1
|
Tai DT, Phat LT, Kien TT, Anh NN, Hai NX, Sandwall P, Bradley D, Chow JCL. Enhancing patient positioning accuracy: evaluating daily cone beam computed tomography in the halcyon system. Jpn J Clin Oncol 2025:hyaf067. [PMID: 40263748 DOI: 10.1093/jjco/hyaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Precise patient positioning is crucial for successful radiotherapy, ensuring accurate delivery of radiation to tumors while minimizing exposure to healthy tissues. Positional errors can significantly impact treatment efficacy and increase side effects. This study evaluates the effectiveness of daily cone beam computed tomography (CBCT) imaging in the Halcyon system for detecting and correcting patient misalignments across various cancer types and treatment sites. METHODS A retrospective analysis was conducted on 411 patients treated with the Varian Halcyon linear accelerator from August 2022 to August 2024. Patients were grouped based on tumor location: Head and Neck (118 patients), Chest (188 patients), and Pelvis (105 patients). Daily pre-treatment CBCT scans were performed to verify positioning, with shifts in the x, y, and z axes quantified and adjusted using automated couch corrections. RESULTS The study revealed average positional shifts along the x-axis of ~0.112 cm, while both the Chest and Pelvic groups recorded 0.194 cm. The y-axis deviations were 0.135 cm for Head and Neck, 0.206 cm for Chest, and 0.195 cm for the Pelvis. On the z-axis, a mean deviation of 0.07 cm was found for the Head and Neck group, while 0.11 cm for the Chest group, and 0.085 cm for the Pelvic group. The Head and Neck group exhibited the smallest standard deviations across all axes, indicating greater positional consistency. Normalized density distributions showed distinct emergent patterns, the Head and Neck group showing tighter distributions compared to the broader distributions observed in the Chest and Pelvic groups. CONCLUSIONS Daily CBCT imaging in the Halcyon system significantly enhances patient positioning accuracy in radiotherapy. The findings demonstrate that this approach minimizes positional shifts, particularly in the Head and Neck region, essential for optimizing treatment outcomes and reducing the risk of adverse effects. Future studies should further explore the integration of advanced imaging techniques to improve precision in patient positioning.
Collapse
Affiliation(s)
- Duong Thanh Tai
- Department of Medical Physics, Faculty of Medicine, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City 700000, Vietnam
| | - Luong Tien Phat
- Department of Radiation Oncology, University Medical Shing Mark Hospital, 1054 QL51, Long Binh Tan Ward, Bien Hoa City, Dong Nai 810000, Vietnam
| | - Tran Trung Kien
- Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, 01 Nguyen Trac, Ha Dong District, Hanoi 12116, Vietnam
| | - Nguyen Ngoc Anh
- Phenikaa Institute for Advanced Study (PIAS), Phenikaa University, 01 Nguyen Trac, Ha Dong District, Hanoi 12116, Vietnam
| | - Nguyen Xuan Hai
- Center for Analytical Techniques, Dalat Nuclear Research Institute, 01 Nguyen Tu Luc Street, Ward 8, Da Lat City, Lam Dong Province 670000, Vietnam
| | - Peter Sandwall
- Department of Radiation Oncology, OhioHealth Mansfield Hospital, 330 Glessner Avenue, Mansfield, OH 44903, United States
| | - David Bradley
- Applied Radiation Physics and Technologies Group, Department of Engineering, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, Subang Jaya, 46150 Petaling Jaya, Selangor, Malaysia
- School of Mathematics and Physics, University of Surrey, Stag Hill Campus, University Road, Guildford, Surrey GU2 7XH, United Kingdom
| | - James C L Chow
- Department of Radiation Oncology, University of Toronto, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, Ontario M5G 1X6, Canada
| |
Collapse
|
2
|
Karaca S, Kırlı Bölükbaş M. Time Matters: A Review of Current Radiotherapy Practices and Efficiency Strategies. Technol Cancer Res Treat 2025; 24:15330338251345376. [PMID: 40398660 PMCID: PMC12099146 DOI: 10.1177/15330338251345376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025] Open
Abstract
Radiotherapy is a multi-step process that includes planning, contouring, simulation, patient assessment, quality control, and treatment. Each step must be completed before moving on to the next. Numerous factors, including patient characteristics, disease type, management, radiotherapy personnel, equipment, treatment modality, and total/fractional doses, affect the overall duration of radiotherapy. Time is one of life's most valuable resources and should be well managed and utilized. In radiotherapy, eliminating factors that unnecessarily prolong the treatment period significantly benefits the institution, patient, and staff. This review article examines the variables that affect overall treatment time in current external beam radiotherapy routines and offers suggestions for reducing treatment time.
Collapse
Affiliation(s)
- Sibel Karaca
- Department of Radiation Oncology, Akdeniz University, Antalya, Turkey
| | - Meltem Kırlı Bölükbaş
- Department of Radiation Oncology, Health Sciences University Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
3
|
Scholey J, Nano T, Singhrao K, Mohamad O, Singer L, Larson PEZ, Descovich M. Linac- and CyberKnife-based MRI-only treatment planning of prostate SBRT using an optimized synthetic CT calibration curve. J Appl Clin Med Phys 2024; 25:e14411. [PMID: 38837851 PMCID: PMC11492401 DOI: 10.1002/acm2.14411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
PURPOSE CT Hounsfield Units (HUs) are converted to electron density using a calibration curve obtained from physical measurements of an electron density phantom. HU values assigned to an MRI-derived synthetic computed tomography (sCT) may present a different relationship with electron density compared to CT HU. Correct assignment of sCT HU values is critical for accurate dose calculation and delivery. The goals of this work were to develop a sCT calibration curve using patient data acquired on a clinically commissioned CT scanner and assess for CyberKnife- and volumetric modulated arc therapy (VMAT)-based MR-only treatment planning of prostate SBRT. METHODS Same-day CT and MRI simulation in the treatment position were performed on 10 patients treated with SBRT to the prostate. Dixon in-phase and out-of-phase MRIs were acquired on a 3T scanner using a 3D T1-weighted gradient-echo sequence to generate sCTs using a commercial sCT algorithm. CT and sCT datasets were co-registered and HU values compared using mean absolute error (MAE). An optimized HU-to-density calibration curve was created based on average HU values across an institutional patient database for each of the four sCT tissue types. Clinical CyberKnife and VMAT treatment plans were generated on each patient CT and recomputed onto corresponding sCTs. Dose distributions computed using CT and sCT were compared using gamma criteria and dose-volume-histograms. RESULTS For the optimized calibration curve, HU values were -96, 37, 204, and 1170 and relative electron densities were 0.95, 1.04, 1.1, and 1.7 for adipose, soft tissue, inner bone, and outer bone, respectively. The proposed sCT protocol produced total MAE of 94 ± 20HU. Gamma values mean ± std (min-max) were 98.9% ± 0.9% (97.1%-100%) and 97.7% ± 1.3% (95.3%-99.3%) for VMAT and CyberKnife plans, respectively. CONCLUSION MRI-derived sCT using the proposed approach shows excellent dosimetric agreement with conventional CT simulation, demonstrating the feasibility of MRI-derived sCT for prostate SBRT treatment planning.
Collapse
Affiliation(s)
- Jessica Scholey
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Tomi Nano
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kamal Singhrao
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Osama Mohamad
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Lisa Singer
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Peder Eric Zufall Larson
- Department of Radiology and Biomedical ImagingUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Martina Descovich
- Department of Radiation OncologyUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
4
|
Hooshangnejad H, China D, Huang Y, Zbijewski W, Uneri A, McNutt T, Lee J, Ding K. XIOSIS: An X-Ray-Based Intra-Operative Image-Guided Platform for Oncology Smart Material Delivery. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:3176-3187. [PMID: 38602853 PMCID: PMC11418373 DOI: 10.1109/tmi.2024.3387830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Image-guided interventional oncology procedures can greatly enhance the outcome of cancer treatment. As an enhancing procedure, oncology smart material delivery can increase cancer therapy's quality, effectiveness, and safety. However, the effectiveness of enhancing procedures highly depends on the accuracy of smart material placement procedures. Inaccurate placement of smart materials can lead to adverse side effects and health hazards. Image guidance can considerably improve the safety and robustness of smart material delivery. In this study, we developed a novel generative deep-learning platform that highly prioritizes clinical practicality and provides the most informative intra-operative feedback for image-guided smart material delivery. XIOSIS generates a patient-specific 3D volumetric computed tomography (CT) from three intraoperative radiographs (X-ray images) acquired by a mobile C-arm during the operation. As the first of its kind, XIOSIS (i) synthesizes the CT from small field-of-view radiographs;(ii) reconstructs the intra-operative spacer distribution; (iii) is robust; and (iv) is equipped with a novel soft-contrast cost function. To demonstrate the effectiveness of XIOSIS in providing intra-operative image guidance, we applied XIOSIS to the duodenal hydrogel spacer placement procedure. We evaluated XIOSIS performance in an image-guided virtual spacer placement and actual spacer placement in two cadaver specimens. XIOSIS showed a clinically acceptable performance, reconstructed the 3D intra-operative hydrogel spacer distribution with an average structural similarity of 0.88 and Dice coefficient of 0.63 and with less than 1 cm difference in spacer location relative to the spinal cord.
Collapse
|
5
|
China D, Feng Z, Hooshangnejad H, Sforza D, Vagdargi P, Bell MAL, Uneri A, Sisniega A, Ding K. FLEX: FLexible Transducer With External Tracking for Ultrasound Imaging With Patient-Specific Geometry Estimation. IEEE Trans Biomed Eng 2024; 71:1298-1307. [PMID: 38048239 PMCID: PMC10998498 DOI: 10.1109/tbme.2023.3333216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Flexible array transducers can adapt to patient-specific geometries during real-time ultrasound (US) image-guided therapy monitoring. This makes the system radiation-free and less user-dependency. Precise estimation of the flexible transducer's geometry is crucial for the delay-and-sum (DAS) beamforming algorithm to reconstruct B-mode US images. The primary innovation of this research is to build a system named FLexible transducer with EXternal tracking (FLEX) to estimate the position of each element of the flexible transducer and reconstruct precise US images. FLEX utilizes customized optical markers and a tracker to monitor the probe's geometry, employing a polygon fitting algorithm to estimate the position and azimuth angle of each transducer element. Subsequently, the traditional DAS algorithm processes the delay estimation from the tracked element position, reconstructing US images from radio-frequency (RF) channel data. The proposed method underwent evaluation on phantoms and cadaveric specimens, demonstrating its clinical feasibility. Deviations in tracked probe geometry compared to ground truth were minimal, measuring 0.50 ± 0.29 mm for the CIRS phantom, 0.54 ± 0.35 mm for the deformable phantom, and 0.36 ± 0.24 mm on the cadaveric specimen. Reconstructing the US image using tracked probe geometry significantly outperformed the untracked geometry, as indicated by a Dice score of 95.1 ± 3.3% versus 62.3 ± 9.2% for the CIRS phantom. The proposed method achieved high accuracy (<0.5 mm error) in tracking the element position for various random curvatures applicable for clinical deployment. The evaluation results show that the radiation-free proposed method can effectively reconstruct US images and assist in monitoring image-guided therapy with minimal user dependency.
Collapse
|
6
|
Niu T, Xu L, Ren Q, Gao Y, Luo C, Teng Z, Du J, Ding M, Xie J, Han H, Jiang Y. UBES: Unified scatter correction using ultrafast Boltzmann equation solver for conebeam CT. Comput Biol Med 2024; 170:108045. [PMID: 38325213 DOI: 10.1016/j.compbiomed.2024.108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/10/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
A semi-analytical solution to the unified Boltzmann equation is constructed to exactly describe the scatter distribution on a flat-panel detector for high-quality conebeam CT (CBCT) imaging. The solver consists of three parts, including the phase space distribution estimator, the effective source constructor and the detector signal extractor. Instead of the tedious Monte Carlo solution, the derived Boltzmann equation solver achieves ultrafast computational capability for scatter signal estimation by combining direct analytical derivation and time-efficient one-dimensional numerical integration over the trajectory along each momentum of the photon phase space distribution. The execution of scatter estimation using the proposed ultrafast Boltzmann equation solver (UBES) for a single projection is finalized in around 0.4 seconds. We compare the performance of the proposed method with the state-of-the-art schemes, including a time-expensive Monte Carlo (MC) method and a conventional kernel-based algorithm using the same dataset, which is acquired from the CBCT scans of a head phantom and an abdominal patient. The evaluation results demonstrate that the proposed UBES method achieves comparable correction accuracy compared with the MC method, while exhibits significant improvements in image quality over learning and kernel-based methods. With the advantages of MC equivalent quality and superfast computational efficiency, the UBES method has the potential to become a standard solution to scatter correction in high-quality CBCT reconstruction.
Collapse
Affiliation(s)
- Tianye Niu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China; Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, China.
| | - Lei Xu
- Department of Radiation Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qing Ren
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Chen Luo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China; School of Automation, Zhejiang Institute of Mechanical & Electrical Engineering, Hangzhou, Zhejiang, China
| | - Ze Teng
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jichen Du
- Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, China
| | - Mingchao Ding
- Peking University Aerospace School of Clinical Medicine, Aerospace Center Hospital, Beijing, China
| | - Jiayi Xie
- Peking University Third Hospital, Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Beijing, China; Department of Automatic, Tsinghua University, Beijing, China
| | - Hongbin Han
- Department of Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China
| | - Yin Jiang
- Physics Department, Beihang University, Beijing, China
| |
Collapse
|
7
|
Hoshida K, Ohishi A, Mizoguchi A, Ohkura S, Kawata H. The effects of mega-voltage CT scan parameters on offline adaptive radiation therapy. Radiol Phys Technol 2024; 17:248-257. [PMID: 38334889 DOI: 10.1007/s12194-023-00773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024]
Abstract
TomoTherapy involves image-guided radiation therapy (IGRT) using Mega-voltage CT (MVCT) for each treatment session. The acquired MVCT images can be utilized for the retrospective assessment of dose distribution. The TomoTherapy provides 18 distinct imaging conditions that can be selected based on a combination of algorithms, acquisition pitch, and slice interval. We investigated the accuracy of dose calculation and deformable image registration (DIR) depending on MVCT scan parameters and their effects on adaptive radiation therapy (ART). We acquired image values for density calibration tables (IVDTs) under 18 different MVCT conditions and compared them. The planning CT (pCT) was performed using a thoracic phantom, and an esophageal intensity-modulated radiation therapy (IMRT) plan was created. MVCT images of the thoracic phantom were acquired under each of the 18 conditions, and dose recalculation was performed. DIR was performed on the MVCT images acquired under each condition. The accuracy of DIR, depending on the MVCT scan parameters, was compared using the mean distance to agreement (MDA) and Dice similarity coefficient (DSC). The dose distribution calculated on the MVCT images was deformed using deformed vector fields (DVF). No significant differences were observed in the results of the 18 IVDTs. The esophageal IMRT plan also showed a small dose difference. Regarding verifying the DIR accuracy, the MDA increased, and the DSC decreased as the acquisition pitch and slice interval increased. The difference between the dose distributions after dose mapping was comparable to that before DIR. The MVCT scan parameters had little effect on ART.
Collapse
Affiliation(s)
- Kento Hoshida
- Department of Radiology, Kurume University Hospital, 67 Asahimachi, Kurume, Fukuoka, 830-0011, Japan.
| | - Ayumu Ohishi
- Department of Radiology, Kurume University Hospital, 67 Asahimachi, Kurume, Fukuoka, 830-0011, Japan
| | - Asumi Mizoguchi
- Department of Radiology, Kurume University Hospital, 67 Asahimachi, Kurume, Fukuoka, 830-0011, Japan
| | - Sunao Ohkura
- Department of Radiology, Kurume University Hospital, 67 Asahimachi, Kurume, Fukuoka, 830-0011, Japan
| | - Hidemichi Kawata
- Department of Radiology, Kurume University Hospital, 67 Asahimachi, Kurume, Fukuoka, 830-0011, Japan
| |
Collapse
|
8
|
Huang Y, Thielemans K, Price G, McClelland JR. Surrogate-driven respiratory motion model for projection-resolved motion estimation and motion compensated cone-beam CT reconstruction from unsorted projection data. Phys Med Biol 2024; 69:025020. [PMID: 38091611 PMCID: PMC10791594 DOI: 10.1088/1361-6560/ad1546] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/23/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Objective.As the most common solution to motion artefact for cone-beam CT (CBCT) in radiotherapy, 4DCBCT suffers from long acquisition time and phase sorting error. This issue could be addressed if the motion at each projection could be known, which is a severely ill-posed problem. This study aims to obtain the motion at each time point and motion-free image simultaneously from unsorted projection data of a standard 3DCBCT scan.Approach.Respiration surrogate signals were extracted by the Intensity Analysis method. A general framework was then deployed to fit a surrogate-driven motion model that characterized the relation between the motion and surrogate signals at each time point. Motion model fitting and motion compensated reconstruction were alternatively and iteratively performed. Stochastic subset gradient based method was used to significantly reduce the computation time. The performance of our method was comprehensively evaluated through digital phantom simulation and also validated on clinical scans from six patients.Results.For digital phantom experiments, motion models fitted with ground-truth or extracted surrogate signals both achieved a much lower motion estimation error and higher image quality, compared with non motion-compensated results.For the public SPARE Challenge datasets, more clear lung tissues and less blurry diaphragm could be seen in the motion compensated reconstruction, comparable to the benchmark 4DCBCT images but with a higher temporal resolution. Similar results were observed for two real clinical 3DCBCT scans.Significance.The motion compensated reconstructions and motion models produced by our method will have direct clinical benefit by providing more accurate estimates of the delivered dose and ultimately facilitating more accurate radiotherapy treatments for lung cancer patients.
Collapse
Affiliation(s)
- Yuliang Huang
- Centre for Medical Image Computing, University College London, London, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| | - Kris Thielemans
- Centre for Medical Image Computing, University College London, London, United Kingdom
- Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Gareth Price
- Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Jamie R McClelland
- Centre for Medical Image Computing, University College London, London, United Kingdom
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, United Kingdom
| |
Collapse
|
9
|
Giordano G, Griguolo G, Landriscina M, Meattini I, Carbone F, Leone A, Del Re M, Fogli S, Danesi R, Colamaria A, Dieci MV. Multidisciplinary management of HER2-positive breast cancer with brain metastases: An evidence-based pragmatic approach moving from pathophysiology to clinical data. Crit Rev Oncol Hematol 2023; 192:104185. [PMID: 37863404 DOI: 10.1016/j.critrevonc.2023.104185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
INTRODUCTION About 30-50 % of stage IV HER2+ breast cancers (BC) will present brain metastases (BMs). Their management is based on both local treatment and systemic therapy. Despite therapeutic advances, BMs still impact on survival and quality of life and the development of more effective systemic therapies represents an unmet clinical need. MATERIALS AND METHODS A thorough analysis of the published literature including ongoing clinical trials has been performed, investigating concepts spanning from the pathophysiology of tumor microenvironment to clinical considerations with the aim to summarize the current and future locoregional and systemic strategies. RESULTS Different trials have investigated monotherapies and combination treatments, highlighting how the blood-brain barrier (BBB) represents a major problem hindering diffusion and consequently efficacy of such options. Trastuzumab has long been the mainstay of systemic therapy and over the last two decades other HER2-targeted agents including lapatinib, pertuzumab, and trastuzumab emtansine, as well as more recently neratinib, tucatinib, and trastuzumab deruxtecan, have been introduced in clinical practice after showing promising results in randomized controlled trials. CONCLUSIONS We ultimately propose an evidence-based treatment algorithm for clinicians treating HER2 + BCs patients with BMs.
Collapse
Affiliation(s)
- Guido Giordano
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences - Policlinico Riuniti, University of Foggia, Foggia 71122, Italy.
| | - Gaia Griguolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova 35128, Italy; Division of Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova 35128, Italy
| | - Matteo Landriscina
- Unit of Medical Oncology and Biomolecular Therapy, Department of Medical and Surgical Sciences - Policlinico Riuniti, University of Foggia, Foggia 71122, Italy
| | - Icro Meattini
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences M Serio, University of Florence, Florence, Italy, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Francesco Carbone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruher Neurozentrum, Karlsruhe 76133, Germany
| | - Augusto Leone
- Department of Neurosurgery, Städtisches Klinikum Karlsruhe, Karlsruher Neurozentrum, Karlsruhe 76133, Germany; Faculty of Human Medicine, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefano Fogli
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Colamaria
- Division of Neurosurgery, Policlinico Riuniti Foggia, Foggia 71122, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova 35128, Italy; Division of Oncology 2, Veneto Institute of Oncology IOV - IRCCS, Padova 35128, Italy
| |
Collapse
|
10
|
Lin B, Fan M, Niu T, Liang Y, Xu H, Tang W, Du X. Key changes in the future clinical application of ultra-high dose rate radiotherapy. Front Oncol 2023; 13:1244488. [PMID: 37941555 PMCID: PMC10628486 DOI: 10.3389/fonc.2023.1244488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Ultra-high dose rate radiotherapy (FLASH-RT) is an external beam radiotherapy strategy that uses an extremely high dose rate (≥40 Gy/s). Compared with conventional dose rate radiotherapy (≤0.1 Gy/s), the main advantage of FLASH-RT is that it can reduce damage of organs at risk surrounding the cancer and retain the anti-tumor effect. An important feature of FLASH-RT is that an extremely high dose rate leads to an extremely short treatment time; therefore, in clinical applications, the steps of radiotherapy may need to be adjusted. In this review, we discuss the selection of indications, simulations, target delineation, selection of radiotherapy technologies, and treatment plan evaluation for FLASH-RT to provide a theoretical basis for future research.
Collapse
Affiliation(s)
- Binwei Lin
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| | - Mi Fan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tingting Niu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuwen Liang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haonan Xu
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Wenqiang Tang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaobo Du
- Department of Oncology, National Health Commission (NHC) Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, Mianyang, China
| |
Collapse
|
11
|
Xu S, Hu Y, Li B, Inscoe CR, Tyndall DA, Lee YZ, Lu J, Zhou O. Volumetric computed tomography with carbon nanotube X-ray source array for improved image quality and accuracy. COMMUNICATIONS ENGINEERING 2023; 2:71. [PMID: 38549919 PMCID: PMC10955816 DOI: 10.1038/s44172-023-00123-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/28/2023] [Indexed: 08/04/2024]
Abstract
Cone beam computed tomography (CBCT) is widely used in medical and dental imaging. Compared to a multidetector CT, it provides volumetric images with high isotropic resolution at a reduced radiation dose, cost and footprint without the need for patient translation. The current CBCT has several intrinsic limitations including reduced soft tissue contrast, inaccurate quantification of X-ray attenuation, image distortions and artefacts, which have limited its clinical applications primarily to imaging hard tissues and made quantitative analysis challenging. Here we report a multisource CBCT (ms-CBCT) which overcomes the short-comings of the conventional CBCT by using multiple narrowly collimated and rapidly scanning X-ray beams from a carbon nanotube field emission source array. Phantom imaging studies show that, the ms-CBCT increases the accuracy of the Hounsfield unit values by 60%, eliminates the cone beam artefacts, extends the axial coverage, and improves the soft tissue contrast-to-noise ratio by 30-50%, compared to the CBCT configuration.
Collapse
Affiliation(s)
- Shuang Xu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Yuanming Hu
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Boyuan Li
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Christina R. Inscoe
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Donald A. Tyndall
- Department of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Yueh Z. Lee
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Jianping Lu
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Otto Zhou
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
12
|
Zhang W, Oraiqat I, Litzenberg D, Chang KW, Hadley S, Sunbul NB, Matuszak MM, Tichacek CJ, Moros EG, Carson PL, Cuneo KC, Wang X, El Naqa I. Real-time, volumetric imaging of radiation dose delivery deep into the liver during cancer treatment. Nat Biotechnol 2023; 41:1160-1167. [PMID: 36593414 PMCID: PMC10314963 DOI: 10.1038/s41587-022-01593-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/01/2022] [Indexed: 01/04/2023]
Abstract
Ionizing radiation acoustic imaging (iRAI) allows online monitoring of radiation's interactions with tissues during radiation therapy, providing real-time, adaptive feedback for cancer treatments. We describe an iRAI volumetric imaging system that enables mapping of the three-dimensional (3D) radiation dose distribution in a complex clinical radiotherapy treatment. The method relies on a two-dimensional matrix array transducer and a matching multi-channel preamplifier board. The feasibility of imaging temporal 3D dose accumulation was first validated in a tissue-mimicking phantom. Next, semiquantitative iRAI relative dose measurements were verified in vivo in a rabbit model. Finally, real-time visualization of the 3D radiation dose delivered to a patient with liver metastases was accomplished with a clinical linear accelerator. These studies demonstrate the potential of iRAI to monitor and quantify the 3D radiation dose deposition during treatment, potentially improving radiotherapy treatment efficacy using real-time adaptive treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ibrahim Oraiqat
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA
| | - Dale Litzenberg
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Kai-Wei Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Scott Hadley
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Noora Ba Sunbul
- Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Martha M Matuszak
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
- Department of Nuclear Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Paul L Carson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Kyle C Cuneo
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.
| | - Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL, USA.
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
13
|
Tomatis S, Mancosu P, Reggiori G, Lobefalo F, Gallo P, Lambri N, Paganini L, La Fauci F, Bresolin A, Parabicoli S, Pelizzoli M, Navarria P, Franzese C, Lenoci D, Scorsetti M. Twenty Years of Advancements in a Radiotherapy Facility: Clinical Protocols, Technology, and Management. Curr Oncol 2023; 30:7031-7042. [PMID: 37504370 PMCID: PMC10378035 DOI: 10.3390/curroncol30070510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Hypo-fractionation can be an effective strategy to lower costs and save time, increasing patient access to advanced radiation therapy. To demonstrate this potential in practice within the context of temporal evolution, a twenty-year analysis of a representative radiation therapy facility from 2003 to 2022 was conducted. This analysis utilized comprehensive data to quantitatively evaluate the connections between advanced clinical protocols and technological improvements. The findings provide valuable insights to the management team, helping them ensure the delivery of high-quality treatments in a sustainable manner. METHODS Several parameters related to treatment technique, patient positioning, dose prescription, fractionation, equipment technology content, machine workload and throughput, therapy times and patients access counts were extracted from departmental database and analyzed on a yearly basis by means of linear regression. RESULTS Patients increased by 121 ± 6 new per year (NPY). Since 2010, the incidence of hypo-fractionation protocols grew thanks to increasing Linac technology. In seven years, both the average number of fractions and daily machine workload decreased by -0.84 ± 0.12 fractions/year and -1.61 ± 0.35 patients/year, respectively. The implementation of advanced dose delivery techniques, image guidance and high dose rate beams for high fraction doses, currently systematically used, has increased the complexity and reduced daily treatment throughput since 2010 from 40 to 32 patients per 8 h work shift (WS8). Thanks to hypo-fractionation, such an efficiency drop did not affect NPY, estimating 693 ± 28 NPY/WS8, regardless of the evaluation time. Each newly installed machine was shown to add 540 NPY, while absorbing 0.78 ± 0.04 WS8. The COVID-19 pandemic brought an overall reduction of 3.7% of patients and a reduction of 0.8 fractions/patient, to mitigate patient crowding in the department. CONCLUSIONS The evolution of therapy protocols towards hypo-fractionation was supported by the use of proper technology. The characteristics of this process were quantified considering time progression and organizational aspects. This strategy optimized resources while enabling broader access to advanced radiation therapy. To truly value the benefit of hypo-fractionation, a reimbursement policy should focus on the patient rather than individual treatment fractionation.
Collapse
Affiliation(s)
- Stefano Tomatis
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Pietro Mancosu
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Giacomo Reggiori
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Francesca Lobefalo
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Pasqualina Gallo
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Nicola Lambri
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Lucia Paganini
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Francesco La Fauci
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Andrea Bresolin
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Sara Parabicoli
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Marco Pelizzoli
- Medical Physics Service, Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Pierina Navarria
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Ciro Franzese
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Domenico Lenoci
- Development Strategic Initiatives Unit, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Marta Scorsetti
- Department of Radiotherapy and Radiosurgery, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| |
Collapse
|
14
|
Shinde P, Jadhav A, Shankar V, Dhoble SJ. Assessment of dosimetric impact of interfractional 6D setup error in tongue cancer treated with IMRT and VMAT using daily kV-CBCT. Rep Pract Oncol Radiother 2023; 28:224-240. [PMID: 37456705 PMCID: PMC10348325 DOI: 10.5603/rpor.a2023.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/29/2023] [Indexed: 07/18/2023] Open
Abstract
Background This study aimed to evaluate the dosimetric influence of 6-dimensional (6D) interfractional setup error in tongue cancer treated with intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) using daily kilovoltage cone-beam computed tomography (kV-CBCT). Materials and methods This retrospective study included 20 tongue cancer patients treated with IMRT (10), VMAT (10), and daily kV-CBCT image guidance. Interfraction 6D setup errors along the lateral, longitudinal, vertical, pitch, roll, and yaw axes were evaluated for 600 CBCTs. Structures in the planning CT were deformed to the CBCT using deformable registration. For each fraction, a reference CBCT structure set with no rotation error was created. The treatment plan was recalculated on the CBCTs with the rotation error (RError), translation error (TError), and translation plus rotation error (T+RError). For targets and organs at risk (OARs), the dosimetric impacts of RError, TError, and T+RError were evaluated without and with moderate correction of setup errors. Results The maximum dose variation ΔD (%) for D98% in clinical target volumes (CTV): CTV-60, CTV-54, planning target volumes (PTV): PTV-60, and PTV-54 was -1.2%, -1.9%, -12.0%, and -12.3%, respectively, in the T+RError without setup error correction. The maximum ΔD (%) for D98% in CTV-60, CTV-54, PTV-60, and PTV-54 was -1.0%, -1.7%, -9.2%, and -9.5%, respectively, in the T+RError with moderate setup error correction. The dosimetric impact of interfractional 6D setup errors was statistically significant (p < 0.05) for D98% in CTV-60, CTV-54, PTV-60, and PTV-54. Conclusions The uncorrected interfractional 6D setup errors could significantly impact the delivered dose to targets and OARs in tongue cancer. That emphasized the importance of daily 6D setup error correction in IMRT and VMAT.
Collapse
Affiliation(s)
- Prashantkumar Shinde
- Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | - Anand Jadhav
- Department of Radiation Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India
| | - V. Shankar
- Department of Radiation Oncology, Apollo Cancer Center, Chennai, India
| | - Sanjay J. Dhoble
- Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| |
Collapse
|
15
|
Ma CMC, Shan G, Hu W, Price RA, Chen L. A new target localization method for image-guided radiation therapy of prostate cancer. Phys Med 2023; 107:102550. [PMID: 36870203 DOI: 10.1016/j.ejmp.2023.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/24/2023] [Accepted: 02/18/2023] [Indexed: 03/06/2023] Open
Abstract
In imaged-guided radiation therapy (IGRT), target localization is usually done with rigid-body registration based on anatomy matching. Problems arise when the target volume can only be matched partially due to inter-fractional organ motion and deformation, resulting in deteriorated target coverage and critical structure sparing. A new target localization method is investigated in which the treatment target volume is aligned with the prescription isodose surface. Our study included 15 prostate patients previously treated with intensity-modulated radiation therapy (IMRT). Patient setup and target localization were performed using a CT-on-rails system before and after the IMRT treatment. IMRT plans were generated on the original simulation CTs (15) and the same MUs and leaf sequences were used to compute the dose distributions on post-treatment CTs (98) with the isocenter adjustments based on either anatomical structure matching or prescription isodose surface alignment. When patients were aligned with the traditional anatomy matching method, the dose to 95% of the CTV, D95, received 74.0 - 77.6 Gy and the minimum CTV dose, Dmin, was 61.9 - 71.6 Gy, respectively, in the cumulative dose distributions. The rectal dose-volume constraints were violated in 35.7% of the treatment fractions. When patients were aligned using the new localization method, the dose to 95% of the CTV, D95, received 74.0 - 78.2 Gy and the minimum CTV dose, Dmin, was 68.4 - 71.6 Gy, respectively, in the cumulative dose distributions. The rectal dose-volume constraints were violated in 17.3% of the treatment fractions. Traditional IGRT target localization based on anatomy matching is effective for population-based PTV margins but not ideal for those patients with large inter-fractional prostate rotation/deformation due to large rectal and bladder volume variation. The new method using the prescription isodose surface to align the target volume could improve the target coverage and rectal sparing for these patients, which can be implemented clinically to improve target dose delivery accuracy.
Collapse
Affiliation(s)
- C M Charlie Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States.
| | - Guoping Shan
- Department of Radiation Physics, Zhejiang Key Lab of Radiation Oncology, Hangzhou, China
| | - Wei Hu
- Department of Radiation Oncology, Taizhou Central Hospital, Zhejiang, China
| | - Robert A Price
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Lili Chen
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
16
|
Puvanasunthararajah S, Camps SM, Wille ML, Fontanarosa D. Combined clustered scan-based metal artifact reduction algorithm (CCS-MAR) for ultrasound-guided cardiac radioablation. Phys Eng Sci Med 2022; 45:1273-1287. [PMID: 36352318 DOI: 10.1007/s13246-022-01192-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Cardiac radioablation is a promising treatment for cardiac arrhythmias, but accurate dose delivery can be affected by heart motion. For this reason, real-time cardiac motion monitoring during radioablation is of paramount importance. Real-time ultrasound (US) guidance can be a solution. The US-guided cardiac radioablation workflow can be simplified by the simultaneous US and planning computed tomography (CT) acquisition, which can result in US transducer-induced metal artifacts on the planning CT scans. To reduce the impact of these artifacts, a new metal artifact reduction (MAR) algorithm (named: Combined Clustered Scan-based MAR [CCS-MAR]) has been developed and compared with iMAR (Siemens), O-MAR (Philips) and MDT (ReVision Radiology) algorithms. CCS-MAR is a fully automated sinogram inpainting-based MAR algorithm, which uses a two-stage correction process based on a normalized MAR method. The second stage aims to correct errors remaining from the first stage to create an artifact-free combined clustered scan for the process of metal artifact reduction. To evaluate the robustness of CCS-MAR, conventional CT scans and/or dual-energy CT scans from three anthropomorphic phantoms and transducers with different sizes were used. The performance of CCS-MAR for metal artifact reduction was compared with other algorithms through visual comparison, image quality metrics analysis, and HU value restoration evaluation. The results of this study show that CCS-MAR effectively reduced the US transducer-induced metal artifacts and that it improved HU value accuracy more or comparably to other MAR algorithms. These promising results justify future research into US transducer-induced metal artifact reduction for the US-guided cardiac radioablation purposes.
Collapse
Affiliation(s)
- Sathyathas Puvanasunthararajah
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia. .,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.
| | | | - Marie-Luise Wille
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia.,School of Mechanical, Medical & Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia.,ARC ITTC for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia
| | - Davide Fontanarosa
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Shinde P, Jadhav A, Shankar V, Dhoble SJ. Evaluation of the dosimetric influence of interfractional 6D setup error in hypofractionated prostate cancer treated with IMRT and VMAT using daily kV-CBCT. J Med Imaging Radiat Sci 2022; 53:693-703. [PMID: 36289030 DOI: 10.1016/j.jmir.2022.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 09/01/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Prostate cancer is one of the most common malignant tumors in men and is usually treated with advanced intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). Significant uncorrected interfractional 6-Dimensional setup errors could impact the delivered dose. The aim of this study was to assess the dosimetric impact of 6D interfractional setup errors in hypofractionated prostate cancer using daily kilovoltage cone-beam computed tomography (kV-CBCT). METHODS This retrospective study comprised twenty prostate cancer patients treated with hypofractionated IMRT (8) and VMAT (12) with daily kV-CBCT image guidance. Interfraction 6D setup errors along lateral, longitudinal, vertical, pitch, roll, and yaw axes were evaluated for 400 CBCTs. For targets and organs at risk (OARs), the dosimetric impact of rotational error (RError), translational error (TError), and translational plus rotational error (T+RError) were evaluated on kV-CBCT images. RESULTS The single fraction maximum TError ranged from 12-20 mm, and the RError ranged from 2.80-3.00. The maximum mean absolute dose variation ΔD in D98% (dose to 98% volume) of CTV-55 and PTV-55 was -0.66±0.82 and -5.94±3.8 Gy, respectively, in the T+RError. The maximum ΔD (%) for D98% and D0.035cc in CTV-55 was -4.29% and 2.49%, respectively, while in PTV-55 it was -24.9% and 2.36%. The mean dose reduction for D98% in CTV-55 and D98% and D95% in PTV-55 was statistically significant (p<0.05) for TError and T+RError. The mean dose variation for Dmean and D50% in the rectum was statistically significant (p<0.05) for TError and T+RError. CONCLUSION The uncorrected interfractional 6D setup error results in significant target underdosing and OAR overdosing in prostate cancer. This emphasizes the need to correct interfractional 6D setup errors daily in IMRT and VMAT.
Collapse
Affiliation(s)
| | - Anand Jadhav
- Department of Radiation Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, 400004, India
| | - V Shankar
- Department of Radiation Oncology, Apollo Cancer Center, Chennai, 600035, India
| | - S J Dhoble
- Department of Physics, R. T. M. Nagpur University, Nagpur, 440033, India
| |
Collapse
|
18
|
Wang S, Tang W, Luo H, Jin F, Wang Y. The Role of Image-guided Radiotherapy in Prostate Cancer: A Systematic Review and Meta-Analysis. Clin Transl Radiat Oncol 2022; 38:81-89. [DOI: 10.1016/j.ctro.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
19
|
Nasief HG, Parchur AK, Omari E, Zhang Y, Chen X, Paulson E, Hall WA, Erickson B, Li XA. Predicting necessity of daily online adaptive replanning based on wavelet image features for MRI guided adaptive radiation therapy. Radiother Oncol 2022; 176:165-171. [PMID: 36216299 PMCID: PMC9838213 DOI: 10.1016/j.radonc.2022.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE Online adaptive replanning (OLAR) is generally labor-intensive and time-consuming during MRI-guided adaptive radiation therapy (MRgART). This work aims to develop a method to determine OLAR necessity during MRgART. METHODS A machine learning classifier was developed to predict OLAR necessity based on wavelet multiscale texture features extracted from daily MRIs and was trained and tested with data from 119 daily MRI datasets acquired during MRgART for 24 pancreatic cancer patients treated on a 1.5 T MR-Linac. Spearman correlations, interclass correlation (ICC), coefficient of variance (COV), t-test (p < 0.05), self-organized map (SOM) and maximum stable extremal region (MSER) algorithm were used to determine candidate features, which were used to build the prediction models using Bayesian classifiers. The model performance was judged using the AUC of the ROC curve. RESULTS Spearman correlation identified 123 features that were not redundant (r < 0.9). Of them 82 showed high ICC for repositioning > 0.6, 67 had a COV greater than 9% for OLAR. Among the 38 features passed the t-test, 25 passed the SOM and 12 passed the MSER. These final 12 features were used to build the classifier model. The combination of 2-3 features at a time was used to build the classifier models. The best performing model was a 3-feature combination, which can predict OLAR necessity with a CV-AUC of 0.98. CONCLUSIONS A machine learning classifier model based on the wavelet features extracted from daily MRI for pancreatic cancer was developed to automatically and objectively determine if OLAR is necessary for a treatment fraction avoiding unnecessary effort during MRgART.
Collapse
Affiliation(s)
- Haidy G Nasief
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Abdul K Parchur
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eenas Omari
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ying Zhang
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xinfeng Chen
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - William A Hall
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Beth Erickson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
20
|
Choi HS, Kang KM, Ha IB, Jeong BK, Song JH, Kim CH, Jeong H. Comprehensive Analysis of Set-Up Gain of 6-Dimensional Cone-Beam CT Correction Method in Radiotherapy for Head and Neck and Brain Tumors. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2964023. [PMID: 36311255 PMCID: PMC9613383 DOI: 10.1155/2022/2964023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022]
Abstract
This study quantitatively analyzed the gain of the six-dimensional (6D) cone-beam CT (CBCT) correction method compared with the conventional set-up method in 60 patients who underwent radiation treatment of head and neck and brain tumors. The correction gain of CBCT was calculated for the translational and rotational motion components separately and in combination to evaluate the individual and overall effects of these motion components. Using a statistical simulation mimicking the actual set-up correction process, the effective gain of periodic CBCT correction during the entire treatment fraction was analyzed by target size and CBCT correction period under two different correction scenarios: translation alone and full 6D corrections. From the analyses performed in this study, the gain of CBCT correction was quantitatively determined for each situation, and the appropriate CBCT correction strategy was suggested based on treatment purpose and target size.
Collapse
Affiliation(s)
- Hoon Sik Choi
- Department of Radiation Oncology, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki Mun Kang
- Department of Radiation Oncology, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - In Bong Ha
- Department of Radiation Oncology, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Radiation Oncology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Bae Kwon Jeong
- Department of Radiation Oncology, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Department of Radiation Oncology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jin Ho Song
- Department of Radiation Oncology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Hang Kim
- Department of Radiation Oncology, Gyeongsang National University Changwon Hospital, Changwon, Republic of Korea
| | - Hojin Jeong
- Department of Radiation Oncology, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Department of Radiation Oncology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| |
Collapse
|
21
|
Shinde P, Jadhav A, Gupta KK, Dhoble S. QUANTIFICATION OF 6D INTER-FRACTION TUMOUR LOCALISATION ERRORS IN TONGUE AND PROSTATE CANCER USING DAILY KV-CBCT FOR 1000 IMRT AND VMAT TREATMENT FRACTIONS. RADIATION PROTECTION DOSIMETRY 2022; 198:1265-1281. [PMID: 35870445 DOI: 10.1093/rpd/ncac145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to evaluate the 6D inter-fraction tumour localisation errors in 20 tongue and 20 prostate cancer patients treated with intensity-modulated radiation therapy and volumetric-modulated arc therapy. The patient tumour localisation errors in lateral, longitudinal and vertical translation axes and pitch, roll and yaw rotational axes were analysed by automatic image registration of daily pretreatment kilovoltage cone-beam computed tomography (kV-CBCT) with planning CT in 1000 fractions. The overall mean error (M), systematic error (Σ), random error (σ) and planning target volume (PTV) margins were evaluated. The frequency distributions of setup errors were normally distributed about the mean except for pitch in the tongue and prostate. The overall 3D vector length ≥ 5 mm was 14.2 and 49.8% in the ca-tongue and ca-prostate, respectively. The frequency of rotational errors ≥1 degree was a maximum of 37 and 59.5%, respectively, in ca-tongue and ca-prostate. The M, Σ and σ for all translational and rotational axes decreased with increasing frequency of verification correction in ca-tongue and ca-prostate patients. Similarly, the PTV margin was reduced with no correction to alternate day correction from a maximum of 4.7 to 2.5 mm in ca-tongue and from a maximum of 8.6 to 4.7 mm in ca-prostate. The results emphasised the vital role of the higher frequency of kV-CBCT based setup correction in reducing M, Σ, σ and PTV margins in ca-tongue and ca-prostate patients.
Collapse
Affiliation(s)
- Prashantkumar Shinde
- Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Anand Jadhav
- Department of Radiation Oncology, Sir H N Reliance Foundation Hospital & Research Centre, Mumbai 400004, India
| | - Karan Kumar Gupta
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617, ROC
| | - Sanjay Dhoble
- Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| |
Collapse
|
22
|
Han P, Chen J, Xiao J, Han F, Hu Z, Yang W, Cao M, Ling DC, Li D, Christodoulou AG, Fan Z. Single projection driven real-time multi-contrast (SPIDERM) MR imaging using pre-learned spatial subspace and linear transformation. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac783e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 06/13/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. To develop and test the feasibility of a novel Single ProjectIon DrivEn Real-time Multi-contrast (SPIDERM) MR imaging technique that can generate real-time 3D images on-the-fly with flexible contrast weightings and a low latency. Approach. In SPIDERM, a ‘prep’ scan is first performed, with sparse k-space sampling periodically interleaved with the central k-space line (navigator data), to learn a subject-specific model, incorporating a spatial subspace and a linear transformation between navigator data and subspace coordinates. A ‘live’ scan is then performed by repeatedly acquiring the central k-space line only to dynamically determine subspace coordinates. With the ‘prep’-learned subspace and ‘live’ coordinates, real-time 3D images are generated on-the-fly with computationally efficient matrix multiplication. When implemented based on a multi-contrast pulse sequence, SPIDERM further allows for data-driven image contrast regeneration to convert real-time contrast-varying images into contrast-frozen images at user’s discretion while maintaining motion states. Both digital phantom and in-vivo experiments were performed to evaluate the technical feasibility of SPIDERM. Main results. The elapsed time from the input of the central k-space line to the generation of real-time contrast-frozen 3D images was approximately 45 ms, permitting a latency of 55 ms or less. Motion displacement measured from SPIDERM and reference images showed excellent correlation (
R
2
≥
0.983
). Geometric variation from the ground truth in the digital phantom was acceptable as demonstrated by pancreas contour analysis (Dice ≥ 0.84, mean surface distance ≤ 0.95 mm). Quantitative image quality metrics showed good consistency between reference images and contrast-varying SPIDREM images in in-vivo studies (mean
NMRSE
=
0.141
,
PSNR
=
3
0.12
,
SSIM
=
0.88
). Significance. SPIDERM is capable of generating real-time multi-contrast 3D images with a low latency. An imaging framework based on SPIDERM has the potential to serve as a standalone package for MR-guided radiation therapy by offering adaptive simulation through a ‘prep’ scan and real-time image guidance through a ‘live’ scan.
Collapse
|
23
|
Cheng X, Yang D, Zhong Y, Shao Y. Real-time marker-less tumor tracking with TOF PET: in silico feasibility study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6d9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/06/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Purpose. Although positron emission tomography (PET) can provide a functional image of static tumors for RT guidance, it’s conventionally very challenging for PET to track a moving tumor in real-time with a multiple frame/s sampling rate. In this study, we developed a novel method to enable PET based three-dimension (3D) real-time marker-less tumor tracking (RMTT) and demonstrated its feasibility with a simulation study. Methods. For each line-of-response (LOR) acquired, its positron-electron annihilation position is calculated based on the time difference between the two gamma interactions detected by the TOF PET detectors. The accumulation of these annihilation positions from data acquired within a single sampling frame forms a coarsely measured 3D distribution of positron-emitter radiotracer uptakes of the lung tumor and other organs and tissues (background). With clinically relevant tumor size and sufficient differential radiotracer uptake concentrations between the tumor and background, the high-uptake tumor can be differentiated from the surrounding low-uptake background in the measured distribution of radiotracer uptakes. With a volume-of-interest (VOI) that closely encloses the tumor, the count-weighted centroid of the annihilation positions within the VOI can be calculated as the tumor position. All these data processes can be conducted online. The feasibility of the new method was investigated with a simulated cardiac-torso digital phantom and stationary dual-panel TOF PET detectors to track a 28 mm diameter lung tumor with a 4:1 tumor-to-background 18FDG activity concentration ratio. Results. The initial study shows TOF PET based RMTT can achieve <2.0 mm tumor tracking accuracy with 5 frame s−1 sampling rate under the simulated conditions. In comparison, using reconstructed PET images to track a similar size tumor would require >30 s acquisition time to achieve the same tracking accuracy. Conclusion. With the demonstrated feasibility, the new method may enable TOF PET based RMTT for practical RT applications.
Collapse
|
24
|
El Naqa I, Pogue BW, Zhang R, Oraiqat I, Parodi K. Image guidance for FLASH radiotherapy. Med Phys 2022; 49:4109-4122. [PMID: 35396707 PMCID: PMC9844128 DOI: 10.1002/mp.15662] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023] Open
Abstract
FLASH radiotherapy (FLASH-RT) is an emerging ultra-high dose (>40 Gy/s) delivery that promises to improve the therapeutic potential by limiting toxicities compared to conventional RT while maintaining similar tumor eradication efficacy. Image guidance is an essential component of modern RT that should be harnessed to meet the special emerging needs of FLASH-RT and its associated high risks in planning and delivering of such ultra-high doses in short period of times. Hence, this contribution will elaborate on the imaging requirements and possible solutions in the entire chain of FLASH-RT treatment, from the planning, through the setup and delivery with online in vivo imaging and dosimetry, up to the assessment of biological mechanisms and treatment response. In patient setup and delivery, higher temporal sampling than in conventional RT should ensure that the short treatment is delivered precisely to the targeted region. Additionally, conventional imaging tools such as cone-beam computed tomography will continue to play an important role in improving patient setup prior to delivery, while techniques based on magnetic resonance imaging or positron emission tomography may be extremely valuable for either linear accelerator (Linac) or particle FLASH therapy, to monitor and track anatomical changes during delivery. In either planning or assessing outcomes, quantitative functional imaging could supplement conventional imaging for more accurate utilization of the biological window of the FLASH effect, selecting for or verifying things such as tissue oxygen and existing or transient hypoxia on the relevant timescales of FLASH-RT delivery. Perhaps most importantly at this time, these tools might help improve the understanding of the biological mechanisms of FLASH-RT response in tumor and normal tissues. The high dose deposition of FLASH provides an opportunity to utilize pulse-to-pulse imaging tools such as Cherenkov or radiation acoustic emission imaging. These could provide individual pulse mapping or assessing the 3D dose delivery superficially or at tissue depth, respectively. In summary, the most promising components of modern RT should be used for safer application of FLASH-RT, and new promising developments could be advanced to cope with its novel demands but also exploit new opportunities in connection with the unique nature of pulsed delivery at unprecedented dose rates, opening a new era of biological image guidance and ultrafast, pulse-based in vivo dosimetry.
Collapse
Affiliation(s)
- Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA
| | - Rongxiao Zhang
- Giesel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Ibrahim Oraiqat
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748, Germany
| |
Collapse
|
25
|
Shinde P, Jadhav A, Shankar V, Gupta KK, Dhoble NS, Dhoble SJ. Evaluation of kV-CBCT based 3D dose calculation accuracy and its validation using delivery fluence derived dose metrics in Head and Neck Cancer. Phys Med 2022; 96:32-45. [PMID: 35217498 DOI: 10.1016/j.ejmp.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022] Open
Abstract
PURPOSE The purpose of this study is to evaluate the dosimetric impact of Hounsfield unit (HU) variations in kilovoltage cone-beam computed tomography (kV-CBCT) based 3D dose calculation accuracy in the treatment planning system and its validation using measured treatment delivery dose (MTDD) derived dose metrics for Volumetric Modulated Arc Therapy (VMAT) and Intensity Modulated Radiotherapy (IMRT) plans in Head and Neck (HN) Cancer. METHODS CBCT dose calculation accuracy was evaluated for 8 VMAT plans on inhomogeneous phantom and 40 VMAT and IMRT plans of HN Cancer patients and validated using ArcCHECK diode array MTDD derived 3D dose metric on CT and CBCT. RESULTS The mean percentage dose difference between CBCT and CT in TPS (ΔD(CBCT-CT)TPS) and 3DVH (ΔD(CBCT-CT)3DVH) were compared for the corresponding evaluation dose metrics (D98%, D95%, D50%, D2%, Dmax, D1cc, D0.03cc, Dmean) of all PTVs and OARs in phantom and patients. ΔD(CBCT-CT)TPS and ΔD(CBCT-CT)3DVH for all evaluation dose points of all PTVs and OARs were less than 2.55% in phantom and 2.4% in HN patients. The Pearson correlation coefficient (r) between ΔD(CBCT-CT)TPS and ΔD(CBCT-CT)3DVH for all dose points in all PTVs and OARs showed a strong to moderate correlation in phantom and patients with p < 0.001. CONCLUSIONS This study evaluated and validated the potential feasibility of kV-CBCT for treatment plan 3D dose reconstruction in clinical decision making for Adaptive radiotherapy on CT in Head and Neck cancer.
Collapse
Affiliation(s)
- Prashantkumar Shinde
- Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India
| | - Anand Jadhav
- Department of Radiation Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai 400004, India
| | - V Shankar
- Department of Radiation Oncology, Apollo Cancer Center, Chennai 600035, India
| | - Karan Kumar Gupta
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, ROC.
| | - Nirupama S Dhoble
- Department of Chemistry, Sevadal Mahila Mahavidhyalay, Nagpur 440015, India
| | - Sanjay J Dhoble
- Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, India.
| |
Collapse
|
26
|
Mueller M, Poulsen P, Hansen R, Verbakel W, Berbeco R, Ferguson D, Mori S, Ren L, Roeske JC, Wang L, Zhang P, Keall P. The markerless lung target tracking AAPM Grand Challenge (MATCH) results. Med Phys 2022; 49:1161-1180. [PMID: 34913495 PMCID: PMC8828678 DOI: 10.1002/mp.15418] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Lung stereotactic ablative body radiotherapy (SABR) is a radiation therapy success story with level 1 evidence demonstrating its efficacy. To provide real-time respiratory motion management for lung SABR, several commercial and preclinical markerless lung target tracking (MLTT) approaches have been developed. However, these approaches have yet to be benchmarked using a common measurement methodology. This knowledge gap motivated the MArkerless lung target Tracking CHallenge (MATCH). The aim was to localize lung targets accurately and precisely in a retrospective in silico study and a prospective experimental study. METHODS MATCH was an American Association of Physicists in Medicine sponsored Grand Challenge. Common materials for the in silico and experimental studies were the experiment setup including an anthropomorphic thorax phantom with two targets within the lungs, and a lung SABR planning protocol. The phantom was moved rigidly with patient-measured lung target motion traces, which also acted as ground truth motion. In the retrospective in silico study a volumetric modulated arc therapy treatment was simulated and a dataset consisting of treatment planning data and intra-treatment kilovoltage (kV) and megavoltage (MV) images for four blinded lung motion traces was provided to the participants. The participants used their MLTT approach to localize the moving target based on the dataset. In the experimental study, the participants received the phantom experiment setup and five patient-measured lung motion traces. The participants used their MLTT approach to localize the moving target during an experimental SABR phantom treatment. The challenge was open to any participant, and participants could complete either one or both parts of the challenge. For both the in silico and experimental studies the MLTT results were analyzed and ranked using the prospectively defined metric of the percentage of the tracked target position being within 2 mm of the ground truth. RESULTS A total of 30 institutions registered and 15 result submissions were received, four for the in silico study and 11 for the experimental study. The participating MLTT approaches were: Accuray CyberKnife (2), Accuray Radixact (2), BrainLab Vero, C-RAD, and preclinical MLTT (5) on a conventional linear accelerator (Varian TrueBeam). For the in silico study the percentage of the 3D tracking error within 2 mm ranged from 50% to 92%. For the experimental study, the percentage of the 3D tracking error within 2 mm ranged from 39% to 96%. CONCLUSIONS A common methodology for measuring the accuracy of MLTT approaches has been developed and used to benchmark preclinical and commercial approaches retrospectively and prospectively. Several MLTT approaches were able to track the target with sub-millimeter accuracy and precision. The study outcome paves the way for broader clinical implementation of MLTT. MATCH is live, with datasets and analysis software being available online at https://www.aapm.org/GrandChallenge/MATCH/ to support future research.
Collapse
Affiliation(s)
- Marco Mueller
- Corresponding author; Room 221, ACRF Image X institute, 1 Central Ave, Eveleigh NSW 2015, Australia; +61 2 8627 1106,
| | - Per Poulsen
- Danish Center for Particle Therapy and Department of Oncology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Rune Hansen
- Department of Medical Physics, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Wilko Verbakel
- Amsterdam University Medical Centers, location VUmc, Amsterdam 1081 HV, Netherlands
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Shinichiro Mori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-0024, Japan
| | - Lei Ren
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - John C. Roeske
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Lei Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pengpeng Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center New York, NY, USA
| | - Paul Keall
- ACRF Image X Institute, The University of Sydney, Sydney, NSW 2015, Australia
| |
Collapse
|
27
|
Dose assessment for daily cone-beam CT in lung radiotherapy patients and its combination with treatment planning. Phys Eng Sci Med 2022; 45:231-237. [PMID: 35076869 DOI: 10.1007/s13246-022-01105-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
Abstract
With the increased use of X-ray imaging for patient alignment in external beam radiation therapy, particularly with cone-beam computed tomography (CBCT), the additional dose received by patients has become of greater consideration. In this study, we analysed the radiation dose from CBCT for clinical lung radiotherapy and assessed its relative contribution when combined with radiation treatment planning for a variety of lung radiotherapy techniques. The Monte Carlo simulation program ImpactMC was used to calculate the 3D dose delivered by a Varian TrueBeam linear accelerator to patients undergoing thorax CBCT imaging. The concomitant dose was calculated by simulating the daily CBCT irradiation of ten lung cancer patients. Each case was planned with a total dose of 50-60 Gy to the target lesion in 25-30 fractions using the 3DCRT or IMRT plan and retrospectively planned using VMAT. For each clinical case, the calculated CBCT dose was summed with the planned dose, and the dose to lungs, heart, and spinal cord were analysed according to conventional dose conformity metrics. Our results indicate greater variations in dose to the heart, lungs, and spinal cord based on planning technique, (3DCRT, IMRT, VMAT) than from the inclusion of daily cone-beam imaging doses over 25-30 fractions. The average doses from CBCT imaging per fraction to the lungs, heart and spinal cord were 0.52 ± 0.10, 0.49 ± 0.15 and 0.39 ± 0.08 cGy, respectively. Lung dose variations were related to the patient's size and body composition. Over a treatment course, this may result in an additional mean absorbed dose of 0.15-0.2 Gy. For lung V5, the imaging dose resulted in an average increase of ~ 0.6% of the total volume receiving 5 Gy. The increase in V20 was more dependent on the planning technique, with 3DCRT increasing by 0.11 ± 0.09% with imaging and IMRT and VMAT increasing by 0.17 ± 0.05% and 0.2 ± 0.06%, respectively. In this study, we assessed the concomitant dose for daily CBCT lung cancer patients undergoing radiotherapy. The additional radiation dose to the normal lungs from daily CBCT was found to range from 0.15 to 0.2 Gy when the patient was treated with 25-30 fractions. Consideration of potential variation in relative biological effectiveness between kilovoltage imaging and megavoltage treatment dose was outside the scope of this study. Regardless of this, our results show that the assessment of imaging dose can be incorporated into the treatment planning process and the relative effect on overall dose distribution was small compared to the difference among planning techniques.
Collapse
|
28
|
Schröder L, Stankovic U, Rit S, Sonke JJ. Image quality of dual-energy cone-beam CT with total nuclear variation regularization. Biomed Phys Eng Express 2022; 8. [PMID: 35073539 DOI: 10.1088/2057-1976/ac4e2e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/24/2022] [Indexed: 11/11/2022]
Abstract
Despite the improvements in image quality of cone beam computed tomography (CBCT) scans, application remains limited to patient positioning. In this study, we propose to improve image quality by dual energy (DE) imaging and iterative reconstruction using least squares fitting with total variation (TV) regularization. The generalization of TV called total nuclear variation (TNV) was used to generate DE images. We acquired single energy (SE) and DE scans of an image quality phantom (IQP) and of an anthropomorphic human male phantom (HMP). The DE scans were dual arc acquisitions of 70kV and 130kV with a variable dose partitioning between low energy (LE) and high energy (HE) arcs. To investigate potential benefits from a larger spectral separation between LE and HE, DE scans with an additional 2 mm copper beam filtration in the HE arc were acquired for the IQP. The DE TNV scans were compared to SE scans reconstructed with FDK and iterative TV with varying parameters. The contrast-to-noise ratio (CNR), spatial frequency, and structural similarity (SSIM) were used as image quality metrics. Results showed largely improved image quality for DE TNV over FDK for both phantoms. DE TNV with the highest dose allocation in the LE arm yielded the highest CNR. Compared to SE TV, these DE TNV results had a slightly lower CNR with similar spatial resolution for the IQP. A decrease in the dose allocated to the LE arm improved the spatial resolution with a trade-off against CNR. For the HMP, DE TNV displayed a lower CNR and/or lower spatial resolution depending on the reconstruction parameters. Regarding the SSIM, DE TNV was superior to FDK and SE TV for both phantoms. The additional beam filtration for the IQP led to improved image quality in all metrics, surpassing the SE TV results in CNR and spatial resolution.
Collapse
Affiliation(s)
- Lukas Schröder
- Department of Radiation Oncology, Nederlands Kanker Instituut - Antoni van Leeuwenhoek Ziekenhuis, Plesmanlaan 121, Amsterdam, Noord Holland, 1066 CX, NETHERLANDS
| | - Uros Stankovic
- Department of Radiation Oncology, Nederlands Kanker Instituut - Antoni van Leeuwenhoek Ziekenhuis, Plesmanlaan 121, Amsterdam, Noord Holland, 1066 CX, NETHERLANDS
| | - Simon Rit
- Université de Lyon, CREATIS ; CNRS UMR5220 ; Inserm U1206 ; INSA-Lyon ; Université Lyon 1, CREATIS, Centre Léon Bérard, Lyon, 69373, FRANCE
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, Nederlands Kanker Instituut - Antoni van Leeuwenhoek Ziekenhuis, Plesmanlaan 121, 1066 CX Amsterdam, THE NETHERLANDS, Amsterdam, Noord Holland, 1066 CX, NETHERLANDS
| |
Collapse
|
29
|
Le Deroff C, Berger L, Bellec J, Boissonnat G, Chesneau H, Chiavassa S, Desrousseaux J, Gempp S, Henry O, Jarril J, Lazaro D, Lefeuvre R, Passal V, Solinhac F, Lafond C, Delpon G. Monte Carlo-based software for 3D personalized dose calculations in image-guided radiotherapy. Phys Imaging Radiat Oncol 2022; 21:108-114. [PMID: 35243041 PMCID: PMC8885460 DOI: 10.1016/j.phro.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Monte Carlo calculations offer 3D personalized IGRT imaging dose distributions. Histogram dose volume were obtained for three anatomical sites and 5 imaging device. The image frequency is responsible for the cumulated dose to organs. Adapting the protocols to morphologies reduce the imaging dose.
Background and purpose Image-guided radiotherapy (IGRT) involves frequent in-room imaging sessions contributing to additional patient irradiation. The present work provided patient-specific dosimetric data related to different imaging protocols and anatomical sites. Material and methods We developed a Monte Carlo based software able to calculate 3D personalized dose distributions for five imaging devices delivering kV-CBCT (Elekta and Varian linacs), MV-CT (Tomotherapy machines) and 2D-kV stereoscopic images from BrainLab and Accuray. Our study reported the dose distributions calculated for pelvis, head and neck and breast cases based on dose volume histograms for several organs at risk. Results 2D-kV imaging provided the minimum dose with less than 1 mGy per image pair. For a single kV-CBCT and MV-CT, median dose to organs were respectively around 30 mGy and 15 mGy for the pelvis, around 7 mGy and 10 mGy for the head and neck and around 5 mGy and 15 mGy for the breast. While MV-CT dose varied sparsely with tissues, dose from kV imaging was around 1.7 times higher in bones than in soft tissue. Daily kV-CBCT along 40 sessions of prostate radiotherapy delivered up to 3.5 Gy to the femoral heads. The dose level for head and neck and breast appeared to be lower than 0.4 Gy for every organ in case of a daily imaging session. Conclusions This study showed the dosimetric impact of IGRT procedures. Acquisition parameters should therefore be chosen wisely depending on the clinical purposes and tailored to morphology. Indeed, imaging dose could be reduced up to a factor 10 with optimized protocols.
Collapse
Affiliation(s)
- Coralie Le Deroff
- Centre Eugène Marquis (Unicancer), Rennes, France
- Corresponding author.
| | - Lucie Berger
- Centre Jean Perrin (Unicancer), Clermont Ferrand, France
| | | | | | | | - Sophie Chiavassa
- Institut de Cancérologie de l’Ouest (Unicancer), Saint-Herblain, France
| | | | - Stéphanie Gempp
- Assistance Publique – Hôpitaux de Marseille, Marseille, France
| | | | - Jimmy Jarril
- Centre Jean Perrin (Unicancer), Clermont Ferrand, France
| | - Delphine Lazaro
- Université Paris-Saclay, CEA, List, F-91120 Palaiseau, France
| | | | - Vincent Passal
- Institut de Cancérologie de l’Ouest (Unicancer), Saint-Herblain, France
| | - Fanny Solinhac
- Assistance Publique – Hôpitaux de Marseille, Marseille, France
| | - Caroline Lafond
- Centre Eugène Marquis (Unicancer), Rennes, France
- Université de Rennes, Inserm, LTSI – UMR 1099, Rennes, France
| | - Gregory Delpon
- Institut de Cancérologie de l’Ouest (Unicancer), Saint-Herblain, France
| |
Collapse
|
30
|
Duan J, Guo R, Wei W, Zhu J, Qiu Q, Zhang R, Meng X. Demonstration of quasi-real-time intrafractional motion in esophageal cancer radiotherapy provided by ExacTrac X-ray snap verification. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:677-687. [PMID: 35527623 DOI: 10.3233/xst-221165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To investigate the following hypotheses: (1) ExacTrac X-ray Snap Verification (ET-SV) is an alternative to CBCT for positioning patients with esophageal carcinoma (EC), (2) ET-SV can detect displacement in EC patients during radiotherapy (RT) and (3) EC patients can be feasibly monitored in quasi-real-time with ET-SV during RT. METHODS Anthropomorphic phantoms and 13 patients were included in this study. CBCT and ET-SV were both implemented before treatment delivery to detect displacement, and their correction results were compared. For the patient tests, positional correction in 3 translational directions and the yaw direction were applied using the ET-SV correction results. The residual error was detected immediately using ET-SV. Finally, to acquire the intrafractional motion, ET-SV was implemented when the gantry was at 0°, 90°, 180° and 270°, respectively. RESULTS In phantom tests, the maximum value of the difference in displacement between the CBCT and ET systems was 1.16 mm for translation and 0.31° for yaw. According to Bland-Altman analysis of the patient test results, 5% (5/98), 5% (5/98), 5% (5/98), and 4% (4/98) of points were beyond the upper and lower limits of agreement in the AP, SI, LR and yaw directions, respectively. The mean residual error was -0.482 mm, 1.215 mm, 1.0 mm, -0.487°, 0.105°, and 0.003° in the AP, SI, LR, pitch, roll and yaw directions, respectively. The intrafractional displacement ranged from -0.21 mm to 0 mm for translation and from -0.63° to 0.21° for rotation. The mean total translational error for intrafractional motion increased from 0.47 mm to 1.14 mm during the treatment. CONCLUSION The accuracy of ET-SV for EC RT positional correction is comparable to that of CBCT. Thus, Quasi-real-time intrafractional monitoring can be used to detect EC patient displacement during radiotherapy.
Collapse
Affiliation(s)
- Jinghao Duan
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, China
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ran Guo
- Department of Radiation Oncology, Jining NO.1 People's Hospital, Jining, China
| | - Wenqiang Wei
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jian Zhu
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qingtao Qiu
- Department of Radiotherapy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Ruohui Zhang
- Department of Radiotherapy, the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiangjuan Meng
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
31
|
Takahashi S, Nishide T, Tsuzuki M, Katayama H, Anada M, Kinoshita T, Kozai S, Shibata T. Target coverage of daily cone-beam computed tomography in breath-hold image-guided radiotherapy for gastric lymphoma. BJR Open 2021; 2:20200062. [PMID: 34381938 PMCID: PMC8320113 DOI: 10.1259/bjro.20200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 11/05/2022] Open
Abstract
Objectives We evaluated retrospectively the daily target coverage using cone-beam computed tomography (CBCT) in breath-hold image-guided radiotherapy (BH-IGRT) for gastric lymphoma. Methods BH-IGRT was performed using a prescribed dose of 30.6 Gy in 17 fractions for the whole stomach. We assessed the target coverage of the whole stomach on daily CBCT images [daily clinical target volume (CTV)], which was delineated individually by two observers. We evaluated V95% (percentage of volume receiving ≥95% of the prescribed dose) of daily CTV. Results In total, 102 fractions from 6 patients were assessed. The mean V95% of daily CTV was 97.2%, which was over 95%. In two of six patients, the V95% of daily CTV was over 95% for either observer in all fractions. One patient had significant interobserver variation (p = 0.013). In 95 fractions (93%), the V95% of daily CTV was over 95% for either observer. Conclusion Daily target coverage for CTV in BH-IGRT for gastric lymphoma seems to be favorable, even when using CBCT. Advances in knowledge A previous study ascertained good daily target coverage in BH-IGRT for gastric lymphoma using in-room CT. Even when using CBCT in our study, daily target coverage for CTV in BH-IGRT for gastric lymphoma seems to be favorable.
Collapse
Affiliation(s)
- Shigeo Takahashi
- Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan
| | - Takamasa Nishide
- Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan
| | - Masato Tsuzuki
- Department of Clinical Radiology, Kagawa University Hospital, Kagawa, Japan
| | - Hiroki Katayama
- Department of Clinical Radiology, Kagawa University Hospital, Kagawa, Japan
| | - Masahide Anada
- Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan
| | | | - Shohei Kozai
- Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan
| | - Toru Shibata
- Department of Radiation Oncology, Kagawa University Hospital, Kagawa, Japan
| |
Collapse
|
32
|
Hoisak JD, Kim GYG, Atwood TF, Pawlicki T. Operational Insights From the Longitudinal Analysis of a Linear Accelerator Machine Log. Cureus 2021; 13:e16038. [PMID: 34239800 PMCID: PMC8245652 DOI: 10.7759/cureus.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 11/06/2022] Open
Abstract
Purpose This study aimed to perform a longitudinal analysis of linear accelerator (linac) technical faults reported with a cloud-based Machine Log system in use in a busy academic clinic and derive operational insights related to linac reliability, clinical utilization, and performance. Methods We queried the Machine Log system for the following parameters: linac type, number of reported technical faults, types of fault, number of faults where the linac was disabled, and estimated clinical downtime. The number of fractions treated and monitor units (MU) delivered were obtained from the record and verify system as metrics of linac utilization and to normalize the number of reported linac faults, facilitating inter-comparison. Two Varian TrueBeam C-arm linacs (Varian Medical Systems, Palo Alto, CA), one Varian 21iX C-arm linac (Varian Medical Systems, Palo Alto, CA), and one newly installed Varian Halcyon ring gantry linac (Varian Medical Systems, Palo Alto, CA) were evaluated. The linacs were studied over a 30-month period from September 2017 to March 2020. Results Over 30 months, comprising 677 clinical days, 1234 faults were reported from all linacs, including 153 “linac down” events requiring rescheduling or cancellation of treatments. The TrueBeam linacs reported nearly twice as many imaging, multileaf collimator (MLC), and beam generation faults per fraction, and MU as the Halcyon. Halcyon experienced fewer beam generation/steering, accessory, and cooling-related faults than the other linacs but reported more computer and networking issues. Although it employs a relatively new MLC design compared to the C-arm linacs and delivers primarily intensity-modulated treatments, Halcyon reported fewer MLC faults than the other linacs. The 21iX linac had the fewest software-related faults but was subject to the most cooling-related faults, which we attributed to extensive use of this linac for treatment techniques with extended beam-on times. Conclusions A longitudinal analysis of a cloud-based Machine Log system yielded operational insights into the utilization, performance, and technical reliability of the linacs in use at our institution. Several trends in linac sub-system reliability were identified and could be attributed to either age, design, clinical use, or operational demands. The results of this analysis will be used as a basis for designing linac quality assurance schedules that reflect actual linac usage and observed sub-system reliability. Such a practice may contribute to a clinic workflow subject to fewer disruptions from linac faults, ultimately improving efficiency and patient safety.
Collapse
Affiliation(s)
- Jeremy D Hoisak
- Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, USA
| | - Gwe-Ya G Kim
- Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, USA
| | - Todd F Atwood
- Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, USA
| | - Todd Pawlicki
- Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, USA
| |
Collapse
|
33
|
Fonseca GP, Baer-Beck M, Fournie E, Hofmann C, Rinaldi I, Ollers MC, van Elmpt WJC, Verhaegen F. Evaluation of novel AI-based extended field-of-view CT reconstructions. Med Phys 2021; 48:3583-3594. [PMID: 33978240 PMCID: PMC8362147 DOI: 10.1002/mp.14937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 01/14/2023] Open
Abstract
Purpose Modern computed tomography (CT) scanners have an extended field‐of‐view (eFoV) for reconstructing images up to the bore size, which is relevant for patients with higher BMI or non‐isocentric positioning due to fixation devices. However, the accuracy of the image reconstruction in eFoV is not well known since truncated data are used. This study introduces a new deep learning‐based algorithm for extended field‐of‐view reconstruction and evaluates the accuracy of the eFoV reconstruction focusing on aspects relevant for radiotherapy. Methods A life‐size three‐dimensional (3D) printed thorax phantom, based on a patient CT for which eFoV was necessary, was manufactured and used as reference. The phantom has holes allowing the placement of tissue mimicking inserts used to evaluate the Hounsfield unit (HU) accuracy. CT images of the phantom were acquired using different configurations aiming to evaluate geometric and HU accuracy in the eFoV. Image reconstruction was performed using a state‐of‐the‐art reconstruction algorithm (HDFoV), commercially available, and the novel deep learning‐based approach (HDeepFoV). Five patient cases were selected to evaluate the performance of both algorithms on patient data. There is no ground truth for patients so the reconstructions were qualitatively evaluated by five physicians and five medical physicists. Results The phantom geometry reconstructed with HDFoV showed boundary deviations from 1.0 to 2.5 cm depending on the volume of the phantom outside the regular scan field of view. HDeepFoV showed a superior performance regardless of the volume of the phantom within eFOV with a maximum boundary deviation below 1.0 cm. The maximum HU (absolute) difference for soft issue inserts is below 79 and 41 HU for HDFoV and HDeepFoV, respectively. HDeepFoV has a maximum deviation of −18 HU for an inhaled lung insert while HDFoV reached a 229 HU difference. The qualitative evaluation of patient cases shows that the novel deep learning approach produces images that look more realistic and have fewer artifacts. Conclusion To be able to reconstruct images outside the sFoV of the CT scanner there is no alternative than to use some kind of extrapolated data. In our study, we proposed and investigated a new deep learning‐based algorithm and compared it to a commercial solution for eFoV reconstruction. The deep learning‐based algorithm showed superior performance in quantitative evaluations based on phantom data and in qualitative assessments of patient data.
Collapse
Affiliation(s)
- Gabriel Paiva Fonseca
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | | | | | | | - Ilaria Rinaldi
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Michel C Ollers
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Wouter J C van Elmpt
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Maastricht, 6229 ET, The Netherlands
| |
Collapse
|
34
|
Yang B, Wong YS, Lam WW, Geng H, Huang CY, Tang KK, Law WK, Ho CC, Nam PH, Cheung KY, Yu SK. Initial clinical experience of patient-specific QA of treatment delivery in online adaptive radiotherapy using a 1.5 T MR-Linac. Biomed Phys Eng Express 2021; 7. [PMID: 33882471 DOI: 10.1088/2057-1976/abfa80] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/21/2021] [Indexed: 11/11/2022]
Abstract
Purpose. This study aims to evaluate the performance of a commercial 1.5 T MR-Linac by analyzing its patient-specific quality assurance (QA) data collected during one full year of clinical operation.Methods and Materials. The patient-specific QA system consisted of offline delivery QA (DQA) and online calculation-based QA. Offline DQA was based on ArcCHECK-MR combined with an ionization chamber. Online QA was performed using RadCalc that calculated and compared the point dose calculation with the treatment planning system (TPS). A total of 24 patients with 189 treatment fractions were enrolled in this study. Gamma analysis was performed and the threshold that encompassed 95% of QA results (T95) was reported. The plan complexity metric was calculated for each plan and compared with the dose measurements to determine whether any correlation existed.Results. All point dose measurements were within 5% deviation. The mean gamma passing rates of the group data were found to be 96.8 ± 4.0% and 99.6 ± 0.7% with criteria of 2%/2mm and 3%/3mm, respectively. T95 of 87.4% and 98.2% was reported for the overall group with the two passing criteria, respectively. No statistically significant difference was found between adaptive treatments with adapt-to-position (ATP) and adapt-to-shape (ATS), whilst the category of pelvis data showed a better passing rate than other sites. Online QA gave a mean deviation of 0.2 ± 2.2%. The plan complexity metric was positively correlated with the mean dose difference whilst the complexity of the ATS cohort had larger variations than the ATP cohort.Conclusions. A patient-specific QA system based on ArcCHECK-MR, solid phantom and ionization chamber has been well established and implemented for validation of treatment delivery of a 1.5 T MR-Linac. Our QA data obtained over one year confirms that good agreement between TPS calculation and treatment delivery was achieved.
Collapse
Affiliation(s)
- B Yang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - Y S Wong
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - W W Lam
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - H Geng
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C Y Huang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - K K Tang
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - W K Law
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - C C Ho
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - P H Nam
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - K Y Cheung
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| | - S K Yu
- Medical Physics and Research Department, Hong Kong Sanatorium & Hospital, 2 Village Road, Happy Valley, Hong Kong
| |
Collapse
|
35
|
Wu JK, Chen SH, Hsu FM, Liao SH, Wang YJ. Design of a motion simulation system to assist respiratory gating for radiation therapy. Med Dosim 2021; 46:360-363. [PMID: 33903006 DOI: 10.1016/j.meddos.2021.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/21/2021] [Accepted: 03/22/2021] [Indexed: 11/15/2022]
Abstract
Stereotactic ablative radiotherapy (SABR) aims to deliver high doses of radiation to kill cancer cells and shrink tumors in less than or equal to 6 fractions. However, organ motion during treatment is a challenging issue for this kind of technique. We develop a control system via Bluetooth technology to simulate and correct body motion during SABR. METHODS Radiation doses were analyzed, and the radiation damage protection capability was checked by external beam therapy 3 (EBT3) films irradiated by a linear accelerator. A wireless signal test was also performed. A validation was performed with 8 previously treated patient respiratory pattern records and 8 healthy volunteers. RESULTS The homemade simulation system consisted of 2 linear actuators, one movable stage with a maximal moving distance of 6.5 cm × 12.5 cm × 5 cm to simulate the respiratory pattern of 8 patients precisely with a median error of 0.36 mm and a maximal motion difference of 1.17 mm, and 3.17 and chipset transited signals to display them as a waveform. From the test with 8 volunteers, the chip could detect deep respiratory movement up to 3 cm. The effect of the chip on a radiation dose of 400 monitor units (MUs) by 6 MV photons and 200 MUs by 10 MV photons showed high penetration rates of 98.8% and 98.6%, respectively. CONCLUSIONS We invented a tubeless and wireless respiratory gating detection chip. The chip has minimal interference with the treatment angles, good noise immunity and the capability to easily penetrate a variety of materials. The simulation system consisting of linear actuators also successfully simulates the respiratory pattern of real patients.
Collapse
Affiliation(s)
- Jian-Kuen Wu
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Han Chen
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan
| | - Feng-Ming Hsu
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shu-Hsien Liao
- Institute of Electro-Optical Science and Technology, National Taiwan Normal University, Taipei, Taiwan
| | - Yu-Jen Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan; Department of Radiation Oncology, Fu Jen Catholic University Hospital, New Taipei City, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
36
|
Stankovic U, Ploeger LS, Sonke JJ. Improving linac integrated cone beam computed tomography image quality using tube current modulation. Med Phys 2021; 48:1739-1749. [PMID: 33525051 DOI: 10.1002/mp.14746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Linac integrated cone beam CT (CBCT) scanners have become widespread tool for image guidance in radiotherapy. The current implementation uses constant imaging fluence across all the projection angles, which leads to anisotropic noise properties and suboptimal image quality for noncircular symmetric objects. Tube current modulation (TCM) is widely used in conventional CT. The purpose of this work was to implement TCM on a linac integrated CBCT scanner and evaluate its impact on image quality under varying scatter conditions and scatter correction strategies. METHODS We have implemented TCM on a nonclinical Elekta Versa HD linear accelerator with enhanced x-ray generator functionality including pulse width modulation. The pulse width was modulated using two Arduino programmable microcontrollers: one placed on the kV arm to measure the projection angle and the other connected to the kV generator control board to vary x-ray pulse width as function of gantry angle and precalculated transmission. An in-house developed phantom with a ratio of the left-right to anterior-posterior path length of 1.85:1 was scanned. Image quality was determined using the anisotropicity of the 2D noise power spectra (NPS) in the transverse plane and the contrast-to-noise ratio (CNR). In addition, to determine the impact of scatter on the applicability of the TCM method we have modified the generated scatter using three different collimators in the cranio-caudal direction as well as with and without an antiscatter grid (ASG). RESULTS Application of the TCM led to 30-78% reduction of the angular anisotropicity of the NPS in the transverse plane. The amount of reduction depended on the scatter conditions, with lower values corresponding to higher scatter conditions. The same was true for the CNR: when scatter contribution was low (presence of an ASG or very aggressive collimation) the CNR was improved by about 30%, while in high scatter conditions the CNR was improved by about 12%. CONCLUSIONS TCM has the potential to improve CBCT image quality, but this depends on the amount of detected x-ray scatter.
Collapse
Affiliation(s)
- Uros Stankovic
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, 1066CX, The Netherlands
| | - Lennert S Ploeger
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, 1066CX, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, 1066CX, The Netherlands
| |
Collapse
|
37
|
Dohm A, Sanchez J, Stotsky-Himelfarb E, Willingham FF, Hoffe S. Strategies to Minimize Late Effects From Pelvic Radiotherapy. Am Soc Clin Oncol Educ Book 2021; 41:158-168. [PMID: 34010045 DOI: 10.1200/edbk_320999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the past 30 years, radiation treatment techniques have significantly improved, from conventional external-beam radiation therapy, to three-dimensional conformal radiation therapy, to current intensity-modulated radiation therapy, benefiting patients who undergo treatment of pelvic malignancies. Modern treatment options also include proton beam irradiation as well as low and high dose rate brachytherapy. Although the acute adverse effects of these modalities are well documented in clinical trials, less well known are the true incidence and optimal management of those late adverse effects that can occur months to years later. In a population of survivors of cancer that is steadily increasing, with many such patients receiving radiotherapy at some time during their disease course, these late effects can become a considerable management and quality-of-life issue. This review will examine the range of late toxicities that can occur from pelvic radiotherapy and explore strategies to prevent and mitigate them.
Collapse
|
38
|
Delpon G, Lazaro D, de Crevoisier R. [Management of image guidance doses delivered during radiotherapy]. Cancer Radiother 2021; 25:790-794. [PMID: 33390319 DOI: 10.1016/j.canrad.2020.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Abstract
Image-guided radiotherapy (IGRT) has become a standard irradiation technique to improve the clinical outcome of patients in terms of toxicity and local control due to better targeting of radiation during the irradiation fraction. Positioning imaging systems, whether embedded or not, such as kV for 2×2D acquisitions and especially kVCBCT for 3D acquisitions are however irradiating in a large volume including the target volume but also healthy tissue, with a theoretical risk of increased toxicity and second cancer. It therefore appears very important both to optimize the absorbed dose due to IGRT practice but also to report it, especially in case of kVCBCT. The AAPM report published in 2018 (« Image guidance doses delivered during radiotherapy: Quantification, management, and reduction ») proposes a management of image guidance doses delivered during radiotherapy. This report is the basis of this focus article that aims at giving orders of magnitude and proposing a management of image guidance doses delivered during radiotherapy in clinical practice. The dose delivered per kVCBCT is about 0.5 to 2 cGy at isocenter according to treatment site. As long as the calculation algorithms are not available in the treatment planning systems, it seems appropriate to use at least the published dose orders of magnitude. This estimate should ultimately allow the clinician to decide on the therapeutic strategy in the event of accumulation of positioning imaging sessions.
Collapse
Affiliation(s)
- G Delpon
- Service de physique médicale, institut de cancérologie de l'Ouest, boulevard Jacques-Monod, 44805 Nantes Saint-Herblain, France.
| | - D Lazaro
- Laboratoire modélisation et simulation des systèmes, CEA-LIST, Saclay, France
| | - R de Crevoisier
- Service de radiothérapie, Centre Eugène Marquis, Rennes, France
| |
Collapse
|
39
|
Darvish-Molla S, Spurway A, Sattarivand M. Comprehensive characterization of ExacTrac stereoscopic image guidance system using Monte Carlo and Spektr simulations. Phys Med Biol 2020; 65:245029. [PMID: 32392546 DOI: 10.1088/1361-6560/ab91d8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The purpose of this work is to develop accurate computational methods to comprehensively characterize and model the clinical ExacTrac imaging system, which is used as an image guidance system for stereotactic treatment applications. The Spektr toolkit was utilized to simulate the spectral and imaging characterization of the system. Since Spektr only simulates the primary beam (ignoring scatter), a full model of ExacTrac was also developed in Monte Carlo (MC) to characterize the imaging system. To ensure proper performance of both simulation models, Spektr and MC data were compared to the measured spectral and half value layers (HVLs) values. To validate the simulation results, x-ray spectra of the ExacTrac system were measured for various tube potentials using a CdTe spectrometer with multiple added narrow collimators. The raw spectra were calibrated using a 57Co source and corrected for the escape peaks and detector efficiency. HVLs in mm of Al for various energies were measured using a calibrated RaySafe detector. Spektr and MC HVLs were calculated and compared to the measured values. The patient surface dose was calculated for different clinical imaging protocols from the measured air kerma and HVL values following the TG-61 methodology. The x-ray focal spot was measured by slanted edge technique using gafchromic films. ExacTrac imaging system beam profiles were simulated for various energies by MC simulation and the results were benchmarked by experimentally acquired beam profiles using gafchromic films. The effect of 6D IGRT treatment couch on beam hardening, dynamic range of the flat panel detector and scatter effect were determined using both Spektr simulation and experimental measurements. The measured and simulated spectra (of both MC and Spektr) for various kVps were compared and agreed within acceptable error. As another validation, the measured HVLs agreed with the Spektr and MC simulated HVLs on average within 1.0% for all kVps. The maximum and minimum patient surface doses were found to be 1.06 mGy for shoulder (high) and 0.051 mGy for cranial (low) imaging protocols, respectively. The MC simulated beam profiles were well matched with experimental results and replicated the penumbral slopes, the heel effect, and out-of-field regions. Dynamic range of detector (in terms of air kerma at detector surface) was found to be in the range of [6.1 × 10-6, 5.3 × 10-3] mGy. Accurate MC and Spektr models of the ExacTrac image guidance system were successfully developed and benchmarked via experimental validation. While patient surface dose for available imaging protocols were reported in this study, the established MC model may be used to obtain 3D imaging dose distribution for real patient geometries.
Collapse
Affiliation(s)
- Sahar Darvish-Molla
- Department of Medical Physics, Juravinski Cancer Centre at Hamilton Health Sciences, Hamilton, ON, Canada. Author to whom any correspondence should be addressed
| | | | | |
Collapse
|
40
|
Iramina H, Nakamura M, Miyabe Y, Mukumoto N, Ono T, Hirashima H, Mizowaki T. Quantification and correction of the scattered X-rays from a megavoltage photon beam to a linac-mounted kilovoltage imaging subsystem. BJR Open 2020; 2:20190048. [PMID: 33324865 PMCID: PMC7731796 DOI: 10.1259/bjro.20190048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 01/14/2023] Open
Abstract
Objective To quantify and correct megavoltage (MV) scattered X-rays (MV-scatter) on an image acquired using a linac-mounted kilovoltage (kV) imaging subsystem. Methods and materials A linac-mounted flat-panel detector (FPD) was used to acquire an image containing MV-scatter by activating the FPD only during MV beam irradiation. 6-, 10-, and 15 MV with a flattening-filter (FF; 6X-FF, 10X-FF, 15X-FF), and 6- and 10 MV without an FF (6X-FFF, 10X-FFF) were used. The maps were acquired by changing one of the irradiation parameters while the others remained fixed. The mean pixel values of the MV-scatter were normalized to the 6X-FF reference condition (MV-scatter value). An MV-scatter database was constructed using these values. An MV-scatter correction experiment with one full arc image acquisition and two square field sizes (FSs) was conducted. Measurement- and estimation-based corrections were performed using the database. The image contrast was calculated at each angle. Results The MV-scatter increased with a larger FS and dose rate. The MV-scatter value factor varied substantially depending on the FPD position or collimator rotation. The median relative error ranges of the contrast for the image without, and with the measurement- and estimation-based correction were -10.9 to -2.9, and -1.5 to 4.8 and -7.4 to 2.6, respectively, for an FS of 10.0 × 10.0 cm2. Conclusions The MV-scatter was strongly dependent on the FS, dose rate, and FPD position. The MV-scatter correction improved the image contrast. Advances in knowledge The MV-scatters on the TrueBeam linac kV imaging subsystem were quantified with various MV beam parameters, and strongly depended on the fieldsize, dose rate, and flat panel detector position. The MV-scatter correction using the constructed database improved the image quality.
Collapse
Affiliation(s)
- Hiraku Iramina
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | | - Yuki Miyabe
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Tomohiro Ono
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Hideaki Hirashima
- Department of Radiation Oncology and Image-applied Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan
| | | |
Collapse
|
41
|
Anastasi G, Bertholet J, Poulsen P, Roggen T, Garibaldi C, Tilly N, Booth JT, Oelfke U, Heijmen B, Aznar MC. Patterns of practice for adaptive and real-time radiation therapy (POP-ART RT) part I: Intra-fraction breathing motion management. Radiother Oncol 2020; 153:79-87. [PMID: 32585236 PMCID: PMC7758783 DOI: 10.1016/j.radonc.2020.06.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE The POP-ART RT study aims to determine to what extent and how intra-fractional real-time respiratory motion management (RRMM) and plan adaptation for inter-fractional anatomical changes (ART), are used in clinical practice and to understand barriers to implementation. Here we report on part I: RRMM. MATERIAL AND METHODS A questionnaire was distributed worldwide to assess current clinical practice, wishes for expansion or new implementation and barriers to implementation. RRMM was defined as inspiration/expiration gating in free-breathing or breath-hold, or tracking where the target and the beam are continuously realigned. RESULTS The questionnaire was completed by 200 centres from 41 countries. RRMM was used by 68% of respondents ('users') for a median (range) of 2 (1-6) tumour sites. Eighty-one percent of users applied inspiration breath-hold in at least one tumour site (breast: 96%). External marker was used to guide RRMM by 61% of users. KV/MV imaging was frequently used for liver and pancreas (with fiducials) and for lung (with or without fiducials). Tracking was mainly performed on robotic linacs with hybrid internal-external monitoring. For breast and lung, approximately 75% of respondents used or wished to implement RRMM, which was lower for liver (44%) and pancreas (27%). Seventy-one percent of respondents wished to implement RRMM for a new tumour site. Main barriers were human/financial resources and capacity on the machine. CONCLUSION Sixty-eight percent of respondents used RRMM and 71% wished to implement RRMM for a new tumour site. The main barriers to implementation were human/financial resources and capacity on treatment machines.
Collapse
Affiliation(s)
- Gail Anastasi
- St. Luke's Cancer Centre, Royal Surrey Foundation Trust, Radiotherapy Physics, Guildford, United Kingdom.
| | - Jenny Bertholet
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Joint Department of Physics, London, United Kingdom; Division of Medical Radiation Physics, Department of Radiation Oncology, Inselspital, Bern University Hospital, Switzerland
| | - Per Poulsen
- Aarhus University Hospital, Department of Oncology and Danish Center for Particle Therapy, Aarhus, Denmark
| | - Toon Roggen
- Varian Medical Systems Imaging Laboratory GmbH, Applied Research, Dättwil AG, Switzerland
| | - Cristina Garibaldi
- European Institute of Oncology IRCCS, IEO-Unit of Radiation Research, Milan, Italy
| | - Nina Tilly
- Elekta Instruments AB, Stockholm, Sweden; Medical Radiation Physics, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Jeremy T Booth
- Royal North Shore Hospital, Northern Sydney Cancer Centre, Australia
| | - Uwe Oelfke
- The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Joint Department of Physics, London, United Kingdom
| | - Ben Heijmen
- Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam, Netherlands
| | - Marianne C Aznar
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom; Nuffield Department of Population Health, University of Oxford, United Kingdom
| |
Collapse
|
42
|
Abstract
AIM/OBJECTIVES/BACKGROUND The American College of Radiology (ACR) and the American Society for Radiation Oncology (ASTRO) have jointly developed the following practice parameter for image-guided radiation therapy (IGRT). IGRT is radiation therapy that employs imaging to maximize accuracy and precision throughout the entire process of treatment delivery with the goal of optimizing accuracy and reliability of radiation therapy to the target, while minimizing dose to normal tissues. METHODS The ACR-ASTRO Practice Parameter for IGRT was revised according to the process described on the ACR website ("The Process for Developing ACR Practice Parameters and Technical Standards," www.acr.org/ClinicalResources/Practice-Parametersand-Technical-Standards) by the Committee on Practice Parameters of the ACR Commission on Radiation Oncology in collaboration with the ASTRO. Both societies then reviewed and approved the document. RESULTS This practice parameter is developed to serve as a tool in the appropriate application of IGRT in the care of patients with conditions where radiation therapy is indicated. It addresses clinical implementation of IGRT including personnel qualifications, quality assurance standards, indications, and suggested documentation. CONCLUSIONS This practice parameter is a tool to guide clinical use of IGRT and does not make recommendations on site-specific IGRT directives. It focuses on the best practices and principles to consider when using IGRT effectively, especially with the significant increase in imaging data that is now available with IGRT. The clinical benefit and medical necessity of the imaging modality and frequency of IGRT should be assessed for each patient.
Collapse
|
43
|
Image-guided Radiotherapy to Manage Respiratory Motion: Lung and Liver. Clin Oncol (R Coll Radiol) 2020; 32:792-804. [PMID: 33036840 DOI: 10.1016/j.clon.2020.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/26/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022]
Abstract
Organ motion as a result of respiratory and cardiac motion poses significant challenges for the accurate delivery of radiotherapy to both the thorax and the upper abdomen. Modern imaging techniques during radiotherapy simulation and delivery now permit better quantification of organ motion, which in turn reduces tumour and organ at risk position uncertainty. These imaging advances, coupled with respiratory correlated radiotherapy delivery techniques, have led to the development of a range of approaches to manage respiratory motion. This review summarises the key strategies of image-guided respiratory motion management with a focus on lung and liver radiotherapy.
Collapse
|
44
|
Zhang W, Oraiqat I, Lei H, Carson PL, EI Naqa I, Wang X. Dual-Modality X-Ray-Induced Radiation Acoustic and Ultrasound Imaging for Real-Time Monitoring of Radiotherapy. BME FRONTIERS 2020; 2020:9853609. [PMID: 37849969 PMCID: PMC10521688 DOI: 10.34133/2020/9853609] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/29/2020] [Indexed: 10/19/2023] Open
Abstract
Objective. The goal is to increase the precision of radiation delivery during radiotherapy by tracking the movements of the tumor and other surrounding normal tissues due to respiratory and other body motions. Introduction. This work presents the recent advancement of X-ray-induced radiation acoustic imaging (xRAI) technology and the evaluation of its feasibility for real-time monitoring of geometric and morphological misalignments of the X-ray field with respect to the target tissue by combining xRAI with established ultrasound (US) imaging, thereby improving radiotherapy tumor eradication and limiting treatment side effects. Methods. An integrated xRAI and B-mode US dual-modality system was established based on a clinic-ready research US platform. The performance of this dual-modality imaging system was evaluated via experiments on phantoms and ex vivo and in vivo rabbit liver models. Results. This system can alternatively switch between the xRAI and the US modes, with spatial resolutions of 1.1 mm and 0.37 mm, respectively. 300 times signal averaging was required for xRAI to reach a satisfactory signal-to-noise ratio, and a frame rate of 1.1 Hz was achieved with a clinical linear accelerator. The US imaging frame rate was 22 Hz, which is sufficient for real-time monitoring of the displacement of the target due to internal body motion. Conclusion. Our developed xRAI, in combination with US imaging, allows for mapping of the dose deposition in biological samples in vivo, in real-time, during radiotherapy. Impact Statement. The US-based image-guided radiotherapy system presented in this work holds great potential for personalized cancer treatment and better outcomes.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Biomedical Engineering, University of Michigan, USA
| | - Ibrahim Oraiqat
- Department of Radiation Oncology, University of Michigan, USA
| | - Hao Lei
- Department of Mechanical Engineering, University of Michigan, USA
| | - Paul L. Carson
- Department of Biomedical Engineering, University of Michigan, USA
- Department of Radiology, University of Michigan, USA
| | - Issam EI Naqa
- Department of Radiation Oncology, University of Michigan, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, USA
- Department of Radiology, University of Michigan, USA
| |
Collapse
|
45
|
Han MC, Hong CS, Chang KH, Kim J, Han SC, Kim DW, Park K, Kim MJ, Shin HB, Lee SH, Kim JS. TomoMQA: Automated analysis program for MVCT quality assurance of helical tomotherapy. J Appl Clin Med Phys 2020; 21:151-157. [PMID: 32268003 PMCID: PMC7324692 DOI: 10.1002/acm2.12875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 11/27/2022] Open
Abstract
Purpose In this study, we developed a simple but useful computer program, called TomoMQA, to offer an automated quality assurance for mega‐voltage computed tomography (MVCT) images generated via helical tomotherapy. Methods TomoMQA is written in MATLAB and contains three steps for analysis: (a) open the DICOM dataset folder generated via helical tomotherapy (i.e., TomoTherapy® and Radixact™), (b) call the baseline data for the consistency test and click the “Analysis” button (or click the “Analysis” button without the baseline data and export the results as the baseline data), and (c) print an analyzed report. The overall procedure for the QA analysis included in TomoMQA is referred from the TG‐148 recommendation. Here, the tolerances for MVCT QA were implemented from TG‐148 recommended values as default; however, it can be modified by a user manually. Results To test the performance of the TomoMQA program, 15 MVCTs were prepared from five helical tomotherapy machines (1 of TomoTherapy® HD, 2 of TomoTherapy® HDA, and 2 of Radixact™) in 3 months and the QA procedures were performed using TomoMQA. From our results, the evaluation revealed that the developed program can successfully perform the MVCT QA analysis irrespective of the type of helical tomotherapy equipment. Conclusion We successfully developed a new automated analysis program for MVCT QA of a helical tomotherapy platform, called TomoMQA. The developed program will be made freely downloadable from the TomoMQA‐dedicated website.
Collapse
Affiliation(s)
- Min Cheol Han
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Chae-Seon Hong
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyung Hwan Chang
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Jihun Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Su Chul Han
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Wook Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Kwangwoo Park
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Joo Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Seoul, Korea.,Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Han Back Shin
- Department of Radiation Oncology, Yonsei Cancer Center, Seoul, Korea
| | - Se Hyung Lee
- Department of Nuclear Engineering, Hanyang University, Seoul, Korea.,Department of Radiation Oncology, Bundang Jesaeng General Hospital, Gyeonggi-do, Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
46
|
Lim SN, Ahunbay EE, Nasief H, Zheng C, Lawton C, Li XA. Indications of Online Adaptive Replanning Based On Organ Deformation. Pract Radiat Oncol 2020; 10:e95-e102. [PMID: 31446149 DOI: 10.1016/j.prro.2019.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Although vital to account for interfractional variations during radiation therapy, online adaptive replanning (OLAR) is time-consuming and labor-intensive compared with the repositioning method. Repositioning is enough for minimal interfractional deformations. Therefore, determining indications for OLAR is desirable. We introduce a method to rapidly determine the need for OLAR by analyzing the Jacobian determinant histogram (JDH) obtained from deformable image registration between reference (planning) and daily images. METHODS AND MATERIALS The proposed method was developed and tested based on daily computed tomography (CT) scans acquired during image guided radiation therapy for prostate cancer using an in-room CT scanner. Deformable image registration between daily and reference CT scans was performed. JDHs were extracted from the prostate and a uniform surrounding 10-mm expansion. A classification tree was trained to determine JDH metrics to predict the need for OLAR for a daily CT set. Sixty daily CT scans from 12 randomly selected prostate cases were used as the training data set, with dosimetric plans for both OLAR and repositioning used to determine their class. The resulting classification tree was tested using an independent data set of 45 daily CT scans from 9 other patients with 5 CT scans each. RESULTS Of a total of 27 JDH metrics tested, 5 were identified predicted whether OLAR was substantially superior to repositioning for a given fraction. A decision tree was constructed using the obtained metrics from the training set. This tree correctly identified all cases in the test set where benefits of OLAR were obvious. CONCLUSIONS A decision tree based on JDH metrics to quickly determine the necessity of online replanning based on the image of the day without segmentation was determined using a machine learning process. The process can be automated and completed within a minute, allowing users to quickly decide which fractions require OLAR.
Collapse
Affiliation(s)
- Sara N Lim
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ergun E Ahunbay
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Haidy Nasief
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cheng Zheng
- Department of Biostatistics, University of Wisconsin Milwaukee, Milwaukee, Wisconsin
| | - Colleen Lawton
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
47
|
Juste B, Morató S, Miró R, Prieto AI, Verdú G, Genoves R, Gimeno J. Development of a reconstruction methodology for the X-Ray spectrum of a medical LinAc positioning flat panel. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.04.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Schröder L, Stankovic U, Sonke J. Technical Note: Long‐term stability of Hounsfield unit calibration for cone beam computed tomography. Med Phys 2020; 47:1640-1644. [DOI: 10.1002/mp.14015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Lukas Schröder
- Department of Radiation Oncology The Netherlands Cancer Institute Amsterdam 1066CXThe Netherlands
| | - Uros Stankovic
- Department of Radiation Oncology The Netherlands Cancer Institute Amsterdam 1066CXThe Netherlands
| | - Jan‐Jakob Sonke
- Department of Radiation Oncology The Netherlands Cancer Institute Amsterdam 1066CXThe Netherlands
| |
Collapse
|
49
|
Peng J, Li H, Laugeman E, Mazur T, Lam D, Li T, Sun B, Hu W, Dong L, Hugo GD, Mutic S, Cai B. Long-term Inter-protocol kV CBCT image quality assessment for a ring-gantry linac via automated QA approach. Biomed Phys Eng Express 2020; 6:015025. [PMID: 33438613 DOI: 10.1088/2057-1976/ab693a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We develop a fully automated QA process to compare the image quality of all kV CBCT protocols on a Halcyon linac with ring gantry design, and evaluate image quality stability over a 10-month period. A total of 19 imaging scan and reconstruction protocols were characterized with measurement on a newly released QUART phantom. A set of image analysis algorithms were developed and integrated into an automated analysis suite to derive key image quality metrics, including HU value accuracy on density inserts, HU uniformity using the background plate, high contrast resolution with the modulation transfer function (MTF) from the edge profiles, low contrast resolution using the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), slice thickness with the air gap modules, and geometric accuracy with the diameter of the phantom. Image quality data over 10 months was tracked and analyzed to evaluate the stability of the Halcyon kV imaging system. The HU accuracy over all 19 protocols is within tolerance (±50HU). The maximum uniformity deviation is 12.2 HU. The SNR and CNR, depending on the protocol selected, range from 18.5-911.9 and 1.9-102.8, respectively. A much-improved SNR and CNR were observed for iterative reconstruction (iCBCT) modes and protocols designed for large subjects over low dose and fast scanning modes. The Head and Image Gently protocols have the greatest high contrast resolution with MTF10% over 1 lp/mm and MTF50% over 0.6 lp/mm. The iCBCT mode slightly improved the MTF10% and MTF50% compared to the Feldkamp-Davis-Kress approach. The slice thickness (maximum error of 0.31 mm) and geometry metrics (maximum error of 0.7 mm) are all within tolerance (±0.5 mm for slice thickness and ±1 mm for geometry metrics). The long-term study over 10-month showed no significant drift for all key image quality metrics, which indicated the kV CBCT image quality is stable over time.
Collapse
Affiliation(s)
- Jiayuan Peng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China. Department of Radiation Oncology, Washington University, St. Louis, MO 63110 United States of America
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Modern radiation therapy treatment planning and delivery is a complex process that relies on advanced imaging and computing technology as well as expertise from the medical team. The process begins with simulation imaging, in which three-dimensional computed tomography images (or magnetic resonance images in some cases) are used to characterize the patient anatomy. From there, the radiation oncologist delineates the relevant target/tumor volumes and normal tissue and communicates the goals for treatment planning. The planning process attempts to generate a radiation therapy treatment plan that will deliver a therapeutic dose of radiation to the tumor while sparing nearby normal tissue.
Collapse
|