1
|
Tesson M, Stevenson K, Karim SA, Nixon C, Chalmers AJ, Sansom OJ, O'Neill E, Jones K, Morton JP. Targeted irradiation in an autochthonous mouse model of pancreatic cancer. Dis Model Mech 2024; 17:dmm050463. [PMID: 38421046 PMCID: PMC10958199 DOI: 10.1242/dmm.050463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
The value of radiotherapy in the treatment of pancreatic cancer has been the subject of much debate but limited preclinical research. We hypothesise that the poor translation of radiation research into clinical trials of radiotherapy in pancreatic cancer is due, in part, to inadequate preclinical study models. Here, we developed and refined methods for targeted irradiation in autochthonous mouse models of pancreatic cancer, using a small animal radiotherapy research platform. We tested and optimised strategies for administration of contrast agents, iohexol and the liver imaging agent Fenestra LC, to enable the use of computed tomography imaging in tumour localisation. We demonstrate accurate tumour targeting, negligible off-target effects and therapeutic efficacy, depending on dose, number of fractions and tumour size, and provide a proof of concept that precise radiation can be delivered effectively to mouse pancreatic tumours with a clinically relevant microenvironment. This advance will allow investigation of the radiation response in murine pancreatic cancer, discovery of mechanisms and biomarkers of radiosensitivity or resistance, and development of radiosensitising strategies to inform clinical trials for precision radiotherapy in this disease.
Collapse
Affiliation(s)
| | - Katrina Stevenson
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | | | - Colin Nixon
- CRUK Scotland Institute, Glasgow, G61 1BD, UK
| | | | - Owen J. Sansom
- CRUK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Keaton Jones
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jennifer P. Morton
- CRUK Scotland Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| |
Collapse
|
2
|
Coppola A, Grasso D, Fontana F, Piacentino F, Minici R, Laganà D, Ierardi AM, Carrafiello G, D’Angelo F, Carcano G, Venturini M. Innovative Experimental Ultrasound and US-Related Techniques Using the Murine Model in Pancreatic Ductal Adenocarcinoma: A Systematic Review. J Clin Med 2023; 12:7677. [PMID: 38137745 PMCID: PMC10743777 DOI: 10.3390/jcm12247677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a cancer with one of the highest mortality rates in the world. Several studies have been conductedusing preclinical experiments in mice to find new therapeutic strategies. Experimental ultrasound, in expert hands, is a safe, multifaceted, and relatively not-expensive device that helps researchers in several ways. In this systematic review, we propose a summary of the applications of ultrasonography in a preclinical mouse model of PDAC. Eighty-eight studies met our inclusion criteria. The included studies could be divided into seven main topics: ultrasound in pancreatic cancer diagnosis and progression (n: 21); dynamic contrast-enhanced ultrasound (DCE-US) (n: 5); microbubble ultra-sound-mediated drug delivery; focused ultrasound (n: 23); sonodynamic therapy (SDT) (n: 7); harmonic motion elastography (HME) and shear wave elastography (SWE) (n: 6); ultrasound-guided procedures (n: 9). In six cases, the articles fit into two or more sections. In conclusion, ultrasound can be a really useful, eclectic, and ductile tool in different diagnostic areas, not only regarding diagnosis but also in therapy, pharmacological and interventional treatment, and follow-up. All these multiple possibilities of use certainly represent a good starting point for the effective and wide use of murine ultrasonography in the study and comprehensive evaluation of pancreatic cancer.
Collapse
Affiliation(s)
- Andrea Coppola
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Dario Grasso
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Federico Fontana
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Filippo Piacentino
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| | - Roberto Minici
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
| | - Domenico Laganà
- Radiology Unit, Dulbecco University Hospital, 88100 Catanzaro, Italy; (R.M.)
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Maria Ierardi
- Radiology Unit, IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - Fabio D’Angelo
- Department of Medicine and Surgery, Insubria University, 21100 Varese, Italy;
- Orthopedic Surgery Unit, ASST Sette Laghi, 21100 Varese, Italy
| | - Giulio Carcano
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
- Emergency and Transplant Surgery Department, ASST Sette Laghi, 21100 Varese, Italy
| | - Massimo Venturini
- Diagnostic and Interventional Radiology Unit, Circolo Hospital, ASST Sette Laghi, 21100 Varese, Italy (M.V.)
- Department of Medicine and Technological Innovation, Insubria University, 21100 Varese, Italy
| |
Collapse
|
3
|
Storey CM, Altai M, Bicak M, Veach DR, Lückerath K, Adrian G, McDevitt MR, Kalidindi T, Park JE, Herrmann K, Abou D, Zedan W, Peekhaus N, Klein RJ, Damoiseaux R, Larson SM, Lilja H, Thorek D, Ulmert D. Quantitative In Vivo Imaging of the Androgen Receptor Axis Reveals Degree of Prostate Cancer Radiotherapy Response. Mol Cancer Res 2023; 21:307-315. [PMID: 36608299 PMCID: PMC10355285 DOI: 10.1158/1541-7786.mcr-22-0736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Noninvasive biomarkers for androgen receptor (AR) pathway activation are urgently needed to better monitor patient response to prostate cancer therapies. AR is a critical driver and mediator of resistance of prostate cancer but currently available noninvasive prostate cancer biomarkers to monitor AR activity are discordant with downstream AR pathway activity. External beam radiotherapy (EBRT) remains a common treatment for all stages of prostate cancer, and DNA damage induced by EBRT upregulates AR pathway activity to promote therapeutic resistance. [89Zr]11B6-PET is a novel modality targeting prostate-specific protein human kallikrein 2 (hK2), which is a surrogate biomarker for AR activity. Here, we studied whether [89Zr]11B6-PET can accurately assess EBRT-induced AR activity.Genetic and human prostate cancer mouse models received EBRT (2-50 Gy) and treatment response was monitored by [89Zr]11B6-PET/CT. Radiotracer uptake and expression of AR and AR target genes was quantified in resected tissue.EBRT increased AR pathway activity and [89Zr]11B6 uptake in LNCaP-AR and 22RV1 tumors. EBRT increased prostate-specific [89Zr]11B6 uptake in prostate cancer-bearing mice (Hi-Myc x Pb_KLK2) with no significant changes in uptake in healthy (Pb_KLK2) mice, and this correlated with hK2 protein levels. IMPLICATIONS hK2 expression in prostate cancer tissue is a proxy of EBRT-induced AR activity that can noninvasively be detected using [89Zr]11B6-PET; further clinical evaluation of hK2-PET for monitoring response and development of resistance to EBRT in real time is warranted.
Collapse
Affiliation(s)
- Claire M Storey
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, USA
| | - Mohamed Altai
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Mesude Bicak
- Hasso Plattner Institute for Digital Health, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Darren R Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, USA
| | - Katharina Lückerath
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, DKTK, Essen, Germany
| | - Gabriel Adrian
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Michael R McDevitt
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, USA
| | - Teja Kalidindi
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, USA
| | - Julie E Park
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, DKTK, Essen, Germany
| | - Diane Abou
- Department of Radiology, Washington University School of Medicine, St. Louis, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, USA
| | - Wahed Zedan
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Norbert Peekhaus
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Robert J Klein
- Icahn Institute for Genomics and Multiscale Biology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Robert Damoiseaux
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, USA
- California NanoSystems Institute, UCLA, Los Angeles, USA
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center (MSKCC), New York, USA
- Department of Radiology, Weill Cornell Medical College, New York, USA
| | - Hans Lilja
- Genitourinary Oncology Service, Department of Medicine, MSKCC, New York, USA
- Urology Service, Department of Surgery, MSKCC, New York, USA
- Department of Laboratory Medicine, MSKCC, New York, USA
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Daniel Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, USA
| | - David Ulmert
- Department of Molecular & Medical Pharmacology, University of California Los Angeles (UCLA), Los Angeles, USA
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
- California NanoSystems Institute, UCLA, Los Angeles, USA
- Department of Urology, Institute of Urologic Oncology, UCLA, Los Angeles, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, USA
| |
Collapse
|
4
|
Kraynak J, Marciscano AE. Image-guided radiation therapy of tumors in preclinical models. Methods Cell Biol 2023; 180:1-13. [PMID: 37890924 DOI: 10.1016/bs.mcb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Image-guided radiation therapy (IGRT) platforms for preclinical research represent an important advance for radiation research. IGRT-based platforms more accurately model the delivery of therapeutic ionizing radiation as delivered in clinical practice which permits more translationally and clinically relevant radiation biology research. Fundamentally, IGRT allows for precise delivery of ionizing radiation in order to (1) ensure that the tumor and/or target of interest is adequately covered by the prescribed radiation dose, and (2) to minimize the radiation dose delivered to adjacent nontargeted or normal tissues. Here, we describe the techniques and outline a general workflow employed for IGRT in preclinical in vivo tumor models.
Collapse
Affiliation(s)
- Jeffrey Kraynak
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States.
| | - Ariel E Marciscano
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
5
|
Dobiasch S, Kampfer S, Steiger K, Schilling D, Fischer JC, Schmid TE, Weichert W, Wilkens JJ, Combs SE. Histopathological Tumor and Normal Tissue Responses after 3D-Planned Arc Radiotherapy in an Orthotopic Xenograft Mouse Model of Human Pancreatic Cancer. Cancers (Basel) 2021; 13:5656. [PMID: 34830813 PMCID: PMC8616260 DOI: 10.3390/cancers13225656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. Innovative treatment concepts may enhance oncological outcome. Clinically relevant tumor models are essential in developing new therapeutic strategies. In the present study, we used two human PDAC cell lines for an orthotopic xenograft mouse model and compared treatment characteristics between this in vivo tumor model and PDAC patients. Tumor-bearing mice received stereotactic high-precision irradiation using arc technique after 3D-treatment planning. Induction of DNA damage in tumors and organs at risk (OARs) was histopathologically analyzed by the DNA damage marker γH2AX and compared with results after unprecise whole-abdomen irradiation. Our mouse model and preclinical setup reflect the characteristics of PDAC patients and clinical RT. It was feasible to perform stereotactic high-precision RT after defining tumor and OARs by CT imaging. After stereotactic RT, a high rate of DNA damage was mainly observed in the tumor but not in OARs. The calculated dose distributions and the extent of the irradiation field correlate with histopathological staining and the clinical example. We established and validated 3D-planned stereotactic RT in an orthotopic PDAC mouse model, which reflects the human RT. The efficacy of the whole workflow of imaging, treatment planning, and high-precision RT was proven by longitudinal analysis showing a significant improved survival. Importantly, this model can be used to analyze tumor regression and therapy-related toxicity in one model and will allow drawing clinically relevant conclusions.
Collapse
Affiliation(s)
- Sophie Dobiasch
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 Munich, Germany;
| | - Severin Kampfer
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748 Garching, Germany
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich (TUM), Trogerstr. 18, 81675 Munich, Germany;
- Comparative Experimental Pathology, Technical University of Munich (TUM), Trogerstr. 18, 81675 Munich, Germany
| | - Daniela Schilling
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Julius C. Fischer
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
| | - Thomas E. Schmid
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Wilko Weichert
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 Munich, Germany;
- Institute of Pathology, Technical University of Munich (TUM), Trogerstr. 18, 81675 Munich, Germany;
| | - Jan J. Wilkens
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Physics Department, Technical University of Munich (TUM), James-Franck-Str. 1, 85748 Garching, Germany
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany; (S.K.); (D.S.); (J.C.F.); (T.E.S.); (J.J.W.); (S.E.C.)
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 Munich, Germany;
| |
Collapse
|
6
|
Fujiwara K, Saung MT, Jing H, Herbst B, Zarecki M, Muth S, Wu A, Bigelow E, Chen L, Li K, Jurcak N, Blair AB, Ding D, Wichroski M, Blum J, Cheadle N, Koenitzer J, Zheng L. Interrogating the immune-modulating roles of radiation therapy for a rational combination with immune-checkpoint inhibitors in treating pancreatic cancer. J Immunother Cancer 2021; 8:jitc-2019-000351. [PMID: 32675194 PMCID: PMC7368549 DOI: 10.1136/jitc-2019-000351] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Radiation therapy (RT) has the potential to enhance the efficacy of immunotherapy, such as checkpoint inhibitors, which has dramatically altered the landscape of treatments for many cancers, but not yet for pancreatic ductal adenocarcinoma (PDAC). Our prior studies demonstrated that PD ligand-1 and indoleamine 2,3-dioxygenase 1 (IDO1) were induced on tumor epithelia of PDACs following neoadjuvant therapy including RT, suggesting RT may prime PDAC for PD-1 blockade antibody (αPD-1) or IDO1 inhibitor (IDO1i) treatments. In this study, we investigated the antitumor efficacy of the combination therapies with radiation and PD-1 blockade or IDO1 inhibition or both. METHODS We developed and used a mouse syngeneic orthotopic model of PDAC suitable for hypofractionated RT experiments. RESULTS The combination therapy of αPD-1 and RT improved survival. The dual combination of RT/IDO1i and triple combination of RT/αPD-1/IDO1i did not improve survival compared with RT/αPD-1, although all of these combinations offer similar local tumor control. RT/αPD-1 appeared to result in the best systemic interferon-γ response compared with other treatment groups and the highest local expression of immune-activation genes, including Cd28 and Icos. CONCLUSION Our RT model allows examining the immune-modulatory effects of RT alone and in combination with immune-checkpoint inhibitors in the pancreas/local microenvironment. This study highlights the importance of choosing the appropriate immune-modulatory agents to be combined with RT to tip the balance toward antitumor adaptive immune responses.
Collapse
Affiliation(s)
- Kenji Fujiwara
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,JSPS Overseas Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan
| | - May Tun Saung
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hao Jing
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brian Herbst
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - MacKenzie Zarecki
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stephen Muth
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Annie Wu
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elaine Bigelow
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Linda Chen
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Hepato-Bilio-Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Keyu Li
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Hepato-Bilio-Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Neolle Jurcak
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alex B Blair
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ding Ding
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Jordan Blum
- Bristol Myers Squibb Co, Princeton, New Jersey, USA
| | | | | | - Lei Zheng
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Pereira PMR, Edwards KJ, Mandleywala K, Carter LM, Escorcia FE, Campesato LF, Cornejo M, Abma L, Mohsen AA, Iacobuzio-Donahue CA, Merghoub T, Lewis JS. iNOS Regulates the Therapeutic Response of Pancreatic Cancer Cells to Radiotherapy. Cancer Res 2020; 80:1681-1692. [PMID: 32086240 PMCID: PMC7165066 DOI: 10.1158/0008-5472.can-19-2991] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/30/2019] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly resistant to radiotherapy, chemotherapy, or a combination of these modalities, and surgery remains the only curative intervention for localized disease. Although cancer-associated fibroblasts (CAF) are abundant in PDAC tumors, the effects of radiotherapy on CAFs and the response of PDAC cells to radiotherapy are unknown. Using patient samples and orthotopic PDAC biological models, we showed that radiotherapy increased inducible nitric oxide synthase (iNOS) in the tumor tissues. Mechanistic in vitro studies showed that, although undetectable in radiotherapy-activated tumor cells, iNOS expression and nitric oxide (NO) secretion were significantly increased in CAFs secretome following radiotherapy. Culture of PDAC cells with conditioned media from radiotherapy-activated CAFs increased iNOS/NO signaling in tumor cells through NF-κB, which, in turn, elevated the release of inflammatory cytokines by the tumor cells. Increased NO after radiotherapy in PDAC contributed to an acidic microenvironment that was detectable using the radiolabeled pH (low) insertion peptide (pHLIP). In murine orthotopic PDAC models, pancreatic tumor growth was delayed when iNOS inhibition was combined with radiotherapy. These data show the important role that iNOS/NO signaling plays in the effectiveness of radiotherapy to treat PDAC tumors. SIGNIFICANCE: A radiolabeled pH-targeted peptide can be used as a PET imaging tool to assess therapy response within PDAC and blocking iNOS/NO signaling may improve radiotherapy outcomes.
Collapse
Affiliation(s)
- Patricia M R Pereira
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kimberly J Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Freddy E Escorcia
- Molecular Imaging Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Luis Felipe Campesato
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mike Cornejo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lolkje Abma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abu-Akeel Mohsen
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christine A Iacobuzio-Donahue
- The David M. Rubenstein Center for Pancreatic Cancer Research, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Medical College, New York, New York
- Department of Radiology, Weill Cornell Medical College, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
8
|
Kersemans V, Gilchrist S, Wallington S, Allen PD, Gomes AL, Dias GM, Cornelissen B, Kinchesh P, Smart SC. A Carbon-Fiber Sheet Resistor for MR-, CT-, SPECT-, and PET-Compatible Temperature Maintenance in Small Animals. Tomography 2019; 5:274-281. [PMID: 31245549 PMCID: PMC6588203 DOI: 10.18383/j.tom.2019.00008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A magnetic resonance (MR)-, computed tomography (CT)-, single-photon emission computed tomography (SPECT)-, and positron emission tomography (PET)-compatible carbon-fiber sheet resistor for temperature maintenance in small animals where space limitations prevent the use of circulating fluids was developed. A 250 Ω carbon-fiber sheet resistor was mounted to the underside of an imaging cradle. Alternating current, operating at 99 kHz, and with a power of 1-2 W, was applied to the resistor providing a cradle base temperature of ∼37°C. Temperature control was implemented with a proportional-integral-derivative controller, and temperature maintenance was demonstrated in 4 mice positioned in both MR and PET/SPECT/CT scanners. MR and CT compatibility were also shown, and multimodal MR-CT-PET-SPECT imaging of the mouse abdomen was performed in vivo. Core temperature was maintained at 35.5°C ± 0.2°C. No line-shape, frequency, or image distortions attributable to the current flow through the heater were observed on MR. Upon CT imaging, no heater-related artifacts were observed when carbon-fiber was used. Multimodal imaging was performed and images could be easily coregistered, displayed, analyzed, and presented. Carbon fiber sheet resistors powered with high-frequency alternating current allow homeothermic maintenance that is compatible with multimodal imaging. The heater is small, and it is easy to produce and integrate into multimodal imaging cradles.
Collapse
Affiliation(s)
- Veerle Kersemans
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Stuart Gilchrist
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Sheena Wallington
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Philip D Allen
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Ana L Gomes
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Gemma M Dias
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Bart Cornelissen
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Paul Kinchesh
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Sean C Smart
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Essential role of radiation therapy for the treatment of pancreatic cancer. Strahlenther Onkol 2017; 194:185-195. [DOI: 10.1007/s00066-017-1227-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023]
|
10
|
Hajj C, Russell J, Hart CP, Goodman KA, Lowery MA, Haimovitz-Friedman A, Deasy JO, Humm JL. A Combination of Radiation and the Hypoxia-Activated Prodrug Evofosfamide (TH-302) is Efficacious against a Human Orthotopic Pancreatic Tumor Model. Transl Oncol 2017; 10:760-765. [PMID: 28778024 PMCID: PMC5538966 DOI: 10.1016/j.tranon.2017.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 12/31/2022] Open
Abstract
This study was designed to investigate the effect of single-dose radiation therapy (RT) in combination with evofosfamide (TH-302), a hypoxia-activated prodrug, in a pre-clinical model of pancreatic cancer. AsPC1 tumors were implanted orthotopically in the pancreas of nude mice. Tumors were treated with 15 Gy of RT, using a 1 cm diameter field, and delivered as a continuous arc. Image-guidance to center the field on the tumor was based on CT imaging with intraperitoneal contrast. Evofosfamide (100 mg/kg, i.p.) was administered 3 hours before RT. Tumor volumes were measured using ultrasound, and regrowth curves were plotted. Tumor hypoxia and cell proliferation were measured using pimonidazole and the thymidine analog EdU, respectively. In vitro clonogenic assays were performed. Tumors were shown to contain substantial areas of hypoxia, as calculated by percent pimonidazole staining. Evofosfamide was active in these tumors, as demonstrated by a significant reduction in uptake of the thymidine analog EdU. This effect was visible in oxygenated tissue, consistent with the previously reported bystander effects of evofosfamide. RT produced significant regrowth delay, as did evofosfamide. The combination of both agents produced a growth delay that was at least equal to the sum of the two treatments given separately. The improvement in tumor response when evofosfamide is combined with RT supports the hypothesis that hypoxia is a cause of radioresistance in high dose RT for pancreatic cancer. Assessing the efficacy and safety of stereotactic radiation treatment and evofosfamide is warranted in patients with locally advanced pancreatic cancer.
Collapse
|
11
|
Kersemans V, Beech JS, Gilchrist S, Kinchesh P, Allen PD, Thompson J, Gomes AL, D’Costa Z, Bird L, Tullis IDC, Newman RG, Corroyer-Dulmont A, Falzone N, Azad A, Vallis KA, Sansom OJ, Muschel RJ, Vojnovic B, Hill MA, Fokas E, Smart SC. An efficient and robust MRI-guided radiotherapy planning approach for targeting abdominal organs and tumours in the mouse. PLoS One 2017; 12:e0176693. [PMID: 28453537 PMCID: PMC5409175 DOI: 10.1371/journal.pone.0176693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/16/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Preclinical CT-guided radiotherapy platforms are increasingly used but the CT images are characterized by poor soft tissue contrast. The aim of this study was to develop a robust and accurate method of MRI-guided radiotherapy (MR-IGRT) delivery to abdominal targets in the mouse. METHODS A multimodality cradle was developed for providing subject immobilisation and its performance was evaluated. Whilst CT was still used for dose calculations, target identification was based on MRI. Each step of the radiotherapy planning procedure was validated initially in vitro using BANG gel dosimeters. Subsequently, MR-IGRT of normal adrenal glands with a size-matched collimated beam was performed. Additionally, the SK-N-SH neuroblastoma xenograft model and the transgenic KPC model of pancreatic ductal adenocarcinoma were used to demonstrate the applicability of our methods for the accurate delivery of radiation to CT-invisible abdominal tumours. RESULTS The BANG gel phantoms demonstrated a targeting efficiency error of 0.56 ± 0.18 mm. The in vivo stability tests of body motion during MR-IGRT and the associated cradle transfer showed that the residual body movements are within this MR-IGRT targeting error. Accurate MR-IGRT of the normal adrenal glands with a size-matched collimated beam was confirmed by γH2AX staining. Regression in tumour volume was observed almost immediately post MR-IGRT in the neuroblastoma model, further demonstrating accuracy of x-ray delivery. Finally, MR-IGRT in the KPC model facilitated precise contouring and comparison of different treatment plans and radiotherapy dose distributions not only to the intra-abdominal tumour but also to the organs at risk. CONCLUSION This is, to our knowledge, the first study to demonstrate preclinical MR-IGRT in intra-abdominal organs. The proposed MR-IGRT method presents a state-of-the-art solution to enabling robust, accurate and efficient targeting of extracranial organs in the mouse and can operate with a sufficiently high throughput to allow fractionated treatments to be given.
Collapse
MESH Headings
- Abdomen/diagnostic imaging
- Abdomen/radiation effects
- Abdominal Neoplasms/diagnostic imaging
- Abdominal Neoplasms/radiotherapy
- Adrenal Glands/diagnostic imaging
- Adrenal Glands/radiation effects
- Animals
- Cell Line, Tumor
- Humans
- Magnetic Resonance Imaging/instrumentation
- Magnetic Resonance Imaging/methods
- Mice, Inbred BALB C
- Mice, Inbred CBA
- Mice, Inbred NOD
- Mice, Nude
- Mice, Transgenic
- Motion
- Multimodal Imaging/instrumentation
- Neoplasm Transplantation
- Phantoms, Imaging
- Radiometry/instrumentation
- Radiotherapy Dosage
- Radiotherapy Planning, Computer-Assisted/instrumentation
- Radiotherapy Planning, Computer-Assisted/methods
- Radiotherapy, Image-Guided/instrumentation
- Radiotherapy, Image-Guided/methods
- Tomography, X-Ray Computed/instrumentation
- Tomography, X-Ray Computed/methods
- Tumor Burden
Collapse
Affiliation(s)
- Veerle Kersemans
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - John S. Beech
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Stuart Gilchrist
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul Kinchesh
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip D. Allen
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - James Thompson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ana L. Gomes
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Zenobia D’Costa
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Luke Bird
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Iain D. C. Tullis
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Robert G. Newman
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Aurelien Corroyer-Dulmont
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nadia Falzone
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Abul Azad
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Katherine A. Vallis
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Owen J. Sansom
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Ruth J. Muschel
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Borivoj Vojnovic
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Mark A. Hill
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Emmanouil Fokas
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Department of Radiotherapy and Oncology, Goethe University Frankfurt, Frankfurt, German
- German Cancer Research Center (DKFZ), Heidelberg, Germany, German Cancer Consortium (DKTK) (Partner Site), Frankfurt, Germany
| | - Sean C. Smart
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|