1
|
Pifer PM, Yang L, Kumar M, Xie T, Frederick M, Hefner A, Beadle B, Molkentine D, Molkentine J, Dhawan A, Abdelhakiem M, Osman AA, Leibowitz BJ, Myers JN, Pickering CR, Sandulache VC, Heymach J, Skinner HD. FAK Drives Resistance to Therapy in HPV-Negative Head and Neck Cancer in a p53-Dependent Manner. Clin Cancer Res 2024; 30:187-197. [PMID: 37819945 PMCID: PMC10767302 DOI: 10.1158/1078-0432.ccr-23-0964] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/21/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Radiation and platinum-based chemotherapy form the backbone of therapy in human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC). We have correlated focal adhesion kinase (FAK/PTK2) expression with radioresistance and worse outcomes in these patients. However, the importance of FAK in driving radioresistance and its effects on chemoresistance in these patients remains unclear. EXPERIMENTAL DESIGN We performed an in vivo shRNA screen using targetable libraries to identify novel therapeutic sensitizers for radiation and chemotherapy. RESULTS We identified FAK as an excellent target for both radio- and chemosensitization. Because TP53 is mutated in over 80% of HPV-negative HNSCC, we hypothesized that mutant TP53 may facilitate FAK-mediated therapy resistance. FAK inhibitor increased sensitivity to radiation, increased DNA damage, and repressed homologous recombination and nonhomologous end joining repair in mutant, but not wild-type, TP53 HPV-negative HNSCC cell lines. The mutant TP53 cisplatin-resistant cell line had increased FAK phosphorylation compared with wild-type, and FAK inhibition partially reversed cisplatin resistance. To validate these findings, we utilized an HNSCC cohort to show that FAK copy number and gene expression were associated with worse disease-free survival in mutant TP53, but not wild-type TP53, HPV-negative HNSCC tumors. CONCLUSIONS FAK may represent a targetable therapeutic sensitizer linked to a known genomic marker of resistance.
Collapse
Affiliation(s)
- Phillip M. Pifer
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Liangpeng Yang
- Department of Experimental Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Manish Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bilaspur, Himachal Pradesh, India
| | - Tongxin Xie
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Mitchell Frederick
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Andrew Hefner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Beth Beadle
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - David Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jessica Molkentine
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Annika Dhawan
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Mohamed Abdelhakiem
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Abdullah A. Osman
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Brian J. Leibowitz
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Jeffrey N. Myers
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Curtis R. Pickering
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Vlad C. Sandulache
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - John Heymach
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Heath D. Skinner
- Department of Radiation Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Viktorsson K, Rieckmann T, Fleischmann M, Diefenhardt M, Hehlgans S, Rödel F. Advances in molecular targeted therapies to increase efficacy of (chemo)radiation therapy. Strahlenther Onkol 2023; 199:1091-1109. [PMID: 37041372 PMCID: PMC10673805 DOI: 10.1007/s00066-023-02064-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/19/2023] [Indexed: 04/13/2023]
Abstract
Recent advances in understanding the tumor's biology in line with a constantly growing number of innovative technologies have prompted characterization of patients' individual malignancies and may display a prerequisite to treat cancer at its patient individual tumor vulnerability. In recent decades, radiation- induced signaling and tumor promoting local events for radiation sensitization were explored in detail, resulting the development of novel molecular targets. A multitude of pharmacological, genetic, and immunological principles, including small molecule- and antibody-based targeted strategies, have been developed that are suitable for combined concepts with radiation (RT) or chemoradiation therapy (CRT). Despite a plethora of promising experimental and preclinical findings, however, so far, only a very limited number of clinical trials have demonstrated a better outcome and/or patient benefit when RT or CRT are combined with targeted agents. The current review aims to summarize recent progress in molecular therapies targeting oncogenic drivers, DNA damage and cell cycle response, apoptosis signaling pathways, cell adhesion molecules, hypoxia, and the tumor microenvironment to impact therapy refractoriness and to boost radiation response. In addition, we will discuss recent advances in nanotechnology, e.g., RNA technologies and protein-degrading proteolysis-targeting chimeras (PROTACs) that may open new and innovative ways to benefit from molecular-targeted therapy approaches with improved efficacy.
Collapse
Affiliation(s)
- Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, Visionsgatan 4, 17164, Solna, Sweden
| | - Thorsten Rieckmann
- Department of Radiation Oncology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Department of Otolaryngology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Maximilian Fleischmann
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Markus Diefenhardt
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
- German Cancer Consortium (DKTK) partner site: Frankfurt, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 433] [Impact Index Per Article: 216.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
4
|
Enzymatic Digestion of Cell-surface Heparan Sulfate Alters the Radiation Response in Triple-negative Breast Cancer Cells. Arch Med Res 2022; 53:826-839. [PMID: 36411172 DOI: 10.1016/j.arcmed.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM Radiation resistance represents a major challenge in the treatment of breast cancer. As heparan sulfate (HS) chains are known to contribute to tumorigenesis, we aimed to investigate the interplay between HS degradation and radiation response in triple-negative breast cancer (TNBC) cells. METHODS HS chains were degraded in vitro as TNBC cells MDA-MB-231 and HCC1806 were treated with heparinase I and III. Subsequently, radioresistance was determined via colony formation assay after doses of 2, 4 and 6 Gy. Cell cycle profile, stem cell characteristics, expression of HS, activation of beta integrins, and apoptosis were determined by flow cytometry. Additionally, cell motility was analyzed via wound-healing assays, and expression and activation of FAK, CDK-6, Src, and Erk1/2 were quantified by western blot pre- and post-irradiation. Finally, the expression of cytokines was analyzed using a cytokine array. RESULTS Radiation promoted cell cycle changes, while heparinase treatment induced apoptosis in both cell lines. Colony formation assays showed significantly increased radio-resistance for both cell lines after degradation of HS. Cell migration was similarly upregulated after degradation of HS compared to controls. This effect was even more prominent after irradiation. Interestingly, FAK, a marker of radioresistance, was significantly activated in the heparinase-treated group. Additionally, we found Src to be dysregulated in MDA-MB-231 cells. Finally, we observed differential secretion of GRO, CXCL1, IGFBP1, IL8, Angiogenin, and Osteoprotegerin after HS degradation and radiotherapy. CONCLUSION Our results suggest an influence of HS chains on the development of radioresistance in TNBC.
Collapse
|
5
|
Zhang Z, Li J, Jiao S, Han G, Zhu J, Liu T. Functional and clinical characteristics of focal adhesion kinases in cancer progression. Front Cell Dev Biol 2022; 10:1040311. [PMID: 36407100 PMCID: PMC9666724 DOI: 10.3389/fcell.2022.1040311] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signaling and cell migration. FAK promotes cell survival in response to stress. Increasing evidence has shown that at the pathological level, FAK is highly expressed in multiple tumors in several systems (including lung, liver, gastric, and colorectal cancers) and correlates with tumor aggressiveness and patient prognosis. At the molecular level, FAK promotes tumor progression mainly by altering survival signals, invasive capacity, epithelial-mesenchymal transition, the tumor microenvironment, the Warburg effect, and stemness of tumor cells. Many effective drugs have been developed based on the comprehensive role of FAK in tumor cells. In addition, its potential as a tumor marker cannot be ignored. Here, we discuss the pathological and pre-clinical evidence of the role of FAK in cancer development; we hope that these findings will assist in FAK-based clinical studies.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinlong Li
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Guangda Han
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiaming Zhu
- Department of Surgical Oncology and General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tianzhou Liu
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
den bossche VV, Zaryouh H, Vara-Messler M, Vignau J, Machiels JP, Wouters A, Schmitz S, Corbet C. Microenvironment-driven intratumoral heterogeneity in head and neck cancers: clinical challenges and opportunities for precision medicine. Drug Resist Updat 2022; 60:100806. [DOI: 10.1016/j.drup.2022.100806] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
7
|
Lehman CE, Spencer A, Hall S, Shaw JJP, Wulfkuhle J, Petricoin EF, Bekiranov S, Jameson MJ, Gioeli D. IGF1R and Src inhibition induce synergistic cytotoxicity in HNSCC through inhibition of FAK. Sci Rep 2021; 11:10826. [PMID: 34031486 PMCID: PMC8144381 DOI: 10.1038/s41598-021-90289-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
Head and neck cancer is the sixth most common cancer worldwide with a 5-year survival of only 65%. Targeting compensatory signaling pathways may improve therapeutic responses and combat resistance. Utilizing reverse phase protein arrays (RPPA) to assess the proteome and explore mechanisms of synergistic growth inhibition in HNSCC cell lines treated with IGF1R and Src inhibitors, BMS754807 and dasatinib, respectively, we identified focal adhesion signaling as a critical node. Focal Adhesion Kinase (FAK) and Paxillin phosphorylation were decreased as early as 15 min after treatment, and treatment with a FAK inhibitor, PF-562,271, was sufficient to decrease viability in vitro. Treatment of 3D spheroids demonstrated robust cytotoxicity suggesting that the combination of BMS754807 and dasatinib is effective in multiple experimental models. Furthermore, treatment with BMS754807 and dasatinib significantly decreased cell motility, migration, and invasion in multiple HNSCC cell lines. Most strikingly, treatment with BMS754807 and dasatinib, or a FAK inhibitor alone, significantly increased cleaved-PARP in human ex-vivo HNSCC patient tissues demonstrating a potential clinical utility for targeting FAK or the combined targeting of the IGF1R with Src. This ex-vivo result further confirms FAK as a vital signaling node of this combinatorial treatment and demonstrates therapeutic potential for targeting FAK in HNSCC patients.
Collapse
Affiliation(s)
- Christine E Lehman
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Adam Spencer
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarah Hall
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jeremy J P Shaw
- Department of Experimental Pathology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Mark J Jameson
- Department of Otolaryngology-Head and Neck Surgery, University of Virginia School of Medicine, Charlottesville, VA, USA
- UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Daniel Gioeli
- Department of Microbiology Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
8
|
Mishra YG, Manavathi B. Focal adhesion dynamics in cellular function and disease. Cell Signal 2021; 85:110046. [PMID: 34004332 DOI: 10.1016/j.cellsig.2021.110046] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Acting as a bridge between the cytoskeleton of the cell and the extra cellular matrix (ECM), the cell-ECM adhesions with integrins at their core, play a major role in cell signalling to direct mechanotransduction, cell migration, cell cycle progression, proliferation, differentiation, growth and repair. Biochemically, these adhesions are composed of diverse, yet an organised group of structural proteins, receptors, adaptors, various enzymes including protein kinases, phosphatases, GTPases, proteases, etc. as well as scaffolding molecules. The major integrin adhesion complexes (IACs) characterised are focal adhesions (FAs), invadosomes (podosomes and invadopodia), hemidesmosomes (HDs) and reticular adhesions (RAs). The varied composition and regulation of the IACs and their signalling, apart from being an integral part of normal cell survival, has been shown to be of paramount importance in various developmental and pathological processes. This review per-illustrates the recent advancements in the research of IACs, their crucial roles in normal as well as diseased states. We have also touched on few of the various methods that have been developed over the years to visualise IACs, measure the forces they exert and study their signalling and molecular composition. Having such pertinent roles in the context of various pathologies, these IACs need to be understood and studied to develop therapeutical targets. We have given an update to the studies done in recent years and described various techniques which have been applied to study these structures, thereby, providing context in furthering research with respect to IAC targeted therapeutics.
Collapse
Affiliation(s)
- Yasaswi Gayatri Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Bramanandam Manavathi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
9
|
Zhang Y, Sun X. Role of Focal Adhesion Kinase in Head and Neck Squamous Cell Carcinoma and Its Therapeutic Prospect. Onco Targets Ther 2020; 13:10207-10220. [PMID: 33116602 PMCID: PMC7553669 DOI: 10.2147/ott.s270342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancers are one of the most prevalent cancers globally. Among them, head and neck squamous cell carcinoma (HNSCC) accounts for approximately 90% of head and neck cancers, which occurs in the oral cavity, oral pharynx, hypopharynx and larynx. The 5-year survival rate of HNSCC patients is only 63%, mainly because about 80–90% of patients with advanced HNSCC tend to suffer from local recurrence or even distant metastasis. Despite the more in-depth understanding of the molecular mechanisms underlying the occurrence and progression of HNSCC in recent years, effective targeted therapies are unavailable for HNSCC, which emphasize the urgent demand for studies in this area. Focal adhesion kinase (FAK) is an intracellular non-receptor tyrosine kinase that contributes to oncogenesis and tumor progression by its significant function in cell survival, proliferation, adhesion, invasion and migration. In addition, FAK exerts an effect on the tumor microenvironment, epithelial–mesenchymal transition, radiation (chemotherapy) resistance, tumor stem cells and regulation of inflammatory factors. Moreover, the overexpression and activation of FAK are detected in multiple types of tumors, including HNSCC. FAK inhibition can induce cell cycle arrest and apoptosis, significantly decrease cell growth, invasion and migration in HNSCC cell lines. In this article, we mainly review the research progress of FAK in the occurrence, development and metastasis of HNSCC, and put forward the prospects for the therapeutic targets of HNSCC.
Collapse
Affiliation(s)
- Yuxi Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Zhang Y, Liu S, Zhou S, Yu D, Gu J, Qin Q, Cheng Y, Sun X. Focal adhesion kinase: Insight into its roles and therapeutic potential in oesophageal cancer. Cancer Lett 2020; 496:93-103. [PMID: 33038490 DOI: 10.1016/j.canlet.2020.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/10/2020] [Accepted: 10/02/2020] [Indexed: 12/26/2022]
Abstract
Oesophageal cancer is associated with high morbidity and mortality rates because it is highly invasive and prone to recurrence and metastasis, with a five-year survival rate of <20%. Therefore, there is an urgent need for new methods aimed at improving therapeutic intervention. Several studies have shown that targeted therapy may be effective for the treatment of oesophageal cancer. Focal adhesion kinase (FAK), a non-receptor tyrosine kinase with kinase activity and scaffolding function, could be overexpressed in a variety of solid tumours, including oesophageal cancer. FAK participates in survival, proliferation, progression, adhesion, invasion, migration, epithelial-to-mesenchymal transition, angiogenesis, DNA damage repair, and other biological processes through multiple signalling pathways in cancer cells. It plays an important role in the occurrence and development of tumours and has been linked to the prognosis of oesophageal cancer. FAK has been suggested as a potential therapeutic target in oesophageal cancer; thus, the combination of FAK inhibitors with chemotherapy, radiotherapy, and immunotherapy is expected to prolong the survival of patients. This paper presents a brief overview of the structure of FAK and its potential role in oesophageal cancer, providing a rationale for the future application of FAK inhibitors in the treatment of the disease.
Collapse
Affiliation(s)
- Yumeng Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Shu Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Shu Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Dandan Yu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Junjie Gu
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Qin Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Yu Cheng
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Xinchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China.
| |
Collapse
|
11
|
Deville SS, Vehlow A, Förster S, Dickreuter E, Borgmann K, Cordes N. The Intermediate Filament Synemin Regulates Non-Homologous End Joining in an ATM-Dependent Manner. Cancers (Basel) 2020; 12:cancers12071717. [PMID: 32605308 PMCID: PMC7407367 DOI: 10.3390/cancers12071717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 01/26/2023] Open
Abstract
The treatment resistance of cancer cells is a multifaceted process in which DNA repair emerged as a potential therapeutic target. DNA repair is predominantly conducted by nuclear events; yet, how extra-nuclear cues impact the DNA damage response is largely unknown. Here, using a high-throughput RNAi-based screen in three-dimensionally-grown cell cultures of head and neck squamous cell carcinoma (HNSCC), we identified novel focal adhesion proteins controlling DNA repair, including the intermediate filament protein, synemin. We demonstrate that synemin critically regulates the DNA damage response by non-homologous end joining repair. Mechanistically, synemin forms a protein complex with DNA-PKcs through its C-terminal tail domain for determining DNA repair processes upstream of this enzyme in an ATM-dependent manner. Our study discovers a critical function of the intermediate filament protein, synemin in the DNA damage response, fundamentally supporting the concept of cytoarchitectural elements as co-regulators of nuclear events.
Collapse
Affiliation(s)
- Sara Sofia Deville
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
| | - Anne Vehlow
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
- German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sarah Förster
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
| | - Ellen Dickreuter
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Nils Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (S.S.D.); (A.V.); (S.F.); (E.D.)
- Helmholtz-Zentrum Dresden—Rossendorf (HZDR), Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- German Cancer Consortium, Partner Site Dresden: German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Correspondence: ; Tel.: +49-(0)351-458-7401; Fax: +49-(0)351-458-7311
| |
Collapse
|
12
|
Palma S, Raffa CI, Garcia-Fabiani MB, Ferretti VA, Zwenger A, Perez Verdera PV, Llontop A, Rojas Bilbao E, Cuartero V, Abba MC, Lacunza E. RHBDD2 overexpression promotes a chemoresistant and invasive phenotype to rectal cancer tumors via modulating UPR and focal adhesion genes. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165810. [PMID: 32339641 DOI: 10.1016/j.bbadis.2020.165810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 12/29/2022]
Abstract
The current standard of care for locally advanced rectal cancer (RC) is neoadjuvant radio-chemotherapy (NRC) with 5-fluorouracil (5Fu) as the main drug, followed by surgery and adjuvant chemotherapy. While a group of patients will achieve a pathological complete response, a significant percentage will not respond to the treatment. The Unfolding Protein Response (UPR) pathway is generally activated in tumors and results in resistance to radio-chemotherapy. We previously showed that RHBDD2 gene is overexpressed in the advanced stages of colorectal cancer (CRC) and that it could modulate the UPR pathway. Moreover, RHBDD2 expression is induced by 5Fu. In this study, we demonstrate that the overexpression of RHBDD2 in CACO2 cell line confers resistance to 5Fu, favors cell migration, adhesion and proliferation and has a profound impact on the expression of both, the UPR genes BiP, PERK and CHOP, and on the cell adhesion genes FAK and PXN. We also determined that RHBDD2 binds to BiP protein, the master UPR regulator. Finally, we confirmed that a high expression of RHBDD2 in RC tumors after NRC treatment is associated with the development of local or distant metastases. The collected evidence positions RHBDD2 as a promising prognostic biomarker to predict the response to neoadjuvant therapy in patients with RC.
Collapse
Affiliation(s)
- S Palma
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - C I Raffa
- Gastroenterology and Proctology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - M B Garcia-Fabiani
- Instituto de Investigaciones Bioquímicas de La Plata Rodolfo R. Brenner, CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - V A Ferretti
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - A Zwenger
- Grupo Oncológico Cooperativo del Sur (GOCS), Neuquén, Argentina
| | | | - A Llontop
- Pathology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - E Rojas Bilbao
- Pathology Department, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - V Cuartero
- Clinic Oncology Department, Functional Unit of Digestive Tumors, Instituto de Oncología Angel H. Roffo, University of Buenos Aires, Buenos Aires, Argentina
| | - M C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - E Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Aboubakar Nana F, Vanderputten M, Ocak S. Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential as a Therapeutic Target. Cancers (Basel) 2019; 11:E1683. [PMID: 31671774 PMCID: PMC6895835 DOI: 10.3390/cancers11111683] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) represents 15% of all lung cancers and it is clinically the most aggressive type, being characterized by a tendency for early metastasis, with two-thirds of the patients diagnosed with an extensive stage (ES) disease and a five-year overall survival (OS) as low as 5%. There are still no effective targeted therapies in SCLC despite improved understanding of the molecular steps leading to SCLC development and progression these last years. After four decades, the only modest improvement in OS of patients suffering from ES-SCLC has recently been shown in a trial combining atezolizumab, an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and etoposide, chemotherapy agents. This highlights the need to pursue research efforts in this field. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and activated in several cancers, including SCLC, and contributing to cancer progression and metastasis through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion. FAK also plays a role in tumor immune evasion, epithelial-mesenchymal transition, DNA damage repair, radioresistance, and regulation of cancer stem cells. FAK is of particular interest in SCLC, being known for its aggressiveness. The inhibition of FAK in SCLC cell lines demonstrated significative decrease in cell proliferation, invasion, and migration, and induced cell cycle arrest and apoptosis. In this review, we will focus on the role of FAK in cancer cells and their microenvironment, and its potential as a therapeutic target in SCLC.
Collapse
Affiliation(s)
- Frank Aboubakar Nana
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, Cliniques Universitaires St-Luc, UCL, 1200 Brussels, Belgium.
| | - Marie Vanderputten
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Sebahat Ocak
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, 5530 Yvoir, Belgium.
| |
Collapse
|
14
|
Abstract
Radiation therapy is one of the most commonly used treatments for cancer. Radiation modifiers are agents that alter tumor or normal tissue response to radiation, such as radiation sensitizers and radiation protectors. Radiation sensitizers target aspects of tumor molecular biology or physiology to enhance tumor cell killing after irradiation. Radioprotectors prevent damage of normal tissues selectively. Radiation modifiers remain largely investigational at present, with the promise that molecular characterization of tumors may enhance the capacity for successful clinical development moving forward. A variety of radiation modifiers are described.
Collapse
Affiliation(s)
- Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Building 10 CRC, Room B2-3500, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Retrospective investigation of the prognostic value of the β1 integrin expression in patients with head and neck squamous cell carcinoma receiving primary radio(chemo)therapy. PLoS One 2018; 13:e0209479. [PMID: 30571736 PMCID: PMC6301664 DOI: 10.1371/journal.pone.0209479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/25/2018] [Indexed: 01/02/2023] Open
Abstract
This retrospective study evaluated the expression of β1 integrins and associated proteins as prognostic markers for primary radio(chemo)therapy outcome of patients with locally advanced head and neck squamous cell carcinomas (HNSCC). Tissue microarrays were prepared from 224 HNSCC patients undergoing curative primary radio(chemo)therapy from 1996 to 2005. Staining intensities of β1 integrin and its downstream-proteins FAK, phosphorylated FAK as well as the β1 integrin ECM ligands fibronectin and collagen type-I were determined. Their association to the primary endpoint loco-regional control and the secondary endpoints overall survival and freedom from distant metastasis was analyzed by Cox regression. None of the considered molecular parameters showed a significant association with loco-regional control and freedom from distant metastasis. Patients with p16 positive tumors or tumors with a low intensity of fibronectin showed significantly higher overall survival in univariable regression. In multivariable regression including additional clinical parameters, however, these parameters were not significantly associated with overall survival. Our study in a HNSCC patient cohort treated with primary radio(chemo)therapy does not reveal a prognostic value of β1 integrin expression.
Collapse
|
16
|
Li JJ, Tu WZ, Chen XM, Ying HY, Chen Y, Ge YL, Wang J, Xu Y, Chen TF, Zhang XW, Ye JJ, Liu Y. FAK alleviates radiation-induced rectal injury by decreasing apoptosis. Toxicol Appl Pharmacol 2018; 360:131-140. [PMID: 30292832 DOI: 10.1016/j.taap.2018.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
Radiation-induced rectal injury is closely related with radiotherapy efficiency. Here, we investigated the effect of focal adhesion kinase (FAK) in radiation-induced rectal injury. Peripheral blood samples of patients with rectal cancer were collected prior to radiotherapy. Differentially expressed genes and copy number variations (CNVs) were analyzed by microarray analysis. The CTCAE v3.0 toxicity grades were used to assess acute rectal injury. The radiosensitivity of human intestinal epithelial crypt (HIEC) cells were assayed by colony formation, mitochondrial membrane potential, flow cytometry and western blotting. The rectums of C57BL/6 mice were X-irradiated locally with a single dose of 15 Gy. The effect of FAK on radiation-induced injury was investigated by hematoxylin-eosin (H&E) staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR). FAK mRNA level was inversely correlated with rectal injury severity in patient samples. A CNV amplification located on chromosome 8 was closely related with FAK. Further functional assays revealed increased levels of γH2AX expression and apoptosis-related proteins in FAK-silenced HIEC cells. The ratio of TUNEL, cl-caspase-3, cyto-c and bax/bcl-2 expression in the rectum mucosa treated with a FAK inhibitor increased significantly. These results demonstrated that FAK reduced radiation-induced rectal injury by decreasing apoptosis.
Collapse
Affiliation(s)
- Jun-Jun Li
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Wen-Zhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xu-Ming Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Hou-Yu Ying
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ying Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Yu-Long Ge
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Jing Wang
- Department of Pathology, Cancer Hospital of Handan, Handan 056001, China
| | - Yi Xu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Ting-Feng Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Xiao-Wei Zhang
- Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jin-Jun Ye
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing Medical University, Nanjing 210009, China.
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China.
| |
Collapse
|
17
|
Brolih S, Parks SK, Vial V, Durivault J, Mostosi L, Pouysségur J, Pagès G, Picco V. AKT1 restricts the invasive capacity of head and neck carcinoma cells harboring a constitutively active PI3 kinase activity. BMC Cancer 2018; 18:249. [PMID: 29506489 PMCID: PMC5836445 DOI: 10.1186/s12885-018-4169-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/26/2018] [Indexed: 02/08/2023] Open
Abstract
Background In mammals, the AKT/PKB protein kinase family comprises three members (AKT1–3). PI3-Kinase (PI3K), a key oncogene involved in a wide variety of cancers, drives AKT activity. Constitutive activation of the PI3K/AKT pathway has been associated with tumorigenic properties including uncontrolled cell proliferation and survival, angiogenesis, promotion of cellular motility, invasiveness and metastasis. However, AKT1 activity has also been recently shown to repress the invasive properties of breast cancer cells in specific contexts. Methods This study used both pharmacological and shRNA approaches to inhibit AKT function, microscopy to characterize the cellular morphology, 3D spheroid models to assess migratory and invasive cellular capacities and a phenotypic screening approach based on electrical properties of the cells. Results Here we demonstrate that the alternative action of AKT1 on invasive properties of breast cancers can be extended to head and neck carcinomas, which exhibit constitutive activation of the PI3K/AKT pathway. Indeed, inhibition of AKT1 function by shRNA or a specific pharmacological inhibitor resulted in cellular spreading and an invasive phenotype. A phenotypic screening approach based on cellular electrical properties corroborated microscopic observations and provides a foundation for future high-throughput screening studies. This technique further showed that the inhibition of AKT1 signaling is phenocopied by blocking the mTORC1 pathway with rapamycin. Conclusion Our study suggests that the repressive action of PI3K/AKT1 on cellular invasive properties may be a mechanism common to several cancers. Current and future studies involving AKT inhibitors must therefore consider this property to prevent metastases and consequently to improve survival. Electronic supplementary material The online version of this article (10.1186/s12885-018-4169-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sanja Brolih
- Centre Scientifique de Monaco, Department of Medical Biology, 8 Quai Antoine Ier, Monaco, Principality of Monaco
| | - Scott K Parks
- Centre Scientifique de Monaco, Department of Medical Biology, 8 Quai Antoine Ier, Monaco, Principality of Monaco
| | - Valérie Vial
- Centre Scientifique de Monaco, Department of Medical Biology, 8 Quai Antoine Ier, Monaco, Principality of Monaco
| | - Jérôme Durivault
- Centre Scientifique de Monaco, Department of Medical Biology, 8 Quai Antoine Ier, Monaco, Principality of Monaco
| | - Livio Mostosi
- Centre Scientifique de Monaco, Department of Medical Biology, 8 Quai Antoine Ier, Monaco, Principality of Monaco
| | - Jacques Pouysségur
- Centre Scientifique de Monaco, Department of Medical Biology, 8 Quai Antoine Ier, Monaco, Principality of Monaco
| | - Gilles Pagès
- Centre Scientifique de Monaco, Department of Medical Biology, 8 Quai Antoine Ier, Monaco, Principality of Monaco.,UCA, Université Côte d'Azur, Nice-Sophia-Antipolis, Institute for Research on Cancer and Aging of Nice, CNRS-UMR 7284-Inserm U1081, Nice, France
| | - Vincent Picco
- Centre Scientifique de Monaco, Department of Medical Biology, 8 Quai Antoine Ier, Monaco, Principality of Monaco.
| |
Collapse
|
18
|
De-Colle C, Mönnich D, Welz S, Boeke S, Sipos B, Fend F, Mauz PS, Tinhofer I, Budach V, Jawad JA, Stuschke M, Balermpas P, Rödel C, Grosu AL, Abdollahi A, Debus J, Bayer C, Belka C, Pigorsch S, Combs SE, Lohaus F, Linge A, Krause M, Baumann M, Zips D, Menegakis A. SDF-1/CXCR4 expression in head and neck cancer and outcome after postoperative radiochemotherapy. Clin Transl Radiat Oncol 2017; 5:28-36. [PMID: 29594214 PMCID: PMC5833920 DOI: 10.1016/j.ctro.2017.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/06/2017] [Accepted: 06/10/2017] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION Outcome after postoperative radiochemotherapy (RT-CT) for patients with advanced head and neck squamous cell carcinomas (HNSCC) remains unsatisfactory, especially among those with HPV negative tumours. Therefore, new biomarkers are needed to further define subgroups for individualised therapeutic approaches. Preclinical and first clinical observations showed that the chemokine receptor CXCR4 and its ligand SDF-1 (CXCL12) play an important role in tumour cell proliferation, survival, cancer progression, metastasis and treatment resistance. However, the data on the prognostic value of SDF-1/CXCR4 expression for HNSCC are conflicting. The aim of our hypothesis-generating study was to retrospectively explore the prognostic potential of SDF-1/CXCR4 in a well-defined cohort of HNSCC patients collected within the multicenter biomarker study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). MATERIAL AND METHODS Patients with stage III and IVA HNSCC of the oral cavity, oropharynx and hypopharynx were treated with resection and adjuvant radiotherapy (RT) with ≥60 Gy and concurrent cisplatin-based chemotherapy (CT). Tissue micro-arrays (TMAs) from a total of 221 patients were generated from surgical specimens, 201 evaluated for the SDF-1 and CXCR4 expression by immunofluorescence and correlated with clinico-pathological and outcome data. RESULTS In univariate and multivariate analyses intracellular SDF-1 expression was associated with lower loco-regional control (LRC) in the entire patient group as well as in the HPV16 DNA negative subgroup. CXCR4 expression showed a trend for lower LRC in the univariate analysis which was not confirmed in the multivariate analysis. Neither for SDF-1 nor CXCR4 expression associations with distant metastasis free or overall survival were found. CONCLUSIONS Our exploratory data support the hypothesis that overexpression of intracellular SDF-1 is an independent negative prognostic biomarker for LRC after postoperative RT-CT in high-risk HNSCC. Prospective validation is warranted and further exploration of SDF-1/CXCR4 as a potential therapeutic target to overcome treatment resistance in HNSCC appears promising.
Collapse
Affiliation(s)
- Chiara De-Colle
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - David Mönnich
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Tübingen, Germany
| | - Stefan Welz
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Simon Boeke
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Bence Sipos
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Falko Fend
- Department of Pathology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Paul-Stefan Mauz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Inge Tinhofer
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Berlin, Germany
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Volker Budach
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Berlin, Germany
- Department of Radiooncology and Radiotherapy, Charité University Hospital, Berlin, Germany
| | - Jehad Abu Jawad
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Essen, Germany
- Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Essen, Germany
- Department of Radiotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Panagiotis Balermpas
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Frankfurt, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Germany
| | - Claus Rödel
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Frankfurt, Germany
- Department of Radiotherapy and Oncology, Goethe-University Frankfurt, Germany
| | - Anca-Ligia Grosu
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Freiburg, Germany
- Department of Radiation Oncology, University of Freiburg, Germany
| | - Amir Abdollahi
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
- Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Germany
- National Center for Tumor Diseases (NCT), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
- Translational Radiation Oncology, University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
| | - Jürgen Debus
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
- Heidelberg Ion Therapy Center (HIT), Department of Radiation Oncology, University of Heidelberg Medical School, Germany
- National Center for Tumor Diseases (NCT), University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
- Clinical Cooperation Unit Radiation Oncology, University of Heidelberg Medical School and German Cancer Research Center (DKFZ), Germany
| | - Christine Bayer
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Munich, Germany
| | - Claus Belka
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Munich, Germany
- Department of Radiotherapy and Radiation Oncology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Steffi Pigorsch
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Munich, Germany
- Department of Radiation Oncology, Technische Universität München, Institute for Innovative Radiation Therapy in Helmholtz-Zentrum München, Germany
| | - Stephanie E. Combs
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Munich, Germany
- Department of Radiation Oncology, Technische Universität München, Institute for Innovative Radiation Therapy in Helmholtz-Zentrum München, Germany
| | - Fabian Lohaus
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Annett Linge
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Mechthild Krause
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Germany
| | - Michael Baumann
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
- OncoRay – National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology – OncoRay, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Zips
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
- German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK), Tübingen, Germany
| | - Apostolos Menegakis
- Radiation Oncology, Medical Faculty and University Hospital, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Dickreuter E, Cordes N. The cancer cell adhesion resistome: mechanisms, targeting and translational approaches. Biol Chem 2017; 398:721-735. [PMID: 28002024 DOI: 10.1515/hsz-2016-0326] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
Cell adhesion-mediated resistance limits the success of cancer therapies and is a great obstacle to overcome in the clinic. Since the 1990s, where it became clear that adhesion of tumor cells to the extracellular matrix is an important mediator of therapy resistance, a lot of work has been conducted to understand the fundamental underlying mechanisms and two paradigms were deduced: cell adhesion-mediated radioresistance (CAM-RR) and cell adhesion-mediated drug resistance (CAM-DR). Preclinical work has evidently demonstrated that targeting of integrins, adapter proteins and associated kinases comprising the cell adhesion resistome is a promising strategy to sensitize cancer cells to both radiotherapy and chemotherapy. Moreover, the cell adhesion resistome fundamentally contributes to adaptation mechanisms induced by radiochemotherapy as well as molecular drugs to secure a balanced homeostasis of cancer cells for survival and growth. Intriguingly, this phenomenon provides a basis for synthetic lethal targeted therapies simultaneously administered to standard radiochemotherapy. In this review, we summarize current knowledge about the cell adhesion resistome and highlight targeting strategies to override CAM-RR and CAM-DR.
Collapse
Affiliation(s)
| | - Nils Cordes
- , Faculty of Medicine and University Hospital Carl Gustav Carus
| |
Collapse
|
20
|
Head and neck cancer cell radiosensitization upon dual targeting of c-Abl and beta1-integrin. Radiother Oncol 2017; 124:370-378. [PMID: 28578803 DOI: 10.1016/j.radonc.2017.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 01/19/2023]
Abstract
Integrin-mediated cell adhesion to extracellular matrix (ECM) critically contributes to cancer cell therapy resistance and DNA double strand break (DSB) repair. c-Abl tyrosine kinase has been linked to both of these processes. Based on our previous findings indicating c-Abl hyperphosphorylation on tyrosine (Y) 412 and threonine (T) 735 upon beta1-integrin inhibition, we hypothesized c-Abl tyrosine kinase as an important mediator of beta1-integrin signaling for radioresistance. In a panel of 8 cell lines from different solid cancer types grown in 3D laminin-rich ECM cultures, we targeted beta1 integrin with AIIB2 (mAb) and c-Abl with Imatinib with and without X-ray irradiation and subsequently examined clonogenic survival, residual DSBs, protein expression and phosphorylation. Single or combined treatment with AIIB2 and Imatinib resulted in cell line-dependent cytotoxicity. Intriguingly, we identified a subgroup of this cell line panel that responded with a higher degree of radiosensitization to AIIB2/Imatinib relative to both single treatments. In this subgroup, we observed a non-statistically significant trend between the radioresponse and phospho-c-Abl Y412. Mechanistically, impairment of DNA repair seems to be associated with radiosensitization upon AIIB2/Imatinib and AIIB2/Imatinib-related radiosensitization could be reduced by exogenous overexpression of either wildtype or constitutively active c-Abl forms relative to controls. Our data generated in more physiological 3D cancer cell culture models suggest c-Abl as further determinant of radioresistance and DNA repair downstream of beta1-integrin. For solid cancers, c-Abl phosphorylation status might be an indicator for reasonable Imatinib application as adjuvant for conventional radio(chemo)therapy.
Collapse
|
21
|
Paillas S, Ladjohounlou R, Lozza C, Pichard A, Boudousq V, Jarlier M, Sevestre S, Le Blay M, Deshayes E, Sosabowski J, Chardès T, Navarro-Teulon I, Mairs RJ, Pouget JP. Localized Irradiation of Cell Membrane by Auger Electrons Is Cytotoxic Through Oxidative Stress-Mediated Nontargeted Effects. Antioxid Redox Signal 2016; 25:467-84. [PMID: 27224059 PMCID: PMC5028911 DOI: 10.1089/ars.2015.6309] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS We investigated whether radiation-induced nontargeted effects are involved in the cytotoxic effects of anticell surface monoclonal antibodies labeled with Auger electron emitters, such as iodine 125 (monoclonal antibodies labeled with (125)I [(125)I-mAbs]). RESULTS We showed that the cytotoxicity of (125)I-mAbs targeting the cell membrane of p53(+/+) HCT116 colon cancer cells is mainly due to nontargeted effects. Targeted and nontargeted cytotoxicities were inhibited in vitro following lipid raft disruption with Methyl-β-cyclodextrin (MBCD) or filipin or use of radical oxygen species scavengers. (125)I-mAb efficacy was associated with acid sphingomyelinase activation and modulated through activation of the AKT, extracellular signal-related kinase ½ (ERK1/2), p38 kinase, c-Jun N-terminal kinase (JNK) signaling pathways, and also of phospholipase C-γ (PLC-γ), proline-rich tyrosine kinase 2 (PYK-2), and paxillin, involved in Ca(2+) fluxes. Moreover, the nontargeted response induced by directing 5-[(125)I]iodo-2'-deoxyuridine to the nucleus was comparable to that of (125)I-mAb against cell surface receptors. In vivo, we found that the statistical significance of tumor growth delay induced by (125)I-mAb was removed after MBCD treatment and observed oxidative DNA damage beyond the expected Auger electron range. These results suggest the involvement of nontargeted effects in vivo also. INNOVATION Low-energy Auger electrons, such as those emitted by (125)I, have a short tissue range and are usually targeted to the nucleus to maximize their cytotoxicity. In this study, we show that targeting the cancer cell surface with (125)I-mAbs produces a lipid raft-mediated nontargeted response that compensates for the inferior efficacy of non-nuclear targeting. CONCLUSION Our findings describe the mechanisms involved in the efficacy of (125)I-mAbs targeting the cancer cell surface. Antioxid. Redox Signal. 25, 467-484.
Collapse
Affiliation(s)
- Salomé Paillas
- 1 Institut de Recherche en Cancérologie de Montpellier (IRCM) , Montpellier, France .,2 INSERM , U1194, Montpellier, France .,3 Université de Montpellier , Montpellier, France .,4 Institut régional du Cancer de Montpellier , Montpellier, France .,5 Barts Cancer Institute, Queen Mary University of London , London, United Kingdom
| | - Riad Ladjohounlou
- 1 Institut de Recherche en Cancérologie de Montpellier (IRCM) , Montpellier, France .,2 INSERM , U1194, Montpellier, France .,3 Université de Montpellier , Montpellier, France .,4 Institut régional du Cancer de Montpellier , Montpellier, France
| | - Catherine Lozza
- 1 Institut de Recherche en Cancérologie de Montpellier (IRCM) , Montpellier, France .,2 INSERM , U1194, Montpellier, France .,3 Université de Montpellier , Montpellier, France .,4 Institut régional du Cancer de Montpellier , Montpellier, France
| | - Alexandre Pichard
- 1 Institut de Recherche en Cancérologie de Montpellier (IRCM) , Montpellier, France .,2 INSERM , U1194, Montpellier, France .,3 Université de Montpellier , Montpellier, France .,4 Institut régional du Cancer de Montpellier , Montpellier, France
| | - Vincent Boudousq
- 1 Institut de Recherche en Cancérologie de Montpellier (IRCM) , Montpellier, France .,2 INSERM , U1194, Montpellier, France .,3 Université de Montpellier , Montpellier, France .,4 Institut régional du Cancer de Montpellier , Montpellier, France
| | - Marta Jarlier
- 4 Institut régional du Cancer de Montpellier , Montpellier, France
| | - Samuel Sevestre
- 1 Institut de Recherche en Cancérologie de Montpellier (IRCM) , Montpellier, France .,2 INSERM , U1194, Montpellier, France .,3 Université de Montpellier , Montpellier, France .,4 Institut régional du Cancer de Montpellier , Montpellier, France
| | - Marion Le Blay
- 1 Institut de Recherche en Cancérologie de Montpellier (IRCM) , Montpellier, France .,2 INSERM , U1194, Montpellier, France .,3 Université de Montpellier , Montpellier, France .,4 Institut régional du Cancer de Montpellier , Montpellier, France
| | - Emmanuel Deshayes
- 1 Institut de Recherche en Cancérologie de Montpellier (IRCM) , Montpellier, France .,2 INSERM , U1194, Montpellier, France .,3 Université de Montpellier , Montpellier, France .,4 Institut régional du Cancer de Montpellier , Montpellier, France
| | - Jane Sosabowski
- 5 Barts Cancer Institute, Queen Mary University of London , London, United Kingdom
| | - Thierry Chardès
- 1 Institut de Recherche en Cancérologie de Montpellier (IRCM) , Montpellier, France .,2 INSERM , U1194, Montpellier, France .,3 Université de Montpellier , Montpellier, France .,4 Institut régional du Cancer de Montpellier , Montpellier, France
| | - Isabelle Navarro-Teulon
- 1 Institut de Recherche en Cancérologie de Montpellier (IRCM) , Montpellier, France .,2 INSERM , U1194, Montpellier, France .,3 Université de Montpellier , Montpellier, France .,4 Institut régional du Cancer de Montpellier , Montpellier, France
| | - Robert J Mairs
- 6 Institute of Cancer Sciences, University of Glasgow , Glasgow, Scotland
| | - Jean-Pierre Pouget
- 1 Institut de Recherche en Cancérologie de Montpellier (IRCM) , Montpellier, France .,2 INSERM , U1194, Montpellier, France .,3 Université de Montpellier , Montpellier, France .,4 Institut régional du Cancer de Montpellier , Montpellier, France
| |
Collapse
|
22
|
Skinner HD, Giri U, Yang L, Woo SH, Story MD, Pickering CR, Byers LA, Williams MD, El-Naggar A, Wang J, Diao L, Shen L, Fan YH, Molkentine DP, Beadle BM, Meyn RE, Myers JN, Heymach JV. Proteomic Profiling Identifies PTK2/FAK as a Driver of Radioresistance in HPV-negative Head and Neck Cancer. Clin Cancer Res 2016; 22:4643-50. [PMID: 27036135 DOI: 10.1158/1078-0432.ccr-15-2785] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/24/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Head and neck squamous cell carcinoma (HNSCC) is commonly treated with radiotherapy, and local failure after treatment remains the major cause of disease-related mortality. To date, human papillomavirus (HPV) is the only known clinically validated, targetable biomarkers of response to radiation in HNSCC. EXPERIMENTAL DESIGN We performed proteomic and transcriptomic analysis of targetable biomarkers of radioresistance in HPV-negative HNSCC cell lines in vitro, and tested whether pharmacologic blockade of candidate biomarkers sensitized cells to radiotherapy. Candidate biomarkers were then investigated in several independent cohorts of patients with HNSCC. RESULTS Increased expression of several targets was associated with radioresistance, including FGFR, ERK1, EGFR, and focal adhesion kinase (FAK), also known as PTK2. Chemical inhibition of PTK2/FAK, but not FGFR, led to significant radiosensitization with increased G2-M arrest and potentiated DNA damage. PTK2/FAK overexpression was associated with gene amplification in HPV-negative HNSCC cell lines and clinical tumors. In two independent cohorts of patients with locally advanced HPV-negative HNSCC, PTK2/FAK amplification was highly associated with poorer disease-free survival (DFS; P = 0.012 and 0.034). PTK2/FAK mRNA expression was also associated with worse DFS (P = 0.03). Moreover, both PTK2/FAK mRNA (P = 0.021) and copy number (P = 0.063) were associated with DFS in the Head and Neck Cancer subgroup of The Cancer Genome Atlas. CONCLUSIONS Proteomic analysis identified PTK2/FAK overexpression is a biomarker of radioresistance in locally advanced HNSCC, and PTK2/FAK inhibition radiosensitized HNSCC cells. Combinations of PTK2/FAK inhibition with radiotherapy merit further evaluation as a therapeutic strategy for improving local control in HPV-negative HNSCC. Clin Cancer Res; 22(18); 4643-50. ©2016 AACR.
Collapse
Affiliation(s)
- Heath D Skinner
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Uma Giri
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Liang Yang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sang Hyeok Woo
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael D Story
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center and Simmons Comprehensive Cancer Center, Dallas, Texas
| | - Curtis R Pickering
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren A Byers
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michelle D Williams
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adel El-Naggar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lixia Diao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - You Hong Fan
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David P Molkentine
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Beth M Beadle
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raymond E Meyn
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey N Myers
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic/Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
23
|
Dickreuter E, Eke I, Krause M, Borgmann K, van Vugt MA, Cordes N. Targeting of β1 integrins impairs DNA repair for radiosensitization of head and neck cancer cells. Oncogene 2016; 35:1353-62. [PMID: 26073085 DOI: 10.1038/onc.2015.212] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 04/08/2015] [Accepted: 04/12/2015] [Indexed: 11/09/2022]
Abstract
β1 Integrin-mediated cell-extracellular matrix interactions allow cancer cell survival and confer therapy resistance. It was shown that inhibition of β1 integrins sensitizes cells to radiotherapy. Here, we examined the impact of β1 integrin targeting on the repair of radiation-induced DNA double-strand breaks (DSBs). β1 Integrin inhibition was accomplished using the monoclonal antibody AIIB2 and experiments were performed in three-dimensional cell cultures and tumor xenografts of human head and neck squamous cell carcinoma (HNSCC) cell lines. AIIB2, X-ray irradiation, small interfering RNA-mediated knockdown and Olaparib treatment were performed and residual DSB number, protein and gene expression, non-homologous end joining (NHEJ) activity as well as clonogenic survival were determined. β1 Integrin targeting impaired repair of radiogenic DSB (γH2AX/53BP1, pDNA-PKcs T2609 foci) in vitro and in vivo and reduced the protein expression of Ku70, Rad50 and Nbs1. Further, we identified Ku70, Ku80 and DNA-PKcs but not poly(ADP-ribose) polymerase (PARP)-1 to reside in the β1 integrin pathway. Intriguingly, combined inhibition of β1 integrin and PARP using Olaparib was significantly more effective than either treatment alone in non-irradiated and irradiated HNSCC cells. Here, we support β1 integrins as potential cancer targets and highlight a regulatory role for β1 integrins in the repair of radiogenic DNA damage via classical NHEJ. Further, the data suggest combined targeting of β1 integrin and PARP as promising approach for radiosensitization of HNSCC.
Collapse
Affiliation(s)
- E Dickreuter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - I Eke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - M Krause
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany
- German Cancer Consortium (DKTK), 01307 Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - K Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, Clinic of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - M A van Vugt
- Department of Medical Oncology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - N Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology, Dresden, Germany
- German Cancer Consortium (DKTK), 01307 Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Vehlow A, Storch K, Matzke D, Cordes N. Molecular Targeting of Integrins and Integrin-Associated Signaling Networks in Radiation Oncology. Recent Results Cancer Res 2016; 198:89-106. [PMID: 27318682 DOI: 10.1007/978-3-662-49651-0_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Radiation and chemotherapy are the main pillars of the current multimodal treatment concept for cancer patients. However, tumor recurrences and resistances still hamper treatment success regardless of advances in radiation beam application, particle radiotherapy, and optimized chemotherapeutics. To specifically intervene at key recurrence- and resistance-promoting molecular processes, the development of potent and specific molecular-targeted agents is demanded for an efficient, safe, and simultaneous integration into current standard of care regimens. Potential targets for such an approach are integrins conferring structural and biochemical communication between cells and their microenvironment. Integrin binding to extracellular matrix activates intracellular signaling for regulating essential cellular functions such as survival, proliferation, differentiation, adhesion, and cell motility. Tumor-associated characteristics such as invasion, metastasis, and radiochemoresistance also highly depend on integrin function. Owing to their dual functionality and their overexpression in the majority of human malignancies, integrins present ideal and accessible targets for cancer therapy. In the following chapter, the current knowledge on aspects of the tumor microenvironment, the molecular regulation of integrin-dependent radiochemoresistance and current approaches to integrin targeting are summarized.
Collapse
Affiliation(s)
- Anne Vehlow
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Katja Storch
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Daniela Matzke
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
- Institute of Radiooncology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.
| |
Collapse
|
25
|
Hehlgans S, Oppermann J, Reichert S, Fulda S, Rödel C, Rödel F. The SMAC mimetic BV6 sensitizes colorectal cancer cells to ionizing radiation by interfering with DNA repair processes and enhancing apoptosis. Radiat Oncol 2015; 10:198. [PMID: 26383618 PMCID: PMC4573682 DOI: 10.1186/s13014-015-0507-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/10/2015] [Indexed: 01/04/2023] Open
Abstract
Background In the present study, we aimed to investigate the effect of counteracting inhibitor of apoptosis (IAP) proteins using the small molecule Second Mitochondria-derived Activator of Caspase (SMAC) mimetic BV6 in combination with ionizing radiation on apoptosis, cell cycle regulation, DNA double-strand break (DSB) repair, three-dimensional (3D) clonogenic survival and expression of IAPs in colorectal carcinoma cells. Material and methods Colorectal cancer cell lines (HCT-15, HT-29, SW480) were subjected to BV6 treatment (0–4 μM) with or without irradiation (2–8 Gy, single dose) followed by MTT, Caspase 3/7 activity, γH2AX/53BP1 foci assays, AnnexinV staining, cell cycle analysis, 3D colony forming assays and Western blotting (cellular IAP1 (cIAP1) and cIAP2, Survivin, X-linked IAP (XIAP)). Results BV6 treatment decreased cell viability and significantly increased irradiation-induced apoptosis as analyzed by Caspase 3/7 activity, AnnexinV-positive and subG1 phase cells. While basal 3D clonogenic survival was decreased in a cell line-dependent manner, BV6 significantly enhanced cellular radiosensitivity of all cell lines in a concentration-dependent manner and increased the number of radiation-induced γH2AX/53BP1-positive foci. Western blot analysis revealed a markedly reduced cIAP1 expression at 4 h after BV6 treatment in all cell lines, a substantial reduction of XIAP expression in SW480 and HT-29 cells at 24 h and a slightly decreased cIAP2 expression in HCT-15 cells at 48 h after treatment. Moreover, single or double knockdown of cIAP1 and XIAP resulted in significantly increased residual γH2AX/53BP1-positive foci 24 h after 2 Gy and radiosensitization relative to control small interfering RNA (siRNA)-treated cells. Conclusion The SMAC mimetic BV6 induced apoptosis and hampered DNA damage repair to radiosensitize 3D grown colorectal cancer cells. Our results demonstrate IAP targeting as a promising strategy to counteract radiation resistance of colorectal cancer cells. Electronic supplementary material The online version of this article (doi:10.1186/s13014-015-0507-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Julius Oppermann
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Sebastian Reichert
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe University Frankfurt, Komturstr. 3a, 60528, Frankfurt am Main, Germany. .,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,German Cancer Consortium (DKTK) partner site: Frankfurt, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany. .,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,German Cancer Consortium (DKTK) partner site: Frankfurt, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Eke I, Zscheppang K, Dickreuter E, Hickmann L, Mazzeo E, Unger K, Krause M, Cordes N. Simultaneous β1 integrin-EGFR Targeting and Radiosensitization of Human Head and Neck Cancer. ACTA ACUST UNITED AC 2015; 107:dju419. [DOI: 10.1093/jnci/dju419] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
27
|
Storch K, Sagerer A, Cordes N. Cytotoxic and radiosensitizing effects of FAK targeting in human glioblastoma cells in vitro. Oncol Rep 2015; 33:2009-16. [PMID: 25625667 DOI: 10.3892/or.2015.3753] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/27/2014] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and extremely lethal cancer and novel molecular therapies are required for optimized multimodal therapy regimes. While focal adhesion kinase (FAK) is regarded as a therapeutic target, its radiosensitizing potential remains to be elucidated in glioblastoma. Thus, FAK was inhibited using the pharmaco-logical inhibitor TAE226 and cytotoxicity and radiosensitization of glioblastoma cells were investigated in vitro. Monolayer and suspension cell cultures of a panel of glioblastoma cell lines (A172, LN229, U87MG, U138MG, U343MG, DD-HT7607, and DD-T4) were treated with increasing TAE226 concentrations (0-10 µM) alone or in combination with X-rays (0-6 Gy). Subsequently, clonogenic cell survival, expression and the phosphorylation of FAK downstream signaling, apoptosis and autophagy were analyzed. Efficient FAK inhibition by TAE226 mediated significant cytotoxicity and reduced sphere formation in a dose- and time-dependent manner. Two out of seven glioblastoma cell lines showed radiosensitization. Apoptotic induction by TAE226 was cell line-dependent. The results demonstrated that pharmacological FAK inhibitor TAE226 efficiently reduced clonogenicity and sphere formation in glioblastoma cells without generally modifying their radiosensitivity. However, future studies are necessary to define the potential of FAK inhibition by TAE226 or other pharmacological inhibitors in combination with radiochemotherapy.
Collapse
Affiliation(s)
- Katja Storch
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, D-01307 Dresden, Germany
| | - Andre Sagerer
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, D-01307 Dresden, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, D-01307 Dresden, Germany
| |
Collapse
|
28
|
Raab M, Krämer A, Hehlgans S, Sanhaji M, Kurunci-Csacsko E, Dötsch C, Bug G, Ottmann O, Becker S, Pachl F, Kuster B, Strebhardt K. Mitotic arrest and slippage induced by pharmacological inhibition of Polo-like kinase 1. Mol Oncol 2015; 9:140-54. [PMID: 25169932 PMCID: PMC5528686 DOI: 10.1016/j.molonc.2014.07.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/25/2014] [Indexed: 01/22/2023] Open
Abstract
Exposure to drugs that interfere with microtubule dynamics block cell cycle progression at mitosis by prolonged activation of the spindle assembly checkpoint (SAC). Cells can evade mitotic arrest and proceed to interphase without chromosome segregation by a process termed mitotic slippage that involves Cyclin B1 degradation without checkpoint inactivation. Here, we explored the cellular response to small-molecule inhibitors of Polo-like kinase 1 (Plk1), an important regulator of cell division. We found that the clinical Plk1 inhibitors BI 2536 and BI 6727, both unexpectedly, induced a dose-dependent cellular drug response: While mitotic arrest was induced in cancer cell lines and primary non-transformed cells across the entire range of concentrations tested, only high concentrations seemed to promote mitotic slippage. Since this observation contrasts with the effects expected from studies reporting RNAi-mediated Plk1 depletion in cancer cells, we wondered whether both ATP-competitive inhibitors target unknown kinases that are involved in signaling from the spindle assembly checkpoint (SAC) and might contribute to the mitotic slippage. A chemical proteomics approach used to profile the selectivity of both inhibitors revealed that SAC kinases are not targeted directly. Still, the activities of Cdk1/Cyclin B1 and Aurora B, which plays important roles in the error correction of false microtubule-kinetochore attachments and in checkpoint signaling, were shown to be downregulated at high inhibitor concentrations. Our data suggest that the inhibition of Plk1 activity below a certain threshold influences Aurora B activity via reduced phosphorylation of Fox M1 and Survivin leading to diminished levels of Aurora B protein and alteration of its subcellular localization. Within the spectrum of SAC proteins that are degraded during mitotic slippage, the degradation of Cyclin B1 and the downregulation of Aurora B activity by Plk1 inhibition seem to be critical promoters of mitotic slippage. The results indicate that careful dose-finding studies in cancer trials are necessary to limit or even prevent mitotic slippage, which could be associated with improved cancer cell survival.
Collapse
Affiliation(s)
- Monika Raab
- Department of Gynecology, School of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Andrea Krämer
- Department of Gynecology, School of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | - Mourad Sanhaji
- Department of Gynecology, School of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Elisabeth Kurunci-Csacsko
- Department of Gynecology, School of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Christina Dötsch
- Department of Gynecology, School of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Gesine Bug
- Department of Medicine, Hematology/Oncology, Goethe University, Germany
| | - Oliver Ottmann
- Department of Medicine, Hematology/Oncology, Goethe University, Germany
| | - Sven Becker
- Department of Gynecology, School of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Fiona Pachl
- Technische Universität München, Emil Erlenmeyer Forum 5, 85354 Freising, Germany
| | - Bernhard Kuster
- Technische Universität München, Emil Erlenmeyer Forum 5, 85354 Freising, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Klaus Strebhardt
- Department of Gynecology, School of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
29
|
Wu J, Li Y, Dang YZ, Gao HX, Jiang JL, Chen ZN. HAb18G/CD147 promotes radioresistance in hepatocellular carcinoma cells: a potential role for integrin β1 signaling. Mol Cancer Ther 2014; 14:553-63. [PMID: 25534361 DOI: 10.1158/1535-7163.mct-14-0618] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radiotherapy has played a limited role in the treatment of hepatocellular carcinoma (HCC) due to the risk of tumor radioresistance. A previous study in our laboratory confirmed that CD147 interacts with integrin β1 and plays an important role in modulating the malignant properties of HCC cells. In this study, we further evaluated the role of CD147 in the radioresistance of HCC and as a potential target for improving radiosensitivity. Upon irradiation, the colony formation, apoptosis, cell-cycle distribution, migration, and invasion of SMMC-7721, CD147-knockout SMMC-7721, HepG2, and CD147-knockdown HepG2 cells were determined. A nude mouse xenograft model and a metastatic model of HCC were used to detect the role of CD147 in radioresistance in vivo. Deletion of HAb18G/CD147 significantly enhanced the radiosensitivity of SMMC-7721 and HepG2 cells, and knocking out HAb18G/CD147 in SMMC-7721 cells attenuated irradiation-enhanced migration and invasion. The knockout and antibody blockade of CD147 decreased the tumor growth and metastatic potentials of HCC cells under irradiation. CD147-deleted SMMC-7721 cells showed diminished levels of calpain, cleaved talin, active integrin β1, and decreased p-FAK (Tyr397) and p-Akt (Ser473) levels. FAK and PI3K inhibitors, as well as integrin β1 antibodies, increased the radiation-induced apoptosis of SMMC-7721 cells. Our data provide evidence for CD147 as an important determinant of radioresistance via the regulation of integrin β1 signaling. Inhibition of the HAb18G/CD147 integrin interaction may improve the efficiency of radiosensitivity and provide a potential new approach for HCC therapy.
Collapse
Affiliation(s)
- Jiao Wu
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China
| | - Yong Li
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China. Department of Oncology, PLA 323 Hospital, Xi'an, China
| | - Ya-Zheng Dang
- Department of Oncology, PLA 323 Hospital, Xi'an, China
| | | | - Jian-Li Jiang
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China.
| | - Zhi-Nan Chen
- Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
30
|
Steglich A, Vehlow A, Eke I, Cordes N. α integrin targeting for radiosensitization of three-dimensionally grown human head and neck squamous cell carcinoma cells. Cancer Lett 2014; 357:542-8. [PMID: 25497870 DOI: 10.1016/j.canlet.2014.12.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 11/26/2014] [Accepted: 12/04/2014] [Indexed: 11/16/2022]
Abstract
Integrin cell adhesion molecules play a crucial role in tumor cell resistance to radio- and chemotherapy and are therefore considered attractive targets for cancer therapy. Here, we assessed the role of β1 integrin-interacting α integrin subunits in more physiological three-dimensional extracellular matrix grown head and neck squamous cell carcinoma (HNSCC) cell cultures for evaluating cytotoxic and radiosensitizing potential. α2, α3, α5 and α6 integrins, which are overexpressed in HNSCC according to Oncomine database analysis, were coprecipitated with β1 integrin. More potently than α2, α5 or α6 integrin inhibition, siRNA-based α3 integrin targeting resulted in reduced clonogenic cell survival, induced apoptosis and enhanced radiosensitivity. These events were associated with diminished phosphorylation of Akt, Cortactin and Paxillin. Cell line-dependently, simultaneous α3 and β1 integrin inhibition led to higher cytotoxicity and radiosensitization than α3 integrin blocking alone. Stable overexpression of wild-type and constitutively active forms of the integrin signaling mediator focal adhesion kinase (FAK) revealed FAK as a key determinant of α3 integrin depletion-mediated radiosensitization. Our findings show that α3 integrin is essentially involved in HNSCC cell radioresistance and critical for a modified cellular radiosensitivity along with β1 integrins.
Collapse
Affiliation(s)
- Anne Steglich
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Anne Vehlow
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Iris Eke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Institute of Radiooncology, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany; German Cancer Consortium (DKTK), Fetscherstr. 74, 01307 Dresden, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
31
|
Tang FR, Loke WK. Molecular mechanisms of low dose ionizing radiation-induced hormesis, adaptive responses, radioresistance, bystander effects, and genomic instability. Int J Radiat Biol 2014; 91:13-27. [DOI: 10.3109/09553002.2014.937510] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
32
|
Eke I, Cordes N. Focal adhesion signaling and therapy resistance in cancer. Semin Cancer Biol 2014; 31:65-75. [PMID: 25117005 DOI: 10.1016/j.semcancer.2014.07.009] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022]
Abstract
Interlocking gene mutations, epigenetic alterations and microenvironmental features perpetuate tumor development, growth, infiltration and spread. Consequently, intrinsic and acquired therapy resistance arises and presents one of the major goals to solve in oncologic research today. Among the myriad of microenvironmental factors impacting on cancer cell resistance, cell adhesion to the extracellular matrix (ECM) has recently been identified as key determinant. Despite the differentiation between cell adhesion-mediated drug resistance (CAMDR) and cell adhesion-mediated radioresistance (CAMRR), the underlying mechanisms share great overlap in integrin and focal adhesion hub signaling and differ further downstream in the complexity of signaling networks between tumor entities. Intriguingly, cell adhesion to ECM is per se also essential for cancer cells similar to their normal counterparts. However, based on the overexpression of focal adhesion hub signaling receptors and proteins and a distinct addiction to particular integrin receptors, targeting of focal adhesion proteins has been shown to potently sensitize cancer cells to different treatment regimes including radiotherapy, chemotherapy and novel molecular therapeutics. In this review, we will give insight into the role of integrins in carcinogenesis, tumor progression and metastasis. Additionally, literature and data about the function of focal adhesion molecules including integrins, integrin-associated proteins and growth factor receptors in tumor cell resistance to radio- and chemotherapy will be elucidated and discussed.
Collapse
Affiliation(s)
- Iris Eke
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität, Dresden, Germany; German Cancer Consortium (DKTK), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiation Oncology, Helmholtz-Zentrum Dresden - Rossendorf, Dresden 01328, Germany.
| |
Collapse
|
33
|
Lazaro G, Smith C, Goddard L, Jordan N, McClelland R, Barrett-Lee P, Nicholson RI, Hiscox S. Targeting focal adhesion kinase in ER+/HER2+ breast cancer improves trastuzumab response. Endocr Relat Cancer 2013; 20:691-704. [PMID: 23900794 DOI: 10.1530/erc-13-0019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The HER2 transmembrane receptor is a well-characterised predictive marker for trastuzumab benefit and may be associated with decreased benefit from endocrine therapy use. Despite the clinical effectiveness of anti-HER2 agents in such cases, resistance represents a significant limiting factor. Focal adhesion kinase (FAK) plays an important role in HER2 signalling, mediating downstream Akt activation in addition to HER2 cross talk with other growth factor receptors. In this study, we investigated the therapeutic potential of FAK in oestrogen receptor-positive (ER+)/HER2+ breast cancer using the novel FAK-specific inhibitor PF4554878 ('PF878'). The activation of the FAK/HER2 signalling pathway was assessed in ER+/HER2- (MCF7 and T47D) and ER+/HER2+ (BT-474 and MDAMB361) breast cancer cells in the presence or absence of PF878 and PF878±trastuzumab. The effects of PF878 on cell growth as a monotherapy and in combination with trastuzumab were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and Coulter counting with isobologram analysis to determine synergy/additive effects. FAK activation (at Y861 but not at Y397) was highest in ER+/HER2+ cells, which also demonstrated the greatest sensitivity to PF878. As a monotherapy, PF878 prevented heregulin-induced MDA361 cell migration, but had no significant effect on cell growth. The treatment of ER+/HER2+ cells with PF878 and trastuzumab in combination resulted in the synergistic inhibition of cell proliferation. Underlying this was an abrogation of Akt activity and increased poly(ADP-ribose) polymerase cleavage, effects that were greatest in trastuzumab-refractory MDA361 cells. Collectively, these data support a role for FAK in ER+/HER2+ breast cancer, where its targeting has the potential to improve trastuzumab response. This is particularly important in the context of ER+/HER2+, trastuzumab-refractory disease, where FAK inhibition may present an important strategy to restore trastuzumab sensitivity.
Collapse
Affiliation(s)
- Glorianne Lazaro
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Wales, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hehlgans S, Storch K, Lange I, Cordes N. The novel HDAC inhibitor NDACI054 sensitizes human cancer cells to radiotherapy. Radiother Oncol 2013; 109:126-32. [PMID: 24060178 DOI: 10.1016/j.radonc.2013.08.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Inhibition of histone deacetylases (HDACs) has preclinically and clinically shown promise to overcome radio- and chemoresistance of tumor cells. NDACI054 is a novel HDAC inhibitor, which has been evaluated here for its effects on cell survival and radiosensitization of human tumor cell lines from different origins cultured under more physiological three-dimensional (3D), extracellular matrix (ECM)-based conditions. MATERIAL AND METHODS A549 lung, DLD-1 colorectal, MiaPaCa2 pancreatic and UT-SCC15 head and neck squamous cell carcinoma cells were treated with increasing NDACI054 concentrations (0-50 nM, 24 h) either alone or in combination with X-rays (single dose, 0-6 Gy). Subsequently, 3D clonogenic cell survival, HDAC activity, histone H3 acetylation, apoptosis, residual DNA damage (γH2AX/p53BP1 foci assay 24h post irradiation) and phosphorylation kinetics of Ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), Caspase-3 and Poly(ADP-ribose)-Polymerase 1 (PARP 1) cleavage were analyzed. RESULTS NDACI054 potently decreased HDAC activity with concomitant increase in acetyl-histone H3 levels, mediated significant cytotoxicity and radiosensitization. These effects were accompanied by a significant increase of residual γH2AX/p53BP1-positive foci, slightly elevated levels of Caspase-3 and PARP 1 cleavage but no induction of apoptosis. CONCLUSIONS Our data show potent antisurvival and radiosensitizing effects of the novel HDAC inhibitor NDACI054 encouraging further preclinical examinations on this compound for future clinical use.
Collapse
Affiliation(s)
- Stephanie Hehlgans
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Germany; Department of Radiotherapy and Oncology, University of Frankfurt, Germany
| | | | | | | |
Collapse
|
35
|
Hehlgans S, Petraki C, Reichert S, Cordes N, Rödel C, Rödel F. Double targeting of Survivin and XIAP radiosensitizes 3D grown human colorectal tumor cells and decreases migration. Radiother Oncol 2013; 108:32-9. [PMID: 23830189 DOI: 10.1016/j.radonc.2013.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/28/2013] [Accepted: 06/04/2013] [Indexed: 01/11/2023]
Abstract
BACKGROUND AND PURPOSE In the present study, we aimed to investigate the effect of single and double knockdown of the inhibitor of apoptosis proteins (IAP) Survivin and X-linked IAP (XIAP) on three-dimensional (3D) clonogenic survival, migration capacity and underlying signaling pathways. MATERIALS AND METHODS Colorectal cancer cell lines (HCT-15, SW48, SW480, SW620) were subjected to siRNA-mediated single or Survivin/XIAP double knockdown followed by 3D colony forming assays, cell cycle analysis, Caspase activity assays, migration assays, matrigel transmigration assays and Western blotting (Survivin, XIAP, Focal adhesion kinase (FAK), p-FAK Y397, Akt1, p-Akt1 S473, Extracellular signal-regulated kinase (ERK1/2), p-ERK1/2 T202/Y204, Glycogen synthase kinase (GSK)3β, p-GSK3β S9, nuclear factor (NF)-κB p65). RESULTS While basal cell survival was altered cell line-dependently, Survivin or XIAP single and Survivin/XIAP double knockdown enhanced cellular radiosensitivity of all tested cancer cell lines grown in 3D. Particularly double knockdown conditions revealed accumulation of cells in G2/M, increased subG1 fraction, elevated Caspase 3/7 activity, and reduced migration. Intracellular signaling showed dephosphorylation of FAK and Akt1 upon Survivin and/or Survivin/XIAP silencing. CONCLUSIONS Our results strengthen the notion of Survivin and XIAP to act as radiation resistance factors and further indicate that these apoptosis-regulating proteins are also functioning in cell cycling and cell migration.
Collapse
Affiliation(s)
- Stephanie Hehlgans
- Department of Radiotherapy and Oncology, University of Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Soffar A, Storch K, Aleem E, Cordes N. CDK2 knockdown enhances head and neck cancer cell radiosensitivity. Int J Radiat Biol 2013; 89:523-31. [PMID: 23461792 DOI: 10.3109/09553002.2013.782108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE Cyclin-dependent kinase 2 (CDK2) is critically involved in cell cycling and has been proposed as a potential cancer target. It remains largely elusive whether CDK2 targeting alters the tumor cell radiosensitivity. MATERIALS AND METHODS CDK2(-/-) and wild type (WT) mouse embryonic fibroblasts (MEF) as well as six human head and neck squamous cell carcinoma (HNSCC) cell lines (SAS, FaDu, Cal-33, HSC-4, UTSCC-5, UTSCC-8) were used. Upon CDK2 knockdown using small interfering technology, colony formation, DNA double-strand breaks (DSB), cell cycle distribution and expression and phosphorylation of major proteins regulating cell cycle and DNA damage repair were examined. RESULTS CDK2(-/-) MEF and CDK2 HNSCC knockdown cell cultures were more radiosensitive than the corresponding controls. Repair of DSB was attenuated under CDK2 knockout or knockdown. In contrast to data in MEF, combined CDK2 knockdown with irradiation showed no cell cycling alterations in SAS and FaDu cultures. Importantly, CDK2 knockdown failed to radiosensitize SAS and FaDu when cultured in a more physiological three-dimensional (3D) extracellular matrix environment. CONCLUSIONS Our findings suggest that targeting of CDK2 radiosensitizes HNSCC cells growing as monolayer. Additional studies performed under more physiological conditions are warranted to clarify the potential of CDK2 as target in radiotherapy.
Collapse
Affiliation(s)
- Ahmed Soffar
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
37
|
de la Cruz-Morcillo MA, García-Cano J, Arias-González L, García-Gil E, Artacho-Cordón F, Ríos-Arrabal S, Valero ML, Cimas FJ, Serrano-Oviedo L, Villas MV, Romero-Fernández J, Núñez MI, Sánchez-Prieto R. Abrogation of the p38 MAPK α signaling pathway does not promote radioresistance but its activity is required for 5-Fluorouracil-associated radiosensitivity. Cancer Lett 2013; 335:66-74. [PMID: 23403078 DOI: 10.1016/j.canlet.2013.01.050] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 01/23/2013] [Accepted: 01/30/2013] [Indexed: 01/10/2023]
Abstract
The p38 Mitogen Activated Protein Kinase (MAPK) signaling pathway has become a major player in the response to DNA-damage. A growing body of evidences has been relating this signaling pathway to the cellular response to ionizing radiation (IR), suggesting a role in radioresistance. Here, we study the implication of this signaling pathway in the response to IR in terms of radioresistance. To this end we used 10 different cell lines derived from several types of tumors (colorectal, non-small cell lung cancer -NSCLC-, renal and glioblastoma). Although p38 MAPK is transiently activated by IR, our data, obtained by genetic and chemical approaches, showed that this signaling pathway is not implicated in cellular viability after IR exposure. Indeed, down-modulation of this signaling pathway promotes a mild radiosensitivity depending on the cell line. However, it is remarkable that lack of p38 MAPK α abrogates the radiosensitizing effect of 5-Fluorouracil (5-FU) in HCT116 cell line, supporting the role of this MAPK in the radiosensitizing action of 5-FU.
Collapse
Affiliation(s)
- Miguel A de la Cruz-Morcillo
- Laboratorio de Oncología Molecular, Centro Regional de Investigaciones Biomédicas (CRIB), UCLM, 02006 Albacete, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hassan H, Greve B, Pavao MSG, Kiesel L, Ibrahim SA, Götte M. Syndecan-1 modulates β-integrin-dependent and interleukin-6-dependent functions in breast cancer cell adhesion, migration, and resistance to irradiation. FEBS J 2013; 280:2216-27. [DOI: 10.1111/febs.12111] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/24/2012] [Accepted: 01/01/2013] [Indexed: 12/30/2022]
Affiliation(s)
| | - Burkhard Greve
- Department of Radiotherapy; University Hospital Münster; Germany
| | - Mauro S. G. Pavao
- Instituto de Bioquimica Medica; Universidade Federal do Rio de Janeiro; Brazil
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics; University Hospital Münster; Germany
| | | | - Martin Götte
- Department of Gynecology and Obstetrics; University Hospital Münster; Germany
| |
Collapse
|
39
|
Cordes N, Rödel F, Rodemann HP. [Molecular signaling pathways. Mechanisms and clinical use]. Strahlenther Onkol 2013; 188 Suppl 3:308-11. [PMID: 22907579 DOI: 10.1007/s00066-012-0205-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This brief summary on the role of experimental radiation oncology highlights several new research topics and research approaches that offer great potential for the optimization of modern radiation oncology. In addition, many areas of research, such as hypoxia, angiogenesis, the immune system, and metabolism, to name a few, comprise a substantial part of our current knowledge of tumor and radiation biology. Which new insights and therapeutic possibilities via the Human Cancer Genome Project or new processes, such as next generation sequencing may offer, cannot be easily foreseen at present. However, we do know for certain: radiation biology has and will continue to contribute to improvements in radiation oncology.
Collapse
Affiliation(s)
- N Cordes
- OncoRay - Nationales Zentrum für Strahlenforschung in der Onkologie, Universitätsklinik und Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74 / PF 41, 01307 Dresden.
| | | | | |
Collapse
|
40
|
Focal adhesion-chromatin linkage controls tumor cell resistance to radio- and chemotherapy. CHEMOTHERAPY RESEARCH AND PRACTICE 2012; 2012:319287. [PMID: 22778951 PMCID: PMC3385588 DOI: 10.1155/2012/319287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/17/2012] [Accepted: 05/07/2012] [Indexed: 11/29/2022]
Abstract
Cancer resistance to therapy presents an ongoing and unsolved obstacle, which has clear impact on patient's survival. In order to address this problem, novel in vitro models have been established and are currently developed that enable data generation in a more physiological context. For example, extracellular-matrix- (ECM-) based scaffolds lead to the identification of integrins and integrin-associated signaling molecules as key promoters of cancer cell resistance to radio- and chemotherapy as well as modern molecular agents. In this paper, we discuss the dynamic nature of the interplay between ECM, integrins, cytoskeleton, nuclear matrix, and chromatin organization and how this affects the response of tumor cells to various kinds of cytotoxic anticancer agents.
Collapse
|
41
|
Zschenker O, Streichert T, Hehlgans S, Cordes N. Genome-wide gene expression analysis in cancer cells reveals 3D growth to affect ECM and processes associated with cell adhesion but not DNA repair. PLoS One 2012; 7:e34279. [PMID: 22509286 PMCID: PMC3324525 DOI: 10.1371/journal.pone.0034279] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 02/27/2012] [Indexed: 01/22/2023] Open
Abstract
Cell morphology determines cell behavior, signal transduction, protein-protein interaction, and responsiveness to external stimuli. In cancer, these functions profoundly contribute to resistance mechanisms to radio- and chemotherapy. With regard to this aspect, this study compared the genome wide gene expression in exponentially growing cell lines from different tumor entities, lung carcinoma and squamous cell carcinoma, under more physiological three-dimensional (3D) versus monolayer cell culture conditions. Whole genome cDNA microarray analysis was accomplished using the Affymetrix HG U133 Plus 2.0 gene chip. Significance analysis of microarray (SAM) and t-test analysis revealed significant changes in gene expression profiles of 3D relative to 2D cell culture conditions. These changes affected the extracellular matrix and were mainly associated with biological processes like tissue development, cell adhesion, immune system and defense response in contrast to terms related to DNA repair, which lacked significant alterations. Selected genes were verified by semi-quantitative RT-PCR and Western blotting. Additionally, we show that 3D growth mediates a significant increase in tumor cell radio- and chemoresistance relative to 2D. Our findings show significant gene expression differences between 3D and 2D cell culture systems and indicate that cellular responsiveness to external stress such as ionizing radiation and chemotherapeutics is essentially influenced by differential expression of genes involved in the regulation of integrin signaling, cell shape and cell-cell contact.
Collapse
Affiliation(s)
- Oliver Zschenker
- OncoRay – National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Thomas Streichert
- Department of Clinical Chemistry/Central Laboratories, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Hehlgans
- OncoRay – National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | - Nils Cordes
- OncoRay – National Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
- * E-mail:
| |
Collapse
|