1
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part I: Mammary gland and digestive tract. JOURNAL OF RADIATION RESEARCH 2023; 64:210-227. [PMID: 36773323 PMCID: PMC10036108 DOI: 10.1093/jrr/rrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author. Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7116; Fax: +81-95-819-7117;
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
2
|
Ravichandran A, Clegg J, Adams MN, Hampson M, Fielding A, Bray LJ. 3D Breast Tumor Models for Radiobiology Applications. Cancers (Basel) 2021; 13:5714. [PMID: 34830869 PMCID: PMC8616164 DOI: 10.3390/cancers13225714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a leading cause of cancer-associated death in women. The clinical management of breast cancers is normally carried out using a combination of chemotherapy, surgery and radiation therapy. The majority of research investigating breast cancer therapy until now has mainly utilized two-dimensional (2D) in vitro cultures or murine models of disease. However, there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers over the past decade, highlighting a complimentary model for studies of radiotherapy, especially in conjunction with chemotherapy. In this review, we underline the effects of radiation therapy on normal and malignant breast cells and tissues, and explore the emerging opportunities that pre-clinical 3D models offer in improving our understanding of this treatment modality.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Julien Clegg
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Mark N. Adams
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Madison Hampson
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
| | - Andrew Fielding
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Laura J. Bray
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| |
Collapse
|
3
|
Jabbour SK, Williams TM, Sayan M, Miller ED, Ajani JA, Chang AC, Coleman N, El-Rifai W, Haddock M, Ilson D, Jamorabo D, Kunos C, Lin S, Liu G, Prasanna PG, Rustgi AK, Wong R, Vikram B, Ahmed MM. Potential Molecular Targets in the Setting of Chemoradiation for Esophageal Malignancies. J Natl Cancer Inst 2021; 113:665-679. [PMID: 33351071 PMCID: PMC8600025 DOI: 10.1093/jnci/djaa195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/03/2020] [Accepted: 11/30/2020] [Indexed: 11/14/2022] Open
Abstract
Although the development of effective combined chemoradiation regimens for esophageal cancers has resulted in statistically significant survival benefits, the majority of patients treated with curative intent develop locoregional and/or distant relapse. Further improvements in disease control and survival will require the development of individualized therapy based on the knowledge of host and tumor genomics and potentially harnessing the host immune system. Although there are a number of gene targets that are amplified and proteins that are overexpressed in esophageal cancers, attempts to target several of these have not proven successful in unselected patients. Herein, we review our current state of knowledge regarding the molecular pathways implicated in esophageal carcinoma, and the available agents for targeting these pathways that may rationally be combined with standard chemoradiation, with the hope that this commentary will guide future efforts of novel combinations of therapy.
Collapse
Affiliation(s)
- Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Mutlay Sayan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Eric D Miller
- Department of Radiation Oncology, The Ohio State University, Columbus, OH, USA
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew C Chang
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, Section of Thoracic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Norman Coleman
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wael El-Rifai
- Department of Surgery, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, FL, USA
| | - Michael Haddock
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - David Ilson
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | | | - Charles Kunos
- Investigational Drug Branch, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Steven Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Geoffrey Liu
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Pataje G Prasanna
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Rosemary Wong
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Bhadrasain Vikram
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mansoor M Ahmed
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
4
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
5
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
6
|
Xie C, Wu Y, Fei Z, Fang Y, Xiao S, Su H. MicroRNA-1275 induces radiosensitization in oesophageal cancer by regulating epithelial-to-mesenchymal transition via Wnt/β-catenin pathway. J Cell Mol Med 2019; 24:747-759. [PMID: 31733028 PMCID: PMC6933350 DOI: 10.1111/jcmm.14784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/16/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
Acquired radioresistance is one of the main obstacles for the anti-tumour efficacy of radiotherapy in oesophageal cancer (EC). Recent studies have proposed microRNAs (miRNAs) as important participators in the development of radioresistance in various cancers. Here, we investigated the role of miR-1275 in acquired radioresistance and epithelial-mesenchymal transition (EMT) in EC. Firstly, a radioresistant cell line KYSE-150R was established, with an interesting discovery was observed that miR-1275 was down-regulated in KYSE-150R cells compared to the parental cells. Functionally, miR-1275 inhibition elevated radioresistance in KYSE-150 cells via promoting EMT, whereas enforced expression of miR-1275 increased radiosensitivity in KYSE-150R cells by inhibiting EMT. Mechanically, we demonstrated that miR-1275 directly targeted WNT1 and therefore inactivated Wnt/β-catenin signalling pathway in EC cells. Furthermore, WNT1 depletion countervailed the promoting effect of miR-1275 suppression on KYSE-150 cell radioresistance through hampering EMT, whereas WNT1 overexpression rescued miR-1275 up-regulation-impaired EMT to reduce the sensitivity of KYSE-150R cells to radiation. Collectively, our findings suggested that miR-1275 suppressed EMT to encourage radiosensitivity in EC cells via targeting WNT1-activated Wnt/β-catenin signalling, providing a new therapeutic outlet for overcoming radioresistance of patients with EC.
Collapse
Affiliation(s)
- Congying Xie
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Youyi Wu
- Departments of Radiation Oncology, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Zhenghua Fei
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ya Fang
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shenlan Xiao
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huafang Su
- Department of Radiotherapy and Chemotherapy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Presence of Stromal Cells Enhances Epithelial-to-Mesenchymal Transition (EMT) Induction in Lung Bronchial Epithelium after Protracted Exposure to Oxidative Stress of Gamma Radiation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4120379. [PMID: 31583039 PMCID: PMC6754954 DOI: 10.1155/2019/4120379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/19/2019] [Accepted: 07/23/2019] [Indexed: 02/03/2023]
Abstract
The aim of the study was to investigate the role of a microenvironment in the induction of epithelial-to-mesenchymal transition (EMT) as a sign of early stages of carcinogenesis in human lung epithelial cell lines after protracted low-dose rate γ-radiation exposures. BEAS-2B and HBEC-3KT lung cell lines were irradiated with low-dose rate γ-rays (137Cs, 1.4 or 14 mGy/h) to 0.1 or 1 Gy with or without adding TGF-β. TGF-β-treated samples were applied as positive EMT controls and tested in parallel to find out if the radiation has a potentiating effect on the EMT induction. To evaluate the effect of the stromal component, the epithelial cells were irradiated in cocultures with stromal MRC-9 lung fibroblasts. On day 3 post treatment, the EMT markers: α-SMA, vimentin, fibronectin, and E-cadherin, were analyzed. The oxidative stress levels were evaluated by 8-oxo-dG analysis in both epithelial and fibroblast cells. The protracted exposure to low Linear Energy Transfer (LET) radiation at the total absorbed dose of 1 Gy was able to induce changes suggestive of EMT. The results show that the presence of the stromal component and its signaling (TGF-β) in the cocultures enhances the EMT. Radiation had a minor cumulative effect on the TGF-β-induced EMT with both doses. The oxidative stress levels were higher than the background in both epithelial and stromal cells post chronic irradiation (0.1 and 1 Gy); as for the BEAS-2B cell line, the increase was statistically significant. We suggest that the induction of EMT in bronchial epithelial cells by radiation requires more than single acute exposure and the presence of stromal component might enhance the effect through free radical production and accumulation.
Collapse
|
8
|
Iizuka D, Izumi S, Suzuki F, Kamiya K. Analysis of a lectin microarray identifies altered sialylation of mouse serum glycoproteins induced by whole-body radiation exposure. JOURNAL OF RADIATION RESEARCH 2019; 60:189-196. [PMID: 30521038 PMCID: PMC6430252 DOI: 10.1093/jrr/rry100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/19/2018] [Indexed: 05/08/2023]
Abstract
Microarrays containing 45 different lectins were analyzed to identify global changes in the glycosylation of serum glycoproteins from mice exposed to whole-body γ-radiation. The results showed that radiation exposure increased and decreased the relative amounts of α-2,3- and α-2,6-sialic acids, respectively. The expression of α-2,3- and α-2,6-sialyltransferase genes in the liver was analyzed to determine whether changes in their expression were responsible for the sialic acid changes. The increase in α-2,3-sialic acid correlated with St3gal5 upregulation after radiation exposure; however, a decrease in St6gal1 expression was not observed. Analysis of a PCR array of genes expressed in irradiated mouse livers revealed that irradiation did not alter the expression of most of the included genes. These results suggest that glycomic screening of serum glycoproteins using lectin microarrays can be a powerful tool for identifying radiation-induced changes in the post-translational addition of sugar moieties to proteins. In addition, the results indicate that altered sialylation of glycoproteins may be an initial response to acute radiation exposure.
Collapse
Affiliation(s)
- Daisuke Iizuka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, Japan
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
- Corresponding author. Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan. Tel: +81-43-206-3160; Fax: +81-43-206-4138;
| | - Shunsuke Izumi
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-2, Kagamiyama, Higashi-Hiroshima, Japan
| | - Fumio Suzuki
- Department of Molecular Radiobiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | - Kenji Kamiya
- Department of Experimental Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| |
Collapse
|
9
|
Ray S, Gebre S, Fogle H, Berrios DC, Tran PB, Galazka JM, Costes SV. GeneLab: Omics database for spaceflight experiments. Bioinformatics 2018; 35:1753-1759. [DOI: 10.1093/bioinformatics/bty884] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Shayoni Ray
- Space Biosciences Division, USRA/NASA Ames Research Center, Moffett Field, CA, USA
| | - Samrawit Gebre
- Space Biosciences Division, KBRwyle/NASA Ames Research Center, Moffett Field, CA, USA
| | - Homer Fogle
- Space Biosciences Division, KBRwyle/NASA Ames Research Center, Moffett Field, CA, USA
| | - Daniel C Berrios
- Space Biosciences Division, USRA/NASA Ames Research Center, Moffett Field, CA, USA
| | - Peter B Tran
- Intelligent Systems Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Jonathan M Galazka
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| |
Collapse
|
10
|
Tzanakakis G, Kavasi RM, Voudouri K, Berdiaki A, Spyridaki I, Tsatsakis A, Nikitovic D. Role of the extracellular matrix in cancer-associated epithelial to mesenchymal transition phenomenon. Dev Dyn 2017; 247:368-381. [PMID: 28758355 DOI: 10.1002/dvdy.24557] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/20/2017] [Accepted: 07/08/2017] [Indexed: 12/14/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) program is a crucial component in the processes of morphogenesis and embryonic development. The transition of epithelial to mesenchymal phenotype is associated with numerous structural and functional changes, including loss of cell polarity and tight cell-cell junctions, the acquisition of invasive abilities, and the expression of mesenchymal proteins. The switch between the two phenotypes is involved in human pathology and is crucial for cancer progression. Extracellular matrices (ECMs) are multi-component networks that surround cells in tissues. These networks are obligatory for cell survival, growth, and differentiation as well as tissue organization. Indeed, the ECM suprastructure, in addition to its supportive role, can process and deliver a plethora of signals to cells, which ultimately regulate their behavior. Importantly, the ECM derived signals are critically involved in the process of EMT during tumorigenesis. This review discusses the multilayer interaction between the ECM and the EMT process, focusing on contributions of discrete mediators, a strategy that may identify novel potential target molecules. Developmental Dynamics 247:368-381, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Rafaela-Maria Kavasi
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Kallirroi Voudouri
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Ioanna Spyridaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
11
|
Paul-Gilloteaux P, Potiron V, Delpon G, Supiot S, Chiavassa S, Paris F, Costes SV. Optimizing radiotherapy protocols using computer automata to model tumour cell death as a function of oxygen diffusion processes. Sci Rep 2017; 7:2280. [PMID: 28536438 PMCID: PMC5442104 DOI: 10.1038/s41598-017-01757-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/18/2017] [Indexed: 11/09/2022] Open
Abstract
The concept of hypofractionation is gaining momentum in radiation oncology centres, enabled by recent advances in radiotherapy apparatus. The gain of efficacy of this innovative treatment must be defined. We present a computer model based on translational murine data for in silico testing and optimization of various radiotherapy protocols with respect to tumour resistance and the microenvironment heterogeneity. This model combines automata approaches with image processing algorithms to simulate the cellular response of tumours exposed to ionizing radiation, modelling the alteration of oxygen permeabilization in blood vessels against repeated doses, and introducing mitotic catastrophe (as opposed to arbitrary delayed cell-death) as a means of modelling radiation-induced cell death. Published data describing cell death in vitro as well as tumour oxygenation in vivo are used to inform parameters. Our model is validated by comparing simulations to in vivo data obtained from the radiation treatment of mice transplanted with human prostate tumours. We then predict the efficacy of untested hypofractionation protocols, hypothesizing that tumour control can be optimized by adjusting daily radiation dosage as a function of the degree of hypoxia in the tumour environment. Further biological refinement of this tool will permit the rapid development of more sophisticated strategies for radiotherapy.
Collapse
Affiliation(s)
- Perrine Paul-Gilloteaux
- Structure Fédérative de Recherche François Bonamy, Micropicell, CNRS, INSERM, Université de Nantes, Nantes, France
| | | | - Grégory Delpon
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44800, France
| | - Stéphane Supiot
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44800, France
| | - Sophie Chiavassa
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44800, France
| | - François Paris
- CRCINA, INSERM, CNRS, Université de Nantes, Nantes, France.
- Institut de Cancérologie de l'Ouest, Saint-Herblain, F-44800, France.
| | - Sylvain V Costes
- Biosciences, Lawrence Berkeley National Laboratory, MS:977, Berkeley, 94720, CA, USA.
- NASA Ames Research Center, Moffett Blvd, Mountain View, 94035, CA, USA.
| |
Collapse
|
12
|
Heuskin AC, Osseiran AI, Tang J, Costes SV. Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata. Radiat Res 2016; 186:27-38. [PMID: 27333083 DOI: 10.1667/rr14338.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
UNLABELLED Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. POPULATION We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation scenarios.
Collapse
Affiliation(s)
- A C Heuskin
- a Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.,c NAmur Research Institute for Life Sciences (NARILIS), Research Center for the Physics of Matter and Radiation (PMR), University of Namur, Namur, Belgium
| | - A I Osseiran
- a Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - J Tang
- b Exogen Biotechnology Inc., Berkeley, California
| | - S V Costes
- a Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
13
|
Barcellos-Hoff MH, Mao JH. HZE Radiation Non-Targeted Effects on the Microenvironment That Mediate Mammary Carcinogenesis. Front Oncol 2016; 6:57. [PMID: 27014632 PMCID: PMC4786544 DOI: 10.3389/fonc.2016.00057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/28/2016] [Indexed: 01/06/2023] Open
Abstract
Clear mechanistic understanding of the biological processes elicited by radiation that increase cancer risk can be used to inform prediction of health consequences of medical uses, such as radiotherapy, or occupational exposures, such as those of astronauts during deep space travel. Here, we review the current concepts of carcinogenesis as a multicellular process during which transformed cells escape normal tissue controls, including the immune system, and establish a tumor microenvironment. We discuss the contribution of two broad classes of radiation effects that may increase cancer: radiation targeted effects that occur as a result of direct energy deposition, e.g., DNA damage, and non-targeted effects (NTE) that result from changes in cell signaling, e.g., genomic instability. It is unknown whether the potentially greater carcinogenic effect of high Z and energy (HZE) particle radiation is a function of the relative contribution or extent of NTE or due to unique NTE. We addressed this problem using a radiation/genetic mammary chimera mouse model of breast cancer. Our experiments suggest that NTE promote more aggressive cancers, as evidenced by increased growth rate, transcriptomic signatures, and metastasis, and that HZE particle NTE are more effective than reference γ-radiation. Emerging evidence suggest that HZE irradiation dampens antitumor immunity. These studies raise concern that HZE radiation exposure not only increases the likelihood of developing cancer but also could promote progression to more aggressive cancer with a greater risk of mortality.
Collapse
Affiliation(s)
| | - Jian-Hua Mao
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
14
|
Bastos LGDR, de Marcondes PG, de-Freitas-Junior JCM, Leve F, Mencalha AL, de Souza WF, de Araujo WM, Tanaka MN, Abdelhay ESFW, Morgado-Díaz JA. Progeny from irradiated colorectal cancer cells acquire an EMT-like phenotype and activate Wnt/β-catenin pathway. J Cell Biochem 2015; 115:2175-87. [PMID: 25103643 DOI: 10.1002/jcb.24896] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/01/2014] [Indexed: 12/20/2022]
Abstract
Radiotherapy remains a major approach to adjuvant therapy for patients with advanced colorectal cancer, however, the fractionation schedules frequently allow for the repopulation of surviving tumors cells, neoplastic progression, and subsequent metastasis. The aim of the present study was to analyze the transgenerational effects induced by radiation and evaluate whether it could increase the malignant features on the progeny derived from irradiated parental colorectal cancer cells, Caco-2, HT-29, and HCT-116. The progeny of these cells displayed a differential radioresistance as seen by clonogenic and caspase activation assay and had a direct correlation with survivin expression as observed by immunoblotting. Immunofluorescence showed that the most radioresistant progenies had an aberrant morphology, disturbance of the cell-cell adhesion contacts, disorganization of the actin cytoskeleton, and vimentin filaments. Only the progeny derived from intermediary radioresistant cells, HT-29, reduced the E-cadherin expression and overexpressed β-catenin and vimentin with increased cell migration, invasion, and metalloprotease activation as seen by immunoblotting, wound healing, invasion, and metalloprotease activity assay. We also observed that this most aggressive progeny increased the Wnt/β-catenin-dependent TCF/LEF activity and underwent an upregulation of mesenchymal markers and downregulation of E-cadherin, as determined by qRT-PCR. Our results showed that the intermediate radioresistant cells can generate more aggressive cellular progeny with the EMT-like phenotype. The Wnt/β-catenin pathway may constitute an important target for new adjuvant treatment schedules with radiotherapy, with the goal of reducing the migratory and invasive potential of the remaining cells after treatment.
Collapse
Affiliation(s)
- Lilian Gonçalves dos Reis Bastos
- Cellular Biology Program, Brazilian National Cancer Institute (INCA), 37André Cavalcanti Street, 5th Floor, Rio de Janeiro, RJ, 20230-051, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rajput S, Kumar BNP, Banik P, Parida S, Mandal M. Thymoquinone restores radiation-induced TGF-β expression and abrogates EMT in chemoradiotherapy of breast cancer cells. J Cell Physiol 2015; 230:620-9. [PMID: 25164250 DOI: 10.1002/jcp.24780] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/15/2014] [Indexed: 12/16/2022]
Abstract
Radiotherapy remains a prime approach to adjuvant therapies in patients with early and advanced breast cancer. In spite of therapeutic success, metastatic progression in patients undergoing therapy, limits its application. However, effective therapeutic strategies to understand the cellular and molecular machinery in inhibiting radiation-induced metastatic progression, which is poorly understood so far, need to be strengthened. Ionizing radiation was known to prompt cancer cell's metastatic ability by eliciting Transforming Growth Factor-beta (TGF-β), a key regulator in epithelial-mesenchymal transdifferentiation and radio-resistance. In this viewpoint, we employed thymoquinone as a radiosensitizer to investigate its migration and invasion reversal abilities in irradiated breast cancer cell lines by assessing their respective attributes. The role of metastasis regulatory molecules like TGF-β, E-cadherin, and integrin αV and its downstream molecules were determined using RT-PCR, western blotting, immunofluorescence, and extracellular TGF-β levels affirmed through ELISA assays. These studies affirmed the TGF-β restoring ability of thymoquinone in radiation-driven migration and invasion. Also, results demonstrated that the epithelial markers E-cadherin and cytokeratin 19 were downregulated whereas mesenchymal markers like integrin αV, MMP9, and MMP2 were upregulated by irradiation treatment; however thymoquinone pre-sensitization has reverted the expression of these proteins back to control proteins expression. Here, paclitaxel was chosen as an apoptosis inducer in TGF-β restored cells and confirmed its cytotoxic effects in radiation alone and thymoquinone sensitized irradiated cells. We conclude that this therapeutic modality is effective in preventing radiation-induced epithelial-mesenchymal transdifferentiation and concomitant induction of apoptosis in breast cancer.
Collapse
Affiliation(s)
- Shashi Rajput
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | | | | | | | | |
Collapse
|
16
|
Illa-Bochaca I, Ouyang H, Tang J, Sebastiano C, Mao JH, Costes SV, Demaria S, Barcellos-Hoff MH. Densely ionizing radiation acts via the microenvironment to promote aggressive Trp53-null mammary carcinomas. Cancer Res 2014; 74:7137-7148. [PMID: 25304265 DOI: 10.1158/0008-5472.can-14-1212] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Densely ionizing radiation, which is present in the space radiation environment and used in radiation oncology, has potentially greater carcinogenic effect compared with sparsely ionizing radiation that is prevalent on earth. Here, we used a radiation chimera in which mice were exposed to densely ionizing 350 MeV/amu Si-particles, γ-radiation, or sham-irradiated and transplanted 3 days later with syngeneic Trp53-null mammary fragments. Trp53-null tumors arising in mice irradiated with Si-particles had a shorter median time to appearance and grew faster once detected compared with those in sham-irradiated or γ-irradiated mice. Tumors were further classified by markers keratin 8/18 (K18, KRT18), keratin 14 (K14, KRT14) and estrogen receptor (ER, ESR1), and expression profiling. Most tumors arising in sham-irradiated hosts were comprised of both K18- and K14-positive cells (K14/18) while those tumors arising in irradiated hosts were mostly K18. Keratin staining was significantly associated with ER status: K14/18 tumors were predominantly ER-positive, whereas K18 tumors were predominantly ER-negative. Genes differentially expressed in K18 tumors compared with K14/18 tumor were associated with ERBB2 and KRAS, metastasis, and loss of E-cadherin. Consistent with this, K18 tumors tended to grow faster and be more metastatic than K14/18 tumors, however, K18 tumors in particle-irradiated mice grew significantly larger and were more metastatic compared with sham-irradiated mice. An expression profile that distinguished K18 tumors arising in particle-irradiated mice compared with sham-irradiated mice was enriched in mammary stem cell, stroma, and Notch signaling genes. These data suggest that carcinogenic effects of densely ionizing radiation are mediated by the microenvironment, which elicits more aggressive tumors compared with similar tumors arising in sham-irradiated hosts.
Collapse
Affiliation(s)
- Irineu Illa-Bochaca
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
| | - Haoxu Ouyang
- Department of Radiation Oncology, New York University School of Medicine, New York, New York
| | - Jonathan Tang
- Department of Pathology, New York University School of Medicine, New York, New York
| | | | - Jian-Hua Mao
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Sylvain V Costes
- Department of Pathology, New York University School of Medicine, New York, New York
| | - Sandra Demaria
- Department of Radiation Oncology, New York University School of Medicine, New York, New York. Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | | |
Collapse
|
17
|
TGF-β1 mediates the radiation response of prostate cancer. J Mol Med (Berl) 2014; 93:73-82. [PMID: 25228112 DOI: 10.1007/s00109-014-1206-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/19/2014] [Accepted: 09/02/2014] [Indexed: 12/12/2022]
Abstract
UNLABELLED Radiotherapy is the main treatment modality for prostate cancer. This study investigated the role of TGF-β1 in biological sequelae and tumor regrowth following irradiation, which are critical for the clinical radiation response of prostate cancer. Human and murine prostate cancer cell lines, and corresponding hormone-refractory (HR) cells, were used to examine the radiation response by clonogenic assays in vitro and tumor growth delay in vivo. Biological changes after irradiation, including cell death and tumor regrowth, were examined by experimental manipulation of TGF-β1 signaling. The correlations among tumor radiation responses, TGF-β1 levels, and regulatory T cells (Tregs) recruitment were also evaluated using animal experiments. HR prostate cancer cells appeared more radioresistant and had higher expression of TGF-β1 compared to hormone-sensitive (HS) cells. TGF-β1 expression was positively linked to irradiation and radioresistance, as demonstrated by in vitro and in vivo experiments. Inhibition of TGF-β1 increased tumor inhibition and DNA damage after irradiation. When mice were irradiated with a sub-lethal dose, the regrowth of irradiated tumors was significantly correlated with TGF-β1 levels and Tregs accumulation in vivo. Furthermore, blocking TGF-β1 clearly attenuated Tregs accumulation and tumor regrowth following treatment. These data demonstrate that TGF-β1 is important in determining the radiation response of prostate cancer, including tumor cell killing and the tumor microenvironment. Therefore, concurrent treatment with a TGF-β1 inhibitor is a potential therapeutic strategy for increasing the radiation response of prostate cancer, particularly for more aggressive or HR cancer cells. KEY MESSAGE • HR prostate cancer cells appeared more radioresistant and had higher expression of TGF-β1. • TGF-β1 was positively linked to the radiation resistance of prostate cancer. • Tumor regrowth following irradiation was significantly correlated with TGF-β1 and Tregs levels. • Blocking TGF-β1 significantly attenuated RT-induced DNA repair and Tregs. • TGF-β1 inhibitor increases the radiation response of HR cancer cells.
Collapse
|
18
|
Vadhavkar N, Pham C, Georgescu W, Deschamps T, Heuskin AC, Tang J, Costes SV. Combinatorial DNA Damage Pairing Model Based on X-Ray-Induced Foci Predicts the Dose and LET Dependence of Cell Death in Human Breast Cells. Radiat Res 2014; 182:273-81. [DOI: 10.1667/rr13792.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Tinhofer I, Saki M, Niehr F, Keilholz U, Budach V. Cancer stem cell characteristics of circulating tumor cells. Int J Radiat Biol 2014; 90:622-7. [PMID: 24460132 DOI: 10.3109/09553002.2014.886798] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To review the results from previous studies aiming at the molecular characterization of circulating tumor cells (CTC), to specifically address the role of epithelial-mesenchymal-transition (EMT) and stemness features of CTC in their contribution to tumor progression and to summarize potential interference of CTC with the efficacy of radiotherapy. CONCLUSIONS Detection of CTC has been reported for most epithelial tumors and has been associated with an increased risk of local and regional recurrence as well as the development of distant metastases. Given a causal relationship between the presence of CTC and tumor progression at the primary or distant sites, several distinct features have to be postulated for these cells: First, a change from an epithelial to a mesenchymal cell-like phenotype which should alleviate the disconnection of individual tumor cells from tight cell-to-cell junctions within the epithelial cell layer and endow single tumor cells with the capacity to migrate into blood vessels; secondly, the presence of stem-cell properties which contribute to the re-establishment of bulk tumor tissue at the primary or metastatic site upon tumor recurrence or distant progression, respectively. Indeed, EMT and stem-cell features were frequently observed in CTC and the phenotype of CTC was established as a stronger predictor of outcome than sole enumeration of CTC in a defined volume of blood. The exploitation of CTC above their use as prognostic marker is still a subject of many ongoing investigations as are the identification of suitable therapeutic targets for this small cell subpopulation.
Collapse
Affiliation(s)
- Ingeborg Tinhofer
- Translational Radiooncology and Radiobiology Research Laboratory, Department of Radiooncology and Radiotherapy
| | | | | | | | | |
Collapse
|
20
|
Tang J, Fernandez-Garcia I, Vijayakumar S, Martinez-Ruis H, Illa-Bochaca I, Nguyen DH, Mao JH, Costes SV, Barcellos-Hoff MH. Irradiation of juvenile, but not adult, mammary gland increases stem cell self-renewal and estrogen receptor negative tumors. Stem Cells 2014; 32:649-661. [PMID: 24038768 DOI: 10.1002/stem.1533] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 06/30/2013] [Accepted: 07/24/2013] [Indexed: 02/06/2023]
Abstract
Children exposed to ionizing radiation have a substantially greater breast cancer risk than adults; the mechanism for this strong age dependence is not known. Here we show that pubertal murine mammary glands exposed to sparsely or densely ionizing radiation exhibit enrichment of mammary stem cell and Notch pathways, increased mammary repopulating activity indicative of more stem cells, and propensity to develop estrogen receptor (ER) negative tumors thought to arise from stem cells. We developed a mammary lineage agent-based model (ABM) to evaluate cell inactivation, self-renewal, or dedifferentiation via epithelial-mesenchymal transition (EMT) as mechanisms by which radiation could increase stem cells. ABM rejected cell inactivation and predicted increased self-renewal would only affect juveniles while dedifferentiation could act in both juveniles and adults. To further test self-renewal versus dedifferentiation, we used the MCF10A human mammary epithelial cell line, which recapitulates ductal morphogenesis in humanized fat pads, undergoes EMT in response to radiation and transforming growth factor β (TGFβ) and contains rare stem-like cells that are Let-7c negative or express both basal and luminal cytokeratins. ABM simulation of population dynamics of double cytokeratin cells supported increased self-renewal in irradiated MCF10A treated with TGFβ. Radiation-induced Notch concomitant with TGFβ was necessary for increased self-renewal of Let-7c negative MCF10A cells but not for EMT, indicating that these are independent processes. Consistent with these data, irradiating adult mice did not increase mammary repopulating activity or ER-negative tumors. These studies suggest that irradiation during puberty transiently increases stem cell self-renewal, which increases susceptibility to developing ER-negative breast cancer.
Collapse
Affiliation(s)
- Jonathan Tang
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Barcellos-Hoff MH, Adams C, Balmain A, Costes SV, Demaria S, Illa-Bochaca I, Mao JH, Ouyang H, Sebastiano C, Tang J. Systems biology perspectives on the carcinogenic potential of radiation. JOURNAL OF RADIATION RESEARCH 2014; 55:i145-i154. [PMCID: PMC3941546 DOI: 10.1093/jrr/rrt211] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/09/2013] [Indexed: 05/02/2023]
Abstract
This review focuses on recent experimental and modeling studies that attempt to define the physiological context in which high linear energy transfer (LET) radiation increases epithelial cancer risk and the efficiency with which it does so. Radiation carcinogenesis is a two-compartment problem: ionizing radiation can alter genomic sequence as a result of damage due to targeted effects (TE) from the interaction of energy and DNA; it can also alter phenotype and multicellular interactions that contribute to cancer by poorly understood non-targeted effects (NTE). Rather than being secondary to DNA damage and mutations that can initiate cancer, radiation NTE create the critical context in which to promote cancer. Systems biology modeling using comprehensive experimental data that integrates different levels of biological organization and time-scales is a means of identifying the key processes underlying the carcinogenic potential of high-LET radiation. We hypothesize that inflammation is a key process, and thus cancer susceptibility will depend on specific genetic predisposition to the type and duration of this response. Systems genetics using novel mouse models can be used to identify such determinants of susceptibility to cancer in radiation sensitive tissues following high-LET radiation. Improved understanding of radiation carcinogenesis achieved by defining the relative contribution of NTE carcinogenic effects and identifying the genetic determinants of the high-LET cancer susceptibility will help reduce uncertainties in radiation risk assessment.
Collapse
Affiliation(s)
- Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, 566 First Avenue, New York, NY 10016, USA
| | - Cassandra Adams
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 Third Street, San Francisco, CA 94158, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 Third Street, San Francisco, CA 94158, USA
| | - Sylvain V. Costes
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS977, Berkeley CA 94720, USA
| | - Sandra Demaria
- Department of Pathology, New York University School of Medicine, 566 First Avenue, New York, NY 10016, USA
| | - Irineu Illa-Bochaca
- Department of Radiation Oncology, New York University School of Medicine, 566 First Avenue, New York, NY 10016, USA
| | - Jian Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS977, Berkeley CA 94720, USA
| | - Haoxu Ouyang
- Department of Radiation Oncology, New York University School of Medicine, 566 First Avenue, New York, NY 10016, USA
| | - Christopher Sebastiano
- Department of Pathology, New York University School of Medicine, 566 First Avenue, New York, NY 10016, USA
| | - Jonathan Tang
- Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS977, Berkeley CA 94720, USA
| |
Collapse
|
22
|
Vares G, Cui X, Wang B, Nakajima T, Nenoi M. Generation of breast cancer stem cells by steroid hormones in irradiated human mammary cell lines. PLoS One 2013; 8:e77124. [PMID: 24146960 PMCID: PMC3797732 DOI: 10.1371/journal.pone.0077124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/08/2013] [Indexed: 12/14/2022] Open
Abstract
Exposure to ionizing radiation was shown to result in an increased risk of breast cancer. There is strong evidence that steroid hormones influence radiosensitivity and breast cancer risk. Tumors may be initiated by a small subpopulation of cancer stem cells (CSCs). In order to assess whether the modulation of radiation-induced breast cancer risk by steroid hormones could involve CSCs, we measured by flow cytometry the proportion of CSCs in irradiated breast cancer cell lines after progesterone and estrogen treatment. Progesterone stimulated the expansion of the CSC compartment both in progesterone receptor (PR)-positive breast cancer cells and in PR-negative normal cells. In MCF10A normal epithelial PR-negative cells, progesterone-treatment and irradiation triggered cancer and stemness-associated microRNA regulations (such as the downregulation of miR-22 and miR-29c expression), which resulted in increased proportions of radiation-resistant tumor-initiating CSCs.
Collapse
Affiliation(s)
- Guillaume Vares
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
- * E-mail:
| | - Xing Cui
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba, Japan
| | - Bing Wang
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Tetsuo Nakajima
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Mitsuru Nenoi
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
23
|
Clinical perspectives of cancer stem cell research in radiation oncology. Radiother Oncol 2013; 108:388-96. [PMID: 23830466 DOI: 10.1016/j.radonc.2013.06.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/06/2013] [Indexed: 02/07/2023]
Abstract
Radiotherapy has a proven potential to eradicate cancer stem cells which is reflected by its curative potential in many cancer types. Considerable progress has been made in identification and biological characterisation of cancer stem cells during the past years. Recent biological findings indicate significant inter- and intratumoural and functional heterogeneity of cancer stem cells and lead to more complex models which have potential implications for radiobiology and radiotherapy. Clinical evidence is emerging that biomarkers of cancer stem cells may be prognostic for the outcome of radiotherapy in some tumour entities. Perspectives of cancer stem cell based research for radiotherapy reviewed here include their radioresistance compared to the mass of non-cancer stem cells which form the bulk of all tumour cells, implications for image- and non-image based predictive bio-assays of the outcome of radiotherapy and a combination of novel systemic treatments with radiotherapy.
Collapse
|
24
|
Park CC, Georgescu W, Polyzos A, Pham C, Ahmed KM, Zhang H, Costes SV. Rapid and automated multidimensional fluorescence microscopy profiling of 3D human breast cultures. Integr Biol (Camb) 2013; 5:681-91. [PMID: 23407655 DOI: 10.1039/c3ib20275e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three-dimensional (3D) tissue culture provides a physiologically relevant microenvironment for distinguishing malignant from non-malignant breast cell phenotypes. 3D culture assays can also be used to test novel cancer therapies and predict a differential response to radiation between normal and malignant cells in vivo. However, biological measurements in such complex models are difficult to quantify and current approaches do not allow for in-depth multifaceted assessment of individual colonies or unique sub-populations within the entire culture. This is in part due to the limitations of imaging at a range of depths in 3D culture resulting from optical aberrations and intensity attenuation. Here, we address these limitations by combining sample smearing techniques with high-throughput 2D imaging algorithms to accurately and rapidly quantify imaging features acquired from 3D cultures. Multiple high resolution imaging features especially designed to characterize 3D cultures show that non-malignant human breast cells surviving large doses of ionizing radiation acquire a "swelled acinar" phenotype with fewer and larger nuclei, loss of cell connectivity and diffused basement membrane. When integrating these imaging features into hierarchical clustering classification, we could also identify subpopulations of phenotypes from individual human tumor colonies treated with ionizing radiation or/and integrin inhibitors. Such tools have therefore the potential to further characterize cell culture populations after cancer treatment and identify novel phenotypes of resistance.
Collapse
Affiliation(s)
- Catherine C Park
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Cancer stem cells, the epithelial to mesenchymal transition (EMT) and radioresistance: potential role of hypoxia. Cancer Lett 2012. [PMID: 23200673 DOI: 10.1016/j.canlet.2012.11.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Numerous studies have demonstrated the presence of cancer stem cells (CSCs) within solid tumors. Although the precursor of these cells is not clearly established, recent studies suggest that the phenotype of CSCs may be quite plastic and associated with the epithelial-to-mesenchymal transition (EMT). In patients, the presence of EMT and CSCs has been implicated in increased resistance to radiotherapy. Hypoxia, a negative prognostic factor for treatment success, is a potent driver of a multitude of molecular signalling pathways that allow cells to survive and thrive in the hostile tumor microenvironment and can induce EMT. Hypoxia also provides tumor cells with cues for maintenance of a stem-like state and may help to drive the linkage between EMT and CSCs. Understanding the biology of CSCs, the EMT phenotype and their implications in therapeutic relapse may provide crucial new approaches in the development of improved therapeutic strategies.
Collapse
|
26
|
Wang M, Hada M, Saha J, Sridharan DM, Pluth JM, Cucinotta FA. Protons sensitize epithelial cells to mesenchymal transition. PLoS One 2012; 7:e41249. [PMID: 22844446 PMCID: PMC3402537 DOI: 10.1371/journal.pone.0041249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/19/2012] [Indexed: 11/19/2022] Open
Abstract
Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.
Collapse
Affiliation(s)
- Minli Wang
- Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, United States of America
| | - Megumi Hada
- Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, United States of America
| | - Janapriya Saha
- Division of Space Life Sciences, Universities Space Research Association, Houston, Texas, United States of America
| | - Deepa M. Sridharan
- Department of Cancer and DNA Damage Responses, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Janice M. Pluth
- Department of Cancer and DNA Damage Responses, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Francis A. Cucinotta
- Space Radiation Program, Lyndon B. Johnson Space Center, National Aeronautics and Space Administration (NASA), Houston, Texas, United States of America
| |
Collapse
|
27
|
Bouquet F, Pal A, Pilones KA, Demaria S, Hann B, Akhurst RJ, Babb JS, Lonning SM, DeWyngaert JK, Formenti SC, Barcellos-Hoff MH. TGFβ1 inhibition increases the radiosensitivity of breast cancer cells in vitro and promotes tumor control by radiation in vivo. Clin Cancer Res 2011; 17:6754-65. [PMID: 22028490 DOI: 10.1158/1078-0432.ccr-11-0544] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To determine whether inhibition of TGFβ signaling prior to irradiation sensitizes human and murine cancer cells in vitro and in vivo. EXPERIMENTAL DESIGN TGFβ-mediated growth and Smad phosphorylation of MCF7, Hs578T, MDA-MB-231, and T47D human breast cancer cell lines were examined and correlated with clonogenic survival following graded radiation doses with and without pretreatment with LY364947, a small molecule inhibitor of the TGFβ type I receptor kinase. The DNA damage response was assessed in irradiated MDA-MB-231 cells pretreated with LY364947 in vitro and LY2109761, a pharmacokinetically stable inhibitor of TGFβ signaling, in vivo. The in vitro response of a syngeneic murine tumor, 4T1, was tested using a TGFβ neutralizing antibody, 1D11, with single or fractionated radiation doses in vivo. RESULTS Human breast cancer cell lines pretreated with TGFβ small molecule inhibitor were radiosensitized, irrespective of sensitivity to TGFβ growth inhibition. Consistent with increased clonogenic cell death, radiation-induced phosphorylation of H2AX and p53 was significantly reduced in MDA-MB-231 triple-negative breast cancer cells when pretreated in vitro or in vivo with a TGFβ type I receptor kinase inhibitor. Moreover, TGFβ neutralizing antibodies increased radiation sensitivity, blocked γH2AX foci formation, and significantly increased tumor growth delay in 4T1 murine mammary tumors in response to single and fractionated radiation exposures. CONCLUSION These results show that TGFβ inhibition prior to radiation attenuated DNA damage responses, increased clonogenic cell death, and promoted tumor growth delay, and thus may be an effective adjunct in cancer radiotherapy.
Collapse
Affiliation(s)
- Fanny Bouquet
- Department of Radiation Oncology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|