1
|
Thakur N, Singh P, Bagri A, Srivastava S, Dwivedi V, Singh A, Jaiswal SK, Dholpuria S. Therapy resistance in prostate cancer: mechanism, signaling and reversal strategies. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:1110-1134. [PMID: 39351434 PMCID: PMC11438573 DOI: 10.37349/etat.2024.00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Prostate cancer (PC) depicts a major health challenge all over the globe due to its complexities in the treatment and diverse clinical trajectories. Even in the advances in the modern treatment strategies, the spectrum of resistance to the therapies continues to be a significant challenge. This review comprehensively examines the underlying mechanisms of the therapy resistance occurred in PC, focusing on both the tumor microenvironment and the signaling pathways implicated in the resistance. Tumor microenvironment comprises of stromal and epithelial cells, which influences tumor growth, response to therapy and progression. Mechanisms such as microenvironmental epithelial-mesenchymal transition (EMT), anoikis suppression and stimulation of angiogenesis results in therapy resistance. Moreover, dysregulation of signaling pathways including androgen receptor (AR), mammalian target of rapamycin/phosphoinositide 3 kinase/AKT (mTOR/PI3K/AKT), DNA damage repair and Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways drive therapy resistance by promoting tumor survival and proliferation. Understanding these molecular pathways is important for developing targeted therapeutic interventions which overcomes resistance. In conclusion, a complete grasp of mechanisms and pathways underlying medication resistance in PC is important for the development of individualized treatment plans and enhancements of clinical outcomes. By studying and understanding the complex mechanisms of signaling pathways and microenvironmental factors contributing to therapy resistance, this study focuses and aims to guide the development of innovative therapeutic approaches to effectively overcome the PC progression and improve the survival rate of patients.
Collapse
Affiliation(s)
- Neha Thakur
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Pallavi Singh
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Aditi Bagri
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Saumya Srivastava
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand 248002, India
| | - Vinay Dwivedi
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Asha Singh
- Amity Institute of Biotechnology, Amity University, Gwalior, Madhya Pradesh 474005, India
| | - Sunil Kumar Jaiswal
- School of Biological and Life Sciences, Galgotias University, Greater Noida, Uttar Pradesh 203201, India
| | - Sunny Dholpuria
- Department of Life Sciences, J. C. Bose University of Science and Technology, YMCA Faridabad, Faridabad, Haryana 121006, India
| |
Collapse
|
2
|
Deb S, Chakrabarti A, Fox SB. Prognostic and Predictive Biomarkers in Familial Breast Cancer. Cancers (Basel) 2023; 15:cancers15041346. [PMID: 36831687 PMCID: PMC9953970 DOI: 10.3390/cancers15041346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023] Open
Abstract
Large numbers of breast cancers arise within a familial context, either with known inherited germline mutations largely within DNA repair genes, or with a strong family history of breast and/or ovarian cancer, with unknown genetic underlying mechanisms. These cancers appear to be different to sporadic cases, with earlier age of onset, increased multifocality and with association with specific breast cancer histological and phenotypic subtypes. Furthermore, tumours showing homologous recombination deficiency, due to loss of BRCA1, BRCA2, PALB2 and CHEK2 function, have been shown to be especially sensitive to platinum-based chemotherapeutics and PARP inhibition. While there is extensive research and data accrued on risk stratification and genetic predisposition, there are few data pertaining to relevant prognostic and predictive biomarkers within this breast cancer subgroup. The following is a review of such biomarkers in male and female familial breast cancer, although the data for the former are particularly sparse.
Collapse
Affiliation(s)
- Siddhartha Deb
- Anatpath, Gardenvale, VIC 3185, Australia
- Monash Health Pathology, Clayton, VIC 3168, Australia
- Correspondence:
| | | | - Stephen B. Fox
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Mebourne, Melbourne, VIC 3101, Australia
| |
Collapse
|
3
|
DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms232314672. [PMID: 36499000 PMCID: PMC9735783 DOI: 10.3390/ijms232314672] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Resistance to chemo- and radiotherapy is a common event among cancer patients and a reason why new cancer therapies and therapeutic strategies need to be in continuous investigation and development. DNA damage response (DDR) comprises several pathways that eliminate DNA damage to maintain genomic stability and integrity, but different types of cancers are associated with DDR machinery defects. Many improvements have been made in recent years, providing several drugs and therapeutic strategies for cancer patients, including those targeting the DDR pathways. Currently, poly (ADP-ribose) polymerase inhibitors (PARP inhibitors) are the DDR inhibitors (DDRi) approved for several cancers, including breast, ovarian, pancreatic, and prostate cancer. However, PARPi resistance is a growing issue in clinical settings that increases disease relapse and aggravate patients' prognosis. Additionally, resistance to other DDRi is also being found and investigated. The resistance mechanisms to DDRi include reversion mutations, epigenetic modification, stabilization of the replication fork, and increased drug efflux. This review highlights the DDR pathways in cancer therapy, its role in the resistance to conventional treatments, and its exploitation for anticancer treatment. Biomarkers of treatment response, combination strategies with other anticancer agents, resistance mechanisms, and liabilities of treatment with DDR inhibitors are also discussed.
Collapse
|
4
|
Sottile ML, Cuello-Carrión FD, Gómez LC, Semino S, Ibarra J, García MB, Gonzalez L, Vargas-Roig LM, Nadin SB. DNA Damage Repair Proteins, HSP27, and Phosphorylated-HSP90α as Predictive/Prognostic Biomarkers of Platinum-based Cancer Chemotherapy: An Exploratory Study. Appl Immunohistochem Mol Morphol 2022; 30:425-434. [PMID: 35639358 DOI: 10.1097/pai.0000000000001037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/25/2022] [Indexed: 11/27/2022]
Abstract
Platinum analogs are commonly used for cancer treatment. There is increasing interest in finding biomarkers which could predict and overcome resistance, because to date there is no reliable predictive/prognostic marker for these compounds. Here we studied the immunohistochemical expression of proteins involved in DNA damage response and repair (γH2AX, 53BP1, ERCC1, MLH1, and MSH2) in primary tumor tissues from patients treated with platinum-based chemotherapy. Levels and localization of Heat Shock Protein (HSP)27 and phospho-(Thr5/7)-HSP90α (p-HSP90α) were also determined. The implications in clinical response, disease-free survival and overall survival were analyzed. High γH2AX and 53BP1 expressions were associated with poor clinical response. Nuclear p-HSP90α, as well as nuclear absence and low cytoplasmic expression of HSP27 correlated with good response. Patients with high γH2AX and high cytoplasmic HSP27 expressions had shorter overall survival and disease-free survival. MLH1, MSH2, or ERCC1 were not associated with clinical response or survival. We report the potential utility of p-HSP90α, HSP27, γH2AX, and 53BP1 as predictive/prognostic markers for platinum-based chemotherapy. We present the first study that evaluates the predictive and prognostic value of p-HSP90α in primary tumors. Our research opens new possibilities for clinical oncology and shows the usefulness of immunohistochemistry for predicting chemotherapy response and prognosis in cancer.
Collapse
Affiliation(s)
- Mayra L Sottile
- Tumor Biology Laboratory
- Medical Sciences School, Mendoza University
| | | | - Laura C Gómez
- Tumor Biology Laboratory
- Medical Sciences School, Mendoza University
| | | | - Jorge Ibarra
- Regional Integration Cancer Center, Mendoza, Argentina
| | | | | | | | | |
Collapse
|
5
|
Chen X, Xu J, Zeng F, Yang C, Sun W, Yu T, Zhang H, Li Y. Inferring Cell Subtypes and LncRNA Function by a Cell-Specific CeRNA Network in Breast Cancer. Front Oncol 2021; 11:656675. [PMID: 33987091 PMCID: PMC8111082 DOI: 10.3389/fonc.2021.656675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Single-cell RNA sequencing is a powerful tool to explore the heterogeneity of breast cancer. The identification of the cell subtype that responds to estrogen has profound significance in breast cancer research and treatment. The transcriptional regulation of estrogen is an intricate network involving crosstalk between protein-coding and non-coding RNAs, which is still largely unknown, particularly at the single cell level. Therefore, we proposed a novel strategy to specify cell subtypes based on a cell-specific ceRNA network (CCN). The CCN was constructed by integrating a cell-specific RNA-RNA co-expression network (RCN) with an existing ceRNA network. The cell-specific RCN was built based on single cell expression profiles with predefined reference cells. Heterogeneous cell subtypes were inferred by enriching RNAs in CCN to the estrogen response hallmark. Edge biomarkers were identified in the early estrogen response subtype. Topological analysis revealed that NEAT1 was a hub lncRNA for the early response subtype, and its ceRNAs could predict patient survival. Another hub lncRNA, DLEU2, could potentially be involved in GPCR signaling, based on CCN. The CCN method that we proposed here facilitates the inference of cell subtypes from a network perspective and explores the function of hub lncRNAs, which are promising targets for RNA-based therapeutics.
Collapse
Affiliation(s)
- Xin Chen
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Jing Xu
- Department of Oncology, Changhai Hospital, The Naval Military Medical University, Shanghai, China
| | - Feng Zeng
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Chao Yang
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Weijun Sun
- School of Automation, Guangdong University of Technology, Guangzhou, China.,Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haokun Zhang
- School of Automation, Guangdong University of Technology, Guangzhou, China
| | - Yan Li
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Li LY, Guan YD, Chen XS, Yang JM, Cheng Y. DNA Repair Pathways in Cancer Therapy and Resistance. Front Pharmacol 2021; 11:629266. [PMID: 33628188 PMCID: PMC7898236 DOI: 10.3389/fphar.2020.629266] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/31/2020] [Indexed: 12/21/2022] Open
Abstract
DNA repair pathways are triggered to maintain genetic stability and integrity when mammalian cells are exposed to endogenous or exogenous DNA-damaging agents. The deregulation of DNA repair pathways is associated with the initiation and progression of cancer. As the primary anti-cancer therapies, ionizing radiation and chemotherapeutic agents induce cell death by directly or indirectly causing DNA damage, dysregulation of the DNA damage response may contribute to hypersensitivity or resistance of cancer cells to genotoxic agents and targeting DNA repair pathway can increase the tumor sensitivity to cancer therapies. Therefore, targeting DNA repair pathways may be a potential therapeutic approach for cancer treatment. A better understanding of the biology and the regulatory mechanisms of DNA repair pathways has the potential to facilitate the development of inhibitors of nuclear and mitochondria DNA repair pathways for enhancing anticancer effect of DNA damage-based therapy.
Collapse
Affiliation(s)
- Lan-Ya Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yi-di Guan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xi-Sha Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin-Ming Yang
- Department of Cancer Biology and Toxicology, Department of Pharmacology, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
The diagnostic value of DNA repair gene in breast cancer metastasis. Sci Rep 2020; 10:19626. [PMID: 33184404 PMCID: PMC7661505 DOI: 10.1038/s41598-020-76577-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/30/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common malignant tumor in China and even in the world. DNA repair genes can lead to tumor metastasis by affecting cancer cell resistance. Studies have preliminarily shown that DNA repair genes are related to breast cancer metastasis, but it is not clear whether they can be used as a prediction of the risk of breast cancer metastasis. Therefore, this study mainly discusses the predictive value of DNA repair genes in postoperative metastasis of breast cancer. The nested case–control method was used in patients with breast cancer metastasis after surgery (n = 103) and patients without metastasis after surgery (n = 103). The proteins and mRNA of DNA repair genes were detected by immunohistochemistry and Real-time PCR respectively. In protein expression, PARP1 (OR 1.147, 95% CI 1.067 ~ 1.233, P < 0.05), XRCC4 (OR 1.088, 95% CI 1.015 ~ 1.166, P < 0.05), XRCC1 (OR 1.114, 95% CI 1.021 ~ 1.215, P < 0.05), ERCC1 (OR 1.068, 95% CI 1.000 ~ 1.141, P < 0.10) were risk factors for postoperative metastasis of breast cancer. In addition, we used the ROC curve to study the optimal critical values of MSH2, MLH1, PARP1, XRCC1, XRCC4, 53BP1, ERCC1 and XPA combined with the Youden index, and the effects of MSH2, MLH1, PARP1, XRCC1, XRCC4, 53BP1, ERCC1 and XPA on breast cancer metastasis were verified again. Among them, the risk of metastasis in the PARP1 high expression group was 3.286 times that of the low expression group (OR 3.286, 95% CI 2.013 ~ 5.364, P < 0.05). The risk of metastasis in the XRCC4 high expression group was 1.779 times that of the low expression group (OR 1.779, 95% CI 1.071 ~ 2.954, P < 0.05). The risk of metastasis in patients with ERCC1 high expression group was 2.012 times that of the low expression group (OR 2.012, 95% CI 1.056 ~ 3.836, P < 0.05). So we can conclude that protein expression of PARP1 (cut-off value = 6, Se = 76.70%, Sp = 79.61%), XRCC4 (cut-off value = 6, Se = 78.64%0, Se = 79.61%), ERCC1 (cut-off value = 3, Se = 89.32%, Sp = 50.49%), suggesting that when the PARP1 score is higher than 6 or the XRCC4 score is higher than 6 or the ERCC1 score is higher than 3, the risk of metastasis will increases. Due to PARP1, XRCC4 and ERCC1 belong to a part of DNA repair gene system, and the three proteins are positively correlated by correlation analysis (rPARP1-XRCC4 = 0.343; rPAPR1-ERCC1 = 0.335; rXRCC4-ERCC1 = 0.388). The combined diagnosis of the PARR1, XRCC4 and ERCC1 have greater predictive value for the risk of metastasis of breast cancer (Se = 94.17%, Sp = 75.73%; OR 11.739, 95% CI 2.858 ~ 40.220, P < 0.05). The postoperative metastasis of breast cancer could be effectively predicted when the immunohistochemical scores met PARP1 (IHC score) > 6, XRCC4 (IHC score) > 6 and ERCC1 (IHC score) > 3. In addition, the combined diagnosis of PARP1, XRCC4 and ERCC1 has great predictive value for the risk of breast cancer metastasis.
Collapse
|
8
|
Gzil A, Jaworski D, Antosik P, Zarębska I, Durślewicz J, Dominiak J, Kasperska A, Neska-Długosz I, Grzanka D, Szylberg Ł. The impact of TP53BP1 and MLH1 on metastatic capability in cases of locally advanced prostate cancer and their usefulness in clinical practice. Urol Oncol 2020; 38:600.e17-600.e26. [PMID: 32280038 DOI: 10.1016/j.urolonc.2020.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Lymph node (LN) metastases increase the risk of death from prostate cancer (CaP). The dysfunction of factors responsible for DNA injury detection may promote the evolution of localized primary tumors into the metastatic form. METHODS In this study, 52 cases of CaP were analyzed. The cases were divided into groups of CaP without metastases (N0), with metastases to the LNs (N+), and metastatic LN tissue. Immunohistochemical examinations were performed with antibodies against MDC1, TP53BP1, MLH1, MSH2, MSH6, and PMS2. RESULTS Statistical analysis showed lower nuclear expression of TP53BP1 in N+ cases than in N0 cases (P = 0.026). Nuclear TP53BP1 expression was lower in LN cases than in N+ cases (P = 0.019). Statistical analysis showed lower nuclear expression of MLH1 in N+ cases than in to N0 cases (P = 0.003). CONCLUSION Decreased expression of both MLH1 and TP53B1 were demonstrated in N+ cases of CaP. This observation could help to determine the risk of nodal metastasis, and to select appropriate treatment modalities for patients with locally advanced CaP.
Collapse
Affiliation(s)
- Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland.
| | - Damian Jaworski
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Izabela Zarębska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Justyna Durślewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Joanna Dominiak
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Anna Kasperska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Izabela Neska-Długosz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland; Department of Pathomorphology, Military Clinical Hospital, Bydgoszcz, Poland; Department of Tumor Pathology and Pathomorphology, Oncology Center, Prof., Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| |
Collapse
|
9
|
53BP1: A key player of DNA damage response with critical functions in cancer. DNA Repair (Amst) 2019; 73:110-119. [DOI: 10.1016/j.dnarep.2018.11.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
|
10
|
Abstract
Terminally differentiated cells have a reduced capacity to repair double-stranded breaks (DSB) in DNA, however, the underlying molecular mechanism remains unclear. Here, we show that miR-22 is upregulated during postmitotic differentiation of human breast MCF-7 cells, hematopoietic HL60 and K562 cells. Increased expression of miR-22 in differentiated cells was associated with decreased expression of MDC1, a protein that plays a key role in the response to DSBs. This downregulation of MDC1 was accompanied by reduced DSB repair, impaired recruitment of the protein to the site of DNA damage following IR. Conversely, inhibiting miR-22 enhanced MDC1 protein levels, recovered MDC1 foci, fully rescued DSB repair in terminally differentiated cells. Moreover, MDC1 levels, IR-induced MDC1 foci, and the efficiency of DSB repair were fully rescued by siRNA-mediated knockdown of c-Fos in differentiated cells. These findings indicate that the c-Fos/miR-22/MDC1 axis plays a relevant role in DNA repair in terminally differentiated cells, which may facilitate our understanding of molecular mechanism underlying the downregulating DNA repair in differentiated cells.
Collapse
|
11
|
Ren L, Chen L, Wu W, Garribba L, Tian H, Liu Z, Vogel I, Li C, Hickson ID, Liu Y. Potential biomarkers of DNA replication stress in cancer. Oncotarget 2018; 8:36996-37008. [PMID: 28445142 PMCID: PMC5514887 DOI: 10.18632/oncotarget.16940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/28/2017] [Indexed: 11/25/2022] Open
Abstract
Oncogene activation is an established driver of tumorigenesis. An apparently inevitable consequence of oncogene activation is the generation of DNA replication stress (RS), a feature common to most cancer cells. RS, in turn, is a causal factor in the development of chromosome instability (CIN), a near universal feature of solid tumors. It is likely that CIN and RS are mutually reinforcing drivers that not only accelerate tumorigenesis, but also permit cancer cells to adapt to diverse and hostile environments. This article reviews the genetic changes present in cancer cells that influence oncogene-induced RS and CIN, with a particular emphasis on regions of the human genome that show enhanced sensitivity to the destabilizing effects of RS, such as common fragile sites. Because RS exists in a wide range of cancer types, we propose that the proteins involved counteracting this stress are potential biomarkers for indicating the degree of RS in cancer specimens. To test this hypothesis, we conducted a pilot study to validate whether some of proteins that are known from in vitro studies to play an essential role in the RS pathway could be suitable as a biomarker. Our results indicated that this is possible. With this review and pilot study, we aim to accelerate the development of a biomarker for analysis of RS in tumor biopsy specimens, which could ultimately help to stratify patients for different forms of therapy such as the RS inhibitors already undergoing clinical trials.
Collapse
Affiliation(s)
- Liqun Ren
- Basic Medical Research Institute, Chengde Medical University, Chengde, China
| | - Long Chen
- Basic Medical Research Institute, Chengde Medical University, Chengde, China
| | - Wei Wu
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Lorenza Garribba
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Huanna Tian
- Basic Medical Research Institute, Chengde Medical University, Chengde, China
| | - Zihui Liu
- Pathology Department, Affiliated Hospital, Chengde Medical University, Chengde, China
| | - Ivan Vogel
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Chunhui Li
- Pathology Department, Affiliated Hospital, Chengde Medical University, Chengde, China
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ying Liu
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Huang A, Yao J, Liu T, Lin Z, Zhang S, Zhang T, Ma H. 53BP1 loss suppresses the radiosensitizing effect of icotinib hydrochloride in colorectal cancer cells. Int J Radiat Biol 2018; 94:327-334. [PMID: 29388453 DOI: 10.1080/09553002.2018.1434322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND This study aimed to investigate the influence of the expression of P53-binding protein 1 (53BP1), a key component in DNA damage repair pathways, on the radiosensitizing effect of icotinib hydrochloride in colorectal cancer and to elucidate the mechanisms underlying this influence. MATERIALS AND METHODS Real-time RT-PCR and Western blotting were performed to verify the gene-knockout effect of 53BP1 small hairpin RNA (ShRNA), and colony formation assay was employed to investigate the influence of 53BP1 downregulation on the radiosensitizing effect of icotinib hydrochloride in HCT116 cells. Cell apoptosis, cell cycle distributions, and histone H2AX (γ-H2AX) fluorescence foci after 53BP1 knockdown were evaluated. Relative protein expression in the ataxia telangiectasia mutated kinase (ATM)-checkpoint kinase-2 (CHK2)-P53 pathway was measured by Western blot analysis to unravel the molecular mechanisms linking the pathway to the above phenomena. RESULTS Icotinib hydrochloride increased the radiosensitivity of HCT116 cells; however, this effect was suppressed by the downregulation of 53BP1 expression, a change that inhibited cell apoptosis, increased the percentage of HCT116 cells arrested in S-phase and inhibited the protein expression of key molecules in the ATM-CHK2-P53 apoptotic pathway. CONCLUSION Our studies confirmed that the loss of 53BP1 serves as a negative regulator of the radiosensitizing effect of icotinib in part by suppressing the ATM-CHK2-P53 apoptotic pathway.
Collapse
Affiliation(s)
- Ai Huang
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Jing Yao
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Tao Liu
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Zhenyu Lin
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Sheng Zhang
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Tao Zhang
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| | - Hong Ma
- a Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , China
| |
Collapse
|
13
|
Abstract
Background Dysregulated DNA repair and cell proliferation controls are essential driving forces in mammary tumorigenesis. BCCIP was originally identified as a BRCA2 and CDKN1A interacting protein that has been implicated in maintenance of genomic stability, cell cycle regulation, and microtubule dynamics. The aims of this study were to determine whether BCCIP deficiency contributes to mammary tumorigenesis, especially for a subset of breast cancers with 53BP1 abnormality, and to reveal the mechanistic implications of BCCIP in breast cancer interventions. Methods We analyzed the BCCIP protein level in 470 cases of human breast cancer to determine the associations between BCCIP and 53BP1, p53, and subtypes of breast cancer. We further constructed a unique BCCIP knockdown mouse model to determine whether a partial BCCIP deficiency leads to spontaneous breast cancer formation. Results We found that the BCCIP protein level is downregulated in 49% of triple-negative breast cancer and 25% of nontriple-negative breast cancer. The downregulation of BCCIP is mutually exclusive with p53 mutations but concurrent with 53BP1 loss in triple-negative breast cancer. In a K14-Cre-mediated conditional BCCIP knockdown mouse model, we found that BCCIP downregulation causes a formation of benign modules in the mammary glands, resembling the epidermal inclusion cyst of the breast. However, the majority of these benign lesions remain indolent, and only ~ 10% of them evolve into malignant tumors after a long latency. This tumor progression is associated with a loss of 53BP1 and p16 expression. BCCIP knockdown did not alter the latency of mammary tumor formation induced by conditional Trp53 deletion. Conclusions Our data suggest a confounding role of BCCIP deficiency in modulating breast cancer development by enhancing tumor initiation but hindering progression. Furthermore, secondary genetic alternations may overcome the progression suppression imposed by BCCIP deficiency through a synthetic viability mechanism. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0907-5) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Mayca Pozo F, Tang J, Bonk KW, Keri RA, Yao X, Zhang Y. Regulatory cross-talk determines the cellular levels of 53BP1 protein, a critical factor in DNA repair. J Biol Chem 2017; 292:5992-6003. [PMID: 28255090 DOI: 10.1074/jbc.m116.760645] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/28/2017] [Indexed: 01/08/2023] Open
Abstract
DNA double strand breaks (DSBs) severely disrupt DNA integrity. 53BP1 plays critical roles in determining DSB repair. Whereas the recruitment of 53BP1 to the DSB site is key for its function, recent evidence suggests that 53BP1's abundance also plays an important role in DSB repair because recruitment to damage sites will be influenced by protein availability. Initial evidence has pointed to three proteins, the ubiquitin-conjugating enzyme UbcH7, the cysteine protease cathepsin L (CTSL), and the nuclear structure protein lamin A/C, that may impact 53BP1 levels, but the roles of each protein and any interplay between them were unclear. Here we report that UbcH7-dependent degradation plays a major role in controlling 53BP1 levels both under normal growth conditions and during DNA damage. CTSL influenced 53BP1 degradation during DNA damage while having little effect under normal growth conditions. Interestingly, both the protein and the mRNA levels of CTSL were reduced in UbcH7-depleted cells. Lamin A/C interacted with 53BP1 under normal conditions. DNA damage disrupted the lamin A/C-53BP1 interaction, which preceded the degradation of 53BP1 in soluble, but not chromatin-enriched, cellular fractions. Inhibition of 53BP1 degradation by a proteasome inhibitor or by UbcH7 depletion restored the 53BP1-lamin A/C interaction. Depletion of lamin A/C, but not CTSL, caused a similar enhancement in cell sensitivity to DNA damage as UbcH7 depletion. These data suggest that multiple pathways collectively fine-tune the cellular levels of 53BP1 protein to ensure proper DSB repair and cell survival.
Collapse
Affiliation(s)
- Franklin Mayca Pozo
- From the Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - Jinshan Tang
- From the Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and.,Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Kristen W Bonk
- From the Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - Ruth A Keri
- From the Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| | - Xinsheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Youwei Zhang
- From the Department of Pharmacology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106 and
| |
Collapse
|
15
|
Yao J, Huang A, Zheng X, Liu T, Lin Z, Zhang S, Yang Q, Zhang T, Ma H. 53BP1 loss induces chemoresistance of colorectal cancer cells to 5-fluorouracil by inhibiting the ATM-CHK2-P53 pathway. J Cancer Res Clin Oncol 2017; 143:419-431. [PMID: 27838786 DOI: 10.1007/s00432-016-2302-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/05/2016] [Indexed: 01/23/2023]
Abstract
PURPOSE Loss of P53 binding protein 1 (53BP1) is considered a poor prognostic factor for colorectal cancer. However, its effect on chemosensitivity of colorectal cancer to 5-fluorouracil (5-FU) remains elusive. This study aimed to examine the association of 53BP1 expression with chemosensitivity of colorectal cancer cells to 5-FU. METHODS Immunohistochemistry was performed on 30 metastatic colorectal cancer samples to assess the associations of 53BP1 levels with clinical therapeutic effects. In vitro, IC50 values for 5-FU and 53BP1 levels were determined by MTT assay and Western blot in 5 colorectal cancer cell lines. Then, 53BP1 was silenced in HCT116 and HT29 cells, and cell proliferation, apoptosis and cell cycle distribution were evaluated. Relative protein levels of ATM-CHK2-P53 pathway effectors and Bcl-2 family members were measured by Western blot. Finally, the effects of 53BP1 knockdown on tumor growth and 5-FU chemoresistance were investigated in vivo. RESULTS 53BP1 expression was closely related to time to progression (TTP) after first-line chemotherapy. Namely, 53BP1 downregulation resulted in reduced TTP. In addition, 53BP1 silencing increased proliferation, inhibited apoptosis and induced S phase arrest in HCT116 and HT29 cells after 5-FU treatment. Moreover, 53BP1 knockdown also reduced the protein levels of ATM-CHK2-P53 apoptotic pathway effectors, caspase9 and caspase3, while increasing Bcl-2 expression. In vivo, 53BP1 silencing accelerated tumor proliferation in nude mice and enhanced resistance to 5-FU. CONCLUSIONS These findings confirmed that 53BP1 loss might be a negative factor for chemotherapy efficacy, promoting cell proliferation and inhibiting apoptosis by suppressing ATM-CHK2-P53 signaling, and finally inducing 5-FU resistance.
Collapse
Affiliation(s)
- Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Ai Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Xiumei Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Qin Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China
| | - Hong Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, Hubei, China.
| |
Collapse
|
16
|
Xiao Y, Zheng X, Huang A, Liu T, Zhang T, Ma H. Deficiency of 53BP1 inhibits the radiosensitivity of colorectal cancer. Int J Oncol 2016; 49:1600-8. [DOI: 10.3892/ijo.2016.3629] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/11/2016] [Indexed: 12/15/2022] Open
|
17
|
Kan C, Zhang J. BRCA1 Mutation: A Predictive Marker for Radiation Therapy? Int J Radiat Oncol Biol Phys 2015; 93:281-93. [PMID: 26383678 DOI: 10.1016/j.ijrobp.2015.05.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/08/2015] [Accepted: 05/21/2015] [Indexed: 02/01/2023]
Abstract
DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repair leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations.
Collapse
Affiliation(s)
- Charlene Kan
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Junran Zhang
- Department of Radiation Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| |
Collapse
|
18
|
Schouten PC, Vollebergh MA, Opdam M, Jonkers M, Loden M, Wesseling J, Hauptmann M, Linn SC. High XIST and Low 53BP1 Expression Predict Poor Outcome after High-Dose Alkylating Chemotherapy in Patients with a BRCA1-like Breast Cancer. Mol Cancer Ther 2015; 15:190-8. [DOI: 10.1158/1535-7163.mct-15-0470] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/06/2015] [Indexed: 11/16/2022]
|
19
|
Kong X, Ding X, Li X, Gao S, Yang Q. 53BP1 suppresses epithelial-mesenchymal transition by downregulating ZEB1 through microRNA-200b/429 in breast cancer. Cancer Sci 2015; 106:982-9. [PMID: 26011542 PMCID: PMC4556386 DOI: 10.1111/cas.12699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/08/2015] [Accepted: 05/17/2015] [Indexed: 12/27/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is an important mechanism of cancer invasion and metastasis. Although p53 binding protein 1 (53BP1) has been implicated in several biological processes, its function in EMT of human cancers has not yet been reported. Here, we show that 53BP1 negatively regulated EMT by modulating ZEB1 through targeting microRNA (miR)-200b and miR-429. Furthermore, 53BP1 promoted ZEB1-mediated upregulation of E-cadherin and also inhibited the expressions of mesenchymal markers, leading to increased migration and invasion in MDA-MB-231 breast cancer cells. Consistently, in MCF-7 breast cancer cells, low 53BP1 expression reduced E-cadherin expression, resulting in increased migration and invasion. These effects were reversed by miR-200b and miR-429 inhibition or overexpression. Sections of tumor xenograft model showed increased ZEB1 expression and decreased E-cadherin expression with the downregulation of 53BP1. In 18 clinical tissue samples, expression of 53BP1 was positively correlated with miR-200b and mir-429 and negatively correlated with ZEB1. It was also found that 53BP1 was associated with lymph node metastasis. Taken together, these results suggest that 53BP1 functioned as a tumor suppressor gene by its novel negative control of EMT through regulating the expression of miR-200b/429 and their target gene ZEB1.
Collapse
Affiliation(s)
- Xiangnan Kong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Xia Ding
- Department of Oncology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaoyan Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Sumei Gao
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, China.,Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
20
|
Mohni KN, Thompson PS, Luzwick JW, Glick GG, Pendleton CS, Lehmann BD, Pietenpol JA, Cortez D. A Synthetic Lethal Screen Identifies DNA Repair Pathways that Sensitize Cancer Cells to Combined ATR Inhibition and Cisplatin Treatments. PLoS One 2015; 10:e0125482. [PMID: 25965342 PMCID: PMC4428765 DOI: 10.1371/journal.pone.0125482] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 03/18/2015] [Indexed: 12/03/2022] Open
Abstract
The DNA damage response kinase ATR may be a useful cancer therapeutic target. ATR inhibition synergizes with loss of ERCC1, ATM, XRCC1 and DNA damaging chemotherapy agents. Clinical trials have begun using ATR inhibitors in combination with cisplatin. Here we report the first synthetic lethality screen with a combination treatment of an ATR inhibitor (ATRi) and cisplatin. Combination treatment with ATRi/cisplatin is synthetically lethal with loss of the TLS polymerase ζ and 53BP1. Other DNA repair pathways including homologous recombination and mismatch repair do not exhibit synthetic lethal interactions with ATRi/cisplatin, even though loss of some of these repair pathways sensitizes cells to cisplatin as a single-agent. We also report that ATRi strongly synergizes with PARP inhibition, even in homologous recombination-proficient backgrounds. Lastly, ATR inhibitors were able to resensitize cisplatin-resistant cell lines to cisplatin. These data provide a comprehensive analysis of DNA repair pathways that exhibit synthetic lethality with ATR inhibitors when combined with cisplatin chemotherapy, and will help guide patient selection strategies as ATR inhibitors progress into the cancer clinic.
Collapse
Affiliation(s)
- Kareem N. Mohni
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Petria S. Thompson
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jessica W. Luzwick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Gloria G. Glick
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Christopher S. Pendleton
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brian D. Lehmann
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jennifer A. Pietenpol
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
21
|
Xiong X, Du Z, Wang Y, Feng Z, Fan P, Yan C, Willers H, Zhang J. 53BP1 promotes microhomology-mediated end-joining in G1-phase cells. Nucleic Acids Res 2015; 43:1659-70. [PMID: 25586219 PMCID: PMC4330367 DOI: 10.1093/nar/gku1406] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alternative non-homologous end joining (alt-NHEJ) was originally identified as a backup repair mechanism in the absence of classical NHEJ (c-NHEJ) factors but recent studies have demonstrated that alt-NHEJ is active even when c-NHEJ as well as homologous recombination is available. The functions of 53BP1 in NHEJ processes are not well understood. Here, we report that 53BP1 promotes DNA double-strand break (DSB) repair and genomic stability not only in c-NHEJ-proficient but also -deficient human G1-phase cells. Using an array of repair substrates we show that these effects of 53BP1 are correlated with a promotion of microhomology-mediated end-joining (MMEJ), a subtype of alt-NHEJ, in G1-phase. Consistent with a specific role in MMEJ we confirm that 53BP1 status does not affect c-NHEJ. 53BP1 supports sequence deletion during MMEJ consistent with a putative role in facilitating end-resection. Interestingly, promotion of MMEJ by 53BP1 in G1-phase cells is only observed in the presence of functional BRCA1. Depletion of both 53BP1 and BRCA1 increases repair needing microhomology usage and augments loss of DNA sequence, suggesting that MMEJ is a highly regulated DSB repair process. Together, these findings significantly expand our understanding of the cell-cycle-dependent roles of 53BP1 in DSB repair.
Collapse
Affiliation(s)
- Xiahui Xiong
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Zhanwen Du
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Ying Wang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Zhihui Feng
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| | - Pan Fan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine,1650 Orleans Street, Baltimore, MD 21231, USA
| | - Chunhong Yan
- Department of Biochemistry and Molecular Biology, Georgia Regents University, 1410 Laney Walker Blvd., CN-2134, Augusta, GA 30912, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Junran Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, BRB 323, Cleveland, OH 44106, USA
| |
Collapse
|
22
|
Abstract
DNA double-strand break (DSB) repair is not only key to genome stability but is also an important anticancer target. Through an shRNA library-based screening, we identified ubiquitin-conjugating enzyme H7 (UbcH7, also known as Ube2L3), a ubiquitin E2 enzyme, as a critical player in DSB repair. UbcH7 regulates both the steady-state and replicative stress-induced ubiquitination and proteasome-dependent degradation of the tumor suppressor p53-binding protein 1 (53BP1). Phosphorylation of 53BP1 at the N terminus is involved in the replicative stress-induced 53BP1 degradation. Depletion of UbcH7 stabilizes 53BP1, leading to inhibition of DSB end resection. Therefore, UbcH7-depleted cells display increased nonhomologous end-joining and reduced homologous recombination for DSB repair. Accordingly, UbcH7-depleted cells are sensitive to DNA damage likely because they mainly used the error-prone nonhomologous end-joining pathway to repair DSBs. Our studies reveal a novel layer of regulation of the DSB repair choice and propose an innovative approach to enhance the effect of radiotherapy or chemotherapy through stabilizing 53BP1.
Collapse
|
23
|
Rybanska-Spaeder I, Ghosh R, Franco S. 53BP1 mediates the fusion of mammalian telomeres rendered dysfunctional by DNA-PKcs loss or inhibition. PLoS One 2014; 9:e108731. [PMID: 25264618 PMCID: PMC4181871 DOI: 10.1371/journal.pone.0108731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 09/04/2014] [Indexed: 12/21/2022] Open
Abstract
Telomere dysfunction promotes genomic instability and carcinogenesis via inappropriate end-to-end chromosomal rearrangements, or telomere fusions. Previous work indicates that the DNA Damage Response (DDR) factor 53BP1 promotes the fusion of telomeres rendered dysfunctional by loss of TRF2, but is dispensable for the fusion of telomeres lacking Pot1 or critically shortened (in telomerase-deficient mice). Here, we examine a role for 53BP1 at telomeres rendered dysfunctional by loss or catalytic inhibition of DNA-PKcs. Using mouse embryonic fibroblasts lacking 53BP1 and/or DNA-PKcs, we show that 53BP1 deficiency suppresses G1-generated telomere fusions that normally accumulate in DNA-PKcs-deficient fibroblasts with passage. Likewise, we find that 53BP1 promotes telomere fusions during the replicative phases of the cell cycle in cells treated with the specific DNA-PKcs inhibitor NU7026. However, telomere fusions are not fully abrogated in DNA-PKcs-inhibited 53BP1-deficient cells, but occur with a frequency approximately 10-fold lower than in control 53BP1-proficient cells. Treatment with PARP inhibitors or PARP1 depletion abrogates residual fusions, while Ligase IV depletion has no measurable effect, suggesting that PARP1-dependent alternative end-joining operates at low efficiency at 53BP1-deficient, DNA-PKcs-inhibited telomeres. Finally, we have also examined the requirement for DDR factors ATM, MDC1 or H2AX in this context. We find that ATM loss or inhibition has no measurable effect on the frequency of NU7026-induced fusions in wild-type MEFs. Moreover, analysis of MEFs lacking both ATM and 53BP1 indicates that ATM is also dispensable for telomere fusions via PARP-dependent end-joining. In contrast, loss of either MDC1 or H2AX abrogates telomere fusions in response to DNA-PKcs inhibition, suggesting that these factors operate upstream of both 53BP1-dependent and -independent telomere rejoining. Together, these experiments define a novel requirement for 53BP1 in the fusions of DNA-PKcs-deficient telomeres throughout the cell cycle and uncover a Ligase IV-independent, PARP1-dependent pathway that fuses telomeres at reduced efficiency in the absence of 53BP1.
Collapse
Affiliation(s)
- Ivana Rybanska-Spaeder
- Department of Radiation Oncology and Molecular Radiation Sciences; and Department of Oncology; and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rajib Ghosh
- Department of Radiation Oncology and Molecular Radiation Sciences; and Department of Oncology; and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Sonia Franco
- Department of Radiation Oncology and Molecular Radiation Sciences; and Department of Oncology; and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
24
|
Abstract
Chemoresistance of breast cancer is a worldwide problem for breast cancer and the resistance to chemotherapeutic agents frequently led to the subsequent recurrence and metastasis. In our previous study, we have found that 53BP1 showed a gradual decrease during the progression of breast cancer and loss of 53BP1 was associated with metastasis and poor prognosis in breast cancer. Here we aimed to reveal whether 53BP1 could sensitize breast cancer to 5-Fu. We found that ectopic expression of 53BP1 can significantly sensitize breast cancer cells to 5-Fu while knockdown of 53BP1 conferred the resistance. The in vivo experiments confirmed that overexpression of 53BP1 in combination with 5-Fu markedly inhibited growth of xenotransplanted tumors in nude mice when compared to either agent alone. Furthermore, we demonstrated that 53BP1 regulated the sensitivity to 5-Fu through thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPYD). The present studies provide a new clue that combination of 5-Fu and 53BP1 could be a potential novel targeted strategy for overcoming breast cancer chemoresistance.
Collapse
|
25
|
Rybanska-Spaeder I, Reynolds TL, Chou J, Prakash M, Jefferson T, Huso DL, Desiderio S, Franco S. 53BP1 is limiting for NHEJ repair in ATM-deficient model systems that are subjected to oncogenic stress or radiation. Mol Cancer Res 2013; 11:1223-34. [PMID: 23858098 DOI: 10.1158/1541-7786.mcr-13-0252-t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UNLABELLED The DNA damage response (DDR) factors ataxia telangiectasia mutated (ATM) and p53 binding protein 1 (53BP1) function as tumor suppressors in humans and mice, but the significance of their mutual interaction to the suppression of oncogenic translocations in vivo has not been investigated. To address this question, the phenotypes of compound mutant mice lacking 53BP1 and ATM (Trp53bp1(-/-)/Atm(-/-)), relative to single mutants, were examined. These analyses revealed that loss of 53BP1 markedly decreased the latency of T-lineage lymphomas driven by RAG-dependent oncogenic translocations in Atm(-/-) mice (average survival, 14 and 23 weeks for Trp53bp1(-/-)/Atm(-/-) and Atm(-/-) mice, respectively). Mechanistically, 53BP1 deficiency aggravated the deleterious effect of ATM deficiency on nonhomologous end-joining (NHEJ)-mediated double-strand break repair. Analysis of V(D)J recombinase-mediated coding joints and signal joints in Trp53bp1(-/-)/Atm(-/-) primary thymocytes is, however, consistent with canonical NHEJ-mediated repair. Together, these findings indicate that the greater NHEJ defect in the double mutant mice resulted from decreased efficiency of rejoining rather than switching to an alternative NHEJ-mediated repair mechanism. Complementary analyses of irradiated primary cells indicated that defects in cell-cycle checkpoints subsequently function to amplify the NHEJ defect, resulting in more frequent chromosomal breaks and translocations in double mutant cells throughout the cell cycle. Finally, it was determined that 53BP1 is dispensable for the formation of RAG-mediated hybrid joints in Atm(-/-) thymocytes but is required to suppress large deletions in a subset of hybrid joints. IMPLICATIONS The current study uncovers novel ATM-independent functions for 53BP1 in the suppression of oncogenic translocations and in radioprotection.
Collapse
Affiliation(s)
- Ivana Rybanska-Spaeder
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, 1550 Orleans Street, CRB II, Rm#405, Baltimore, MD 21287.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hicks C, Koganti T, Brown AS, Monico J, Backus K, Miele L. Novel Integrative Genomics Approach for Associating GWAS Information with Intrinsic Subtypes of Breast Cancer. Cancer Inform 2013; 12:125-42. [PMID: 23761956 PMCID: PMC3663490 DOI: 10.4137/cin.s11452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Genome-wide association studies (GWAS) have achieved great success in identifying common variants associated with increased risk of developing breast cancer. However, GWAS do not typically provide information about the broader context in which genetic variants operate in different subtypes of breast cancer. The objective of this study was to determine whether genes containing single nucleotide polymorphisms (SNPs, herein called genetic variants) are associated with different subtypes of breast cancer. Additionally, we sought to identify gene regulator networks and biological pathways enriched for these genetic variants. Using supervised analysis, we identified 201 genes that were significantly associated with the six intrinsic subtypes of breast cancer. The results demonstrate that integrative genomics analysis is a powerful approach for linking GWAS information to distinct disease states and provide insights about the broader context in which genetic variants operate in different subtypes of breast cancer.
Collapse
Affiliation(s)
- Chindo Hicks
- Cancer Institute, University of Mississippi Medical Center, Jackson, MS. ; Department of Medicine, University of Mississippi Medical Center, Jackson, MS
| | | | | | | | | | | |
Collapse
|
27
|
Ausborn NL, Wang T, Wentz SC, Washington MK, Merchant NB, Zhao Z, Shyr Y, Chakravarthy AB, Xia F. 53BP1 expression is a modifier of the prognostic value of lymph node ratio and CA 19-9 in pancreatic adenocarcinoma. BMC Cancer 2013; 13:155. [PMID: 23530749 PMCID: PMC3636043 DOI: 10.1186/1471-2407-13-155] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/08/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND 53BP1 binds to the tumor suppressor p53 and has a key role in DNA damage response and repair. Low 53BP1 expression has been associated with decreased survival in breast cancer and has been shown to interact with several prognostic factors in non-small cell lung cancer. The role of 53BP1 in pancreatic ductal adenocarcinoma (PDAC) has yet to be determined. We aimed to investigate whether 53BP1 levels interact with established prognostic factors in PDAC. METHODS 106 patients for whom there was tissue available at time of surgical resection for PDAC were included. A tissue microarray was constructed using surgical specimens, stained with antibodies to 53BP1, and scored for expression intensity. Univariate and multivariate statistical analyses were performed to investigate the association between 53BP1 and patient survival with known prognostic factors for survival. RESULTS The association of 53BP1 with several established prognostic factors was examined, including stage, tumor grade, surgical margin, peripancreatic extension, lymph node ratio (LNR), and CA 19-9. We found that 53BP1 modified the effects of known prognostic variables including LNR and CA 19-9 on survival outcomes. When 53BP1 intensity was low, increased LNR was associated with decreased OS (HR 4.84, 95% CI (2.26, 10.37), p<0.001) and high CA19-9 was associated with decreased OS (HR 1.72, 95% CI (1.18, 2.51), p=0.005). When 53BP1 intensity was high, LNR and CA19-9 were no longer associated with OS (p=0.958 and p=0.606, respectively). CONCLUSIONS In this study, 53BP1, a key player in DNA damage response and repair, was found to modify the prognostic value of two established prognostic factors, LNR and CA 19-9, suggesting 53BP1 may alter tumor behavior and ultimately impact how we interpret the value of other prognostic factors.
Collapse
|