further explores the probable mechanism of apoptosis in bystander cells. The main findings of this study are: (1) ACTD-treated CM induced apoptosis in bystander cells in a time-dependent manner, which was confirmed with morphological changes. (2) ACTD-treated CM increased the mRNA and protein levels of pro-apoptotic p53 and Bax, whereas it decreased those of anti-apoptotic Bcl-2 in bystander cells; these were all time-dependent effects. Reactive oxygen species (ROS) were also involved in apoptosis of bystander cells. (3) ACTD-treated CM reduced mitochondria membrane potential and induced cytochrome c release. (4) ACTD-treated CM induced G1 cell phase arrest, which may be another response in bystander cells when cultured with CM. These results suggest that chemical-treated CM induces p53-Bcl-2/Bax-cytochrome c signaling (i.e., mitochondria pathway)-dependent apoptosis in bystander cells, which is a kinetic response.
Collapse
Affiliation(s)
- Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang 110001, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Widel M, Przybyszewski WM, Cieslar-Pobuda A, Saenko YV, Rzeszowska-Wolny J. Bystander normal human fibroblasts reduce damage response in radiation targeted cancer cells through intercellular ROS level modulation. Mutat Res 2011; 731:117-24. [PMID: 22210495 DOI: 10.1016/j.mrfmmm.2011.12.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/28/2011] [Accepted: 12/13/2011] [Indexed: 11/26/2022]
Abstract
The radiation-induced bystander effect is a well-established phenomenon which results in damage in non-irradiated cells in response to signaling from irradiated cells. Since communication between irradiated and bystander cells could be reciprocal, we examined the mutual bystander response between irradiated cells and co-cultured with them non-irradiated recipients. Using a transwell culture system, irradiated human melanoma (Me45) cells were co-cultured with non-irradiated Me45 cells or normal human dermal fibroblasts (NHDF) and vice versa. The frequency of micronuclei and of apoptosis, ROS level, and mitochondrial membrane potential were used as the endpoints. Irradiated Me45 and NHDF cells induced conventional bystander effects detected as modest increases of the frequency of micronuclei and apoptosis in both recipient neighbors; the increase of apoptosis was especially high in NHDF cells co-cultured with irradiated Me45 cells. However, the frequencies of micronuclei and apoptosis in irradiated Me45 cells co-cultured with NHDF cells were significantly reduced in comparison with those cultured alone. This protective effect was not observed when irradiated melanomas were co-cultured with non-irradiated cells of the same line, or when irradiated NHDF fibroblasts were co-cultured with bystander melanomas. The increase of micronuclei and apoptosis in irradiated Me45 cells was paralleled by an increase in the level of intracellular reactive oxygen species (ROS), which was reduced significantly when they were co-cultured for 24h with NHDF cells. A small but significant elevation of ROS level in NHDF cells shortly after irradiation was also reduced by co-culture with non-irradiated NHDF cells. We propose that in response to signals from irradiated cells, non-irradiated NHDF cells trigger rescue signals, whose nature remains to be elucidated, which modify the redox status in irradiated cells. This inverse bystander effect may potentially have implications in clinical radiotherapy.
Collapse
Affiliation(s)
- Maria Widel
- Department of Automatics, Silesian University of Technology, Gliwice, Poland.
| | | | | | | | | |
Collapse
|
33
|
Kalanxhi E, Dahle J. Genome-wide microarray analysis of human fibroblasts in response to γ radiation and the radiation-induced bystander effect. Radiat Res 2011; 177:35-43. [PMID: 22034846 DOI: 10.1667/rr2694.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced bystander effects have been studied extensively due to their potential implications for cancer therapy and radiation protection; however, a complete understanding of the molecular mechanisms remains to be elucidated. In this study, we monitored transcriptional responses to γ radiation in irradiated and bystander fibroblasts simultaneously employing a genome-wide microarray approach to determine factors that may be modulated in the generation or propagation of the bystander effect. For the microarray data we employed analysis at both the single-gene and gene-set level to place the findings in a biological context. Unirradiated bystander fibroblasts that were recipients of growth medium harvested from irradiated cultures 2 h after exposure to 2 Gy displayed transient enrichment in gene sets belonging to ribosome, oxidative phosphorylation and neurodegenerative disease pathways associated with mitochondrial dysfunctions. The response to direct irradiation was characterized by induction of signaling and apoptosis genes and the gradual formation of a cellular immune response. A set of 14 genes, many of which were regulated by p53, were found to be induced early after irradiation (prior to medium transfer) and may be important in the generation or propagation of the bystander effect.
Collapse
Affiliation(s)
- Erta Kalanxhi
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Montebello 0310 Oslo, Norway.
| | | |
Collapse
|
34
|
Chaudhry MA, Omaruddin RA. Mitochondrial Gene Expression in Directly Irradiated and Nonirradiated Bystander Cells. Cancer Biother Radiopharm 2011; 26:657-63. [DOI: 10.1089/cbr.2010.0940] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- M. Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, Vermont
| | - Romaica A. Omaruddin
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, Vermont
| |
Collapse
|
35
|
Potter MDE, Suchowerska N, Rizvi S, McKenzie DR. Hidden stressors in the clonogenic assay used in radiobiology experiments. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2011; 34:345-50. [PMID: 21691851 DOI: 10.1007/s13246-011-0082-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
While clonogenic assays are extensively used in radiobiology, there is no widely accepted procedure for choosing the composition of the cell culture media. Cell line suppliers recommend a specific culture medium for each cell line, however a researcher will frequently customize this aspect of the protocol by supplementing the recommended support medium with additives. For example, many researchers add antibiotics, in order to avoid contamination of cells and the consequent loss of data, with little discussion of the influence of the antibiotics on the clonogenic survival of the cells. It is assumed that the effect of any variables in the growth medium on cell survival is taken into consideration by comparing the survival fraction relative to that of controls grown under the same conditions. In the search for better cancer treatment, the effect of various stressors on clonogenic cell survival is under investigation. This study seeks to identify and test potential stressors commonly introduced into the cell culture medium, which may confound the response to radiation.
Collapse
Affiliation(s)
- M D E Potter
- Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|