1
|
Yang XX, Luo H, Zhang JJ, Ge H, Ge L. Clinical translation of ultra-high dose rate flash radiotherapy: Opportunities, challenges, and prospects. World J Radiol 2025; 17:105722. [PMID: 40309475 PMCID: PMC12038406 DOI: 10.4329/wjr.v17.i4.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/09/2025] [Accepted: 03/25/2025] [Indexed: 04/22/2025] Open
Abstract
Ultra-high dose rate flash radiotherapy (FLASH-RT) has attracted wide attention in the field of radiotherapy in recent years. For FLASH-RT, radiation is delivered at a very high dose rate [usually thousands of times compared with conventional radiotherapy (CONV-RT)] in an extremely short time. This novel irradiation technique shows a protective effect on normal tissues, also known as the flash effect. At the same time, FLASH-RT is comparable to CONV-RT in terms of tumor-killing efficacy. As basic research dedicates to uncover the mechanisms by which FLASH-RT reduces radiation-induced normal tissue damage, clinical trials of FLASH-RT have been gradually conducted worldwide. This article systematically reviews the evidence of the feasibility and safety of FLASH-RT in clinical practice and offers insights into the future translation of this technology in clinic.
Collapse
Affiliation(s)
- Xiang-Xiang Yang
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Hui Luo
- Department of Radiation Oncology, Henan Cancer Hospital, Zhengzhou 450003, Henan Province, China
| | - Jia-Jun Zhang
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Heng Ge
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Liang Ge
- Department of Medical Imaging, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
2
|
Baikalov A, Tho D, Liu K, Bartzsch S, Beddar S, Schüler E. Characterization of a Time-Resolved, Real-Time Scintillation Dosimetry System for Ultra-High Dose-Rate Radiation Therapy Applications. Int J Radiat Oncol Biol Phys 2025; 121:1372-1383. [PMID: 39615658 DOI: 10.1016/j.ijrobp.2024.11.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/23/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
PURPOSE Scintillation dosimetry has promising qualities for ultra-high-dose-rate (UHDR) radiation therapy (RT), but no system has shown compatibility with mean dose rates (DR¯) above 100 Gy/s and doses per pulse (Dp) exceeding 1.5 Gy typical of UHDR (FLASH)-RT. The aim of this study was to characterize a novel scintillation dosimetry system with the potential of accommodating UHDRs. METHODS AND MATERIALS We undertook a thorough dosimetric characterization of the system on an UHDR electron beamline. The system's response as a function of dose, DR¯, Dp, and the pulse dose-rate (DRp) was investigated, as was the system's dose sensitivity (signal per unit dose) as a function of dose history. The capabilities of the system for time-resolved dosimetric readout were also evaluated. RESULTS Within a tolerance of ±3%, the system exhibited dose linearity and was independent of DR¯ and Dp within the tested ranges of 1.8 to 1341 Gy/s and 0.005 to 7.68 Gy, respectively. A 6% reduction in the signal per unit dose was observed as DRp was increased from 8.9e4 to 1.8e6 Gy/s. The dose delivered per integration window of the continuously sampling photodetector had to remain between 0.028 and 11.56 Gy to preserve a stable signal response per unit dose. The system accurately measured Dp of individual pulses delivered at up to 120 Hz. The day-to-day variation of the signal per unit dose in a reference setup varied by up to ±13% but remained consistent (<±2%) within each treatment day and showed no signal loss as a function of dose history. CONCLUSIONS With daily calibrations and DRp-specific correction factors, the system reliably provides real-time, millisecond-resolved dosimetric measurements of pulsed conventional and UHDR beams from typical electron linacs, marking an important advancement in UHDR dosimetry and offering diverse applications to FLASH-RT and related fields.
Collapse
Affiliation(s)
- Alexander Baikalov
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center; Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Daline Tho
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center
| | - Kevin Liu
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stefan Bartzsch
- Department of Radiation Oncology, School of Medicine and Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany
| | - Sam Beddar
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Emil Schüler
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center; UTHealth Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
3
|
Effarah HH, Reutershan T, Seggebruch MWL, Algots M, Amador A, Baulch J, Drayson OGG, Hartemann FV, Hwang Y, Lagzda A, Raksi F, Limoli CL, Barty CPJ. Preparations for Ultra-High Dose Rate 25-90 MeV Electron Radiation Experiments with a Compact, High-Peak-Current, X-band Linear Accelerator. Radiat Res 2025; 203:223-235. [PMID: 40084756 DOI: 10.1667/rade-24-00120.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/05/2025] [Indexed: 03/16/2025]
Abstract
The Distributed Charge Compton Source (DCCS) developed by Lumitron Technologies, Inc. has produced a 25-MeV electron beam with 1.7-nC macrobunches at a 100-Hz repetition rate from a compact, high-gradient X-band (11.424 GHz) accelerator. The DCCS is currently being commissioned to produce 100-MeV-class electrons, well within the very high energy electron (VHEE) energy regime, with macrobunch charges of up to 25 nC at repetition rates up to 400 Hz. The DCCS is also designed to produce imaging X rays through Laser Compton scattering. This work aims to describe the preparations for the first dosimetry experimental campaign using this accelerator system at energies ranging from 25 MeV to 90 MeV through hardware development and Monte Carlo (TOPAS) simulation studies. A significant goal of these preparations is to configure the machine so that it can be used to both image with X rays and subsequently treat with VHEEs without movement of the animal model under study. At ultra-high dose rates, this X-ray image-guided electron source could be used to investigate dose-rate dependent differential sparing of normal and malignant biological tissue, known as the FLASH effect. An indium-tin-oxide-coated, 100-μm-thick diamond window was obtained and installed in a custom flange assembly to act as the electron/X-ray vacuum exit window. Simulations at 25 MeV suggest that a scattering foil and collimator can shape the output of the accelerator to produce a 12-mm-diameter, flat-field, circular beam with a 1.7-nC macrobunch charge. This corresponds to an entrance dose of 10 Gy in less than 100 ms. These initial results highly motivate an experimental campaign toward investigating VHEE FLASH using the DCCS at Lumitron Technologies, Inc.
Collapse
Affiliation(s)
- Haytham H Effarah
- Department of Physics and Astronomy, University of California, Irvine, Irvine, 92697 California
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Trevor Reutershan
- Department of Physics and Astronomy, University of California, Irvine, Irvine, 92697 California
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Michael W L Seggebruch
- Department of Physics and Astronomy, University of California, Irvine, Irvine, 92697 California
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Martin Algots
- Lumitron Technologies, Inc., Irvine, 92617 California
| | | | - Janet Baulch
- Department of Radiation Oncology, University of California, Irvine, Irvine, 92697 California
| | - Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, Irvine, 92697 California
| | | | - Yoonwoo Hwang
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Agnese Lagzda
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Ferenc Raksi
- Lumitron Technologies, Inc., Irvine, 92617 California
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Irvine, 92697 California
| | - Christopher P J Barty
- Department of Physics and Astronomy, University of California, Irvine, Irvine, 92697 California
- Lumitron Technologies, Inc., Irvine, 92617 California
| |
Collapse
|
4
|
DeFrancisco J, Kim S. A systematic review of electron FLASH dosimetry and beam control mechanisms utilized with modified non-clinical LINACs. J Appl Clin Med Phys 2025; 26:e70051. [PMID: 40108673 PMCID: PMC11969112 DOI: 10.1002/acm2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND FLASH has been shown to spare normal tissue toxicity while maintaining tumor control. However, existing irradiation platforms and dosimetry are not compatible. Consequently, an abundance of FLASH delivery devices and new dosimetry across all modalities has been created. Many review articles concluded that dosimetry is modality-dependent. Focusing on electrons, researchers have modified clinical LINACs to enable FLASH dose rates. Modified LINACs caused the development of unique control systems that have yet to be characterized. Improvement could be made when considering the organization of reviews. PURPOSE To systematically perform a literature survey on electron FLASH dosimetry and beam control mechanisms with modified LINACs, detail where articles originated, and organize the results. METHODS A literature survey was performed from two websites using specified keywords and sifted results to find articles that fit the criteria. The results were organized in tables and summaries effectively by matching up dosimeters with their measurement goal, referring to their specific models, outlining the irradiation conditions they were tested in, and detailing their calibration procedure. Furthermore, included was the unique topic of control mechanisms. RESULTS Twenty-eight matches were found. Various dosimeters were examined to measure absorbed dose, beam characteristics (BC), dose per pulse (DPP), and pulse counting (PC). Specific detectors and the irradiation conditions are organized and presented in a table. Each model's pros and cons are presented in another table for further consideration. A third table is provided to detail beam control methods. CONCLUSIONS Dosimetry is majorly film-based for absorbed dose and beam characteristic measurements. Many candidates for dosimeters for the use of DPP and PC have been tested, but they have yet to be tested without limitations. Beam control mechanisms primarily consist of unacceptable delivery errors. Many suggestions for improvement were given, mainly consisting of finding new dosimeters and modulating the dose DPP.
Collapse
Affiliation(s)
- Justin DeFrancisco
- Medical Physics ProgramVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Siyong Kim
- Medical Physics ProgramVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Radiation OncologySchool of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
5
|
Melemenidis S, Viswanathan V, Dutt S, Kapadia N, Lau B, Soto LA, Ashraf MR, Thakur B, Mutahar AZI, Skinner LB, Yu AS, Surucu M, Casey KM, Rankin EB, Horst KC, Graves EE, Loo BW, Dirbas FM. Effectiveness of FLASH vs. Conventional Dose Rate Radiotherapy in a Model of Orthotopic, Murine Breast Cancer. Cancers (Basel) 2025; 17:1095. [PMID: 40227580 PMCID: PMC11988084 DOI: 10.3390/cancers17071095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Introduction: Radiotherapy is effective for breast cancer treatment but often causes undesirable side effects that impair quality of life. Ultra-high dose rate radiotherapy (FLASH) has shown reduced normal tissue toxicity while achieving comparable tumor growth delay compared to conventional dose rate radiotherapy (CONV). This study evaluated whether FLASH could achieve similar tumor control as CONV with tumor eradication as the primary endpoint, in an orthotopic breast cancer model. Methods: Non-metastatic, orthotopic tumors were generated in the left fourth mammary fat pad using the Py117 mammary tumor cell line in syngeneic C57BL/6J mice. Two sequential irradiation studies were performed using FLASH (93-200 Gy/s) and CONV (0.08 Gy/s) electron beams. Single fractions of 20, 25, or 30 Gy were applied to tumors with varying abdominal wall treatment fields (~3.75 or 2.5 mm treatment margin to tumor). Results: Both FLASH and CONV demonstrated comparable efficacy. Small tumors treated with 30 Gy and larger abdominal wall treatment fields appeared to have complete eradication at 30 days but also exhibited the highest skin toxicity, limiting follow-up and preventing confirmation of eradication. Smaller abdominal wall treatment fields reduced skin toxicity and allowed for extended follow-up, which resulted in 75% tumor-free survival at 48 days. Larger tumors showed growth delay but no eradication. Conclusions: In this preclinical, non-metastatic orthotopic breast cancer model, FLASH and CONV demonstrated equivalent tumor control with single-fraction doses of 20, 25, or 30 Gy. Overall, 30 Gy achieved the highest eradication rate but also resulted in the most pronounced skin toxicity.
Collapse
Affiliation(s)
- Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - Naviya Kapadia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - Luis A. Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - M. Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - Banita Thakur
- Department of Surgery, Stanford University School of Medicine, Stanford Cancer Institute, Stanford, CA 94305, USA; (B.T.); (A.Z.I.M.)
| | - Adel Z. I. Mutahar
- Department of Surgery, Stanford University School of Medicine, Stanford Cancer Institute, Stanford, CA 94305, USA; (B.T.); (A.Z.I.M.)
| | - Lawrie B. Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - Amy S. Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - Kerriann M. Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Erinn B. Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - Kathleen C. Horst
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - Edward E. Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (V.V.); (S.D.); (B.L.); (L.A.S.); (M.R.A.); (L.B.S.); (A.S.Y.); (M.S.); (E.B.R.); (K.C.H.); (E.E.G.); (B.W.L.J.)
| | - Frederick M. Dirbas
- Department of Surgery, Stanford University School of Medicine, Stanford Cancer Institute, Stanford, CA 94305, USA; (B.T.); (A.Z.I.M.)
| |
Collapse
|
6
|
Liu K, Waldrop T, Aguilar E, Mims N, Neill D, Delahoussaye A, Li Z, Swanson D, Lin SH, Koong AC, Taniguchi CM, Loo BW, Mitra D, Schüler E. Redefining FLASH Radiation Therapy: The Impact of Mean Dose Rate and Dose Per Pulse in the Gastrointestinal Tract. Int J Radiat Oncol Biol Phys 2025; 121:1063-1076. [PMID: 39424078 DOI: 10.1016/j.ijrobp.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE The understanding of how varying radiation beam parameter settings affect the induction and magnitude of the FLASH effect remains limited. We sought to systematically evaluate how the magnitude of radiation-induced gastrointestinal toxicity depends on the interplay between mean dose rate (MDR) and dose per pulse (DPP). METHODS AND MATERIALS C57BL/6J mice received total abdominal irradiation (TAI, 11-14 Gy single fraction) through either conventional (CONV) irradiation (low-DPP and low MDR, CONV) or through various combinations of DPP and MDR up to ultra-high-dose-rate beam conditions. DPPs ranging from 1 to 6 Gy were evaluated, while the total dose and MDR (>100 Gy/s) were kept constant; the effects of MDR were evaluated for the range of 0.3 to 1440 Gy/s, while the total dose and DPP were kept constant. Radiation-induced gastrointestinal toxicity was quantified in nontumor-bearing mice through the regenerating crypt assay and survival assessment. Tumor response was evaluated through tumor growth delay. RESULTS Within each tested total dose using a constant MDR (>100 Gy/s), increasing DPP led to an increase in sparing (an increase in the number of regenerating crypts), with a more prominent effect seen at 12- and 14-Gy TAI. Interestingly, at DPPs of >4 Gy, a similar level of crypt sparing was demonstrated irrespective of the MDR used (from 0.3 to 1440 Gy/s). At a fixed high-DPP of 4.7 Gy, survival was equivalently improved relative to CONV irrespective of MDR. However, at a lower DPP of 0.93 Gy, an MDR of 104 Gy/s produced a greater survival effect compared with 0.3 Gy/s. We also confirmed that high-DPP, regardless of MDR, produced the same magnitude of tumor growth delay relative to CONV using a clinically relevant melanoma mouse model. CONCLUSIONS This study demonstrates the strong influence that the beam parameter settings have on the magnitude of the FLASH effect. Both high-DPP and ultra-high-dose-rate appeared independently sufficient to produce FLASH sparing of gastrointestinal toxicity while isoeffective tumor response was maintained across all conditions.
Collapse
Affiliation(s)
- Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Trey Waldrop
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Edgardo Aguilar
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nefetiti Mims
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Denae Neill
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abagail Delahoussaye
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ziyi Li
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Swanson
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Albert C Koong
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Billy W Loo
- Department of Radiation Oncology & Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Devarati Mitra
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
7
|
Melemenidis S, Nguyen KD, Baraceros-Pineda R, Barclay CK, Bautista J, Lau HD, Ashraf MR, Manjappa R, Dutt S, Soto LA, Katila N, Lau B, Viswanathan V, Yu AS, Surucu M, Skinner LB, Engleman EG, Loo BW, Pham TD. Rapid Sterilization of Clinical Apheresis Blood Products Using Ultra-High Dose Rate Radiation. Int J Mol Sci 2025; 26:2424. [PMID: 40141066 PMCID: PMC11942528 DOI: 10.3390/ijms26062424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Blood products, including apheresis platelets and plasma, are essential for medical use but pose risks of bacterial contamination and viral transmission. Platelets are prone to bacterial growth due to their storage conditions, while plasma requires extensive screening. This study explores rapid irradiation as an innovative pathogen reduction method. A clinical linear accelerator was configured to deliver ultra-high dose rate (6 kGy/min) irradiation to platelet and plasma components. Platelets spiked with Escherichia coli (E. coli; 10⁵ colony-forming units) were irradiated at 0.1-20 kGy, followed by bacterial growth and platelet count analysis. COVID-19 convalescent plasma (CCP) was irradiated at 25 kGy, and receptor-binding domain (RBD)-specific immunoglobulins (Ig) were assessed. Irradiation at 1 kGy reduced E. coli growth by 2.7-log without significant platelet loss, while 5 kGy achieved complete suppression. The estimated 6-log bacterial reduction dose (2.3 kGy) led to a 31% platelet count drop. Administering a 25 kGy virus-sterilizing dose to CCP resulted in a 9.2% decrease in RBD-specific IgG binding. This study demonstrates the proof-of-concept for rapid blood sterilization using a clinical linear accelerator. The method maintains platelet counts and CCP antibody binding at sterilizing doses, highlighting its potential as a point-of-care blood product sterilization solution.
Collapse
Affiliation(s)
- Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (M.R.A.); (R.M.); (S.D.); (L.A.S.); (N.K.); (B.L.); (V.V.); (A.S.Y.); (M.S.); (L.B.S.); (B.W.L.)
| | - Khoa D. Nguyen
- Stanford Blood Center, Stanford Health Care, Stanford, CA 94304, USA; (K.D.N.); (C.K.B.); (J.B.); (E.G.E.)
| | - Rosella Baraceros-Pineda
- Department of Health Policy, Center for Innovation to Implementation, Veterans Affairs Health Care, Palo Alto, CA 94304, USA;
| | - Cherie K. Barclay
- Stanford Blood Center, Stanford Health Care, Stanford, CA 94304, USA; (K.D.N.); (C.K.B.); (J.B.); (E.G.E.)
| | - Joanne Bautista
- Stanford Blood Center, Stanford Health Care, Stanford, CA 94304, USA; (K.D.N.); (C.K.B.); (J.B.); (E.G.E.)
| | - Hubert D. Lau
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - M. Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (M.R.A.); (R.M.); (S.D.); (L.A.S.); (N.K.); (B.L.); (V.V.); (A.S.Y.); (M.S.); (L.B.S.); (B.W.L.)
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (M.R.A.); (R.M.); (S.D.); (L.A.S.); (N.K.); (B.L.); (V.V.); (A.S.Y.); (M.S.); (L.B.S.); (B.W.L.)
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (M.R.A.); (R.M.); (S.D.); (L.A.S.); (N.K.); (B.L.); (V.V.); (A.S.Y.); (M.S.); (L.B.S.); (B.W.L.)
| | - Luis A. Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (M.R.A.); (R.M.); (S.D.); (L.A.S.); (N.K.); (B.L.); (V.V.); (A.S.Y.); (M.S.); (L.B.S.); (B.W.L.)
| | - Nikita Katila
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (M.R.A.); (R.M.); (S.D.); (L.A.S.); (N.K.); (B.L.); (V.V.); (A.S.Y.); (M.S.); (L.B.S.); (B.W.L.)
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (M.R.A.); (R.M.); (S.D.); (L.A.S.); (N.K.); (B.L.); (V.V.); (A.S.Y.); (M.S.); (L.B.S.); (B.W.L.)
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (M.R.A.); (R.M.); (S.D.); (L.A.S.); (N.K.); (B.L.); (V.V.); (A.S.Y.); (M.S.); (L.B.S.); (B.W.L.)
| | - Amy S. Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (M.R.A.); (R.M.); (S.D.); (L.A.S.); (N.K.); (B.L.); (V.V.); (A.S.Y.); (M.S.); (L.B.S.); (B.W.L.)
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (M.R.A.); (R.M.); (S.D.); (L.A.S.); (N.K.); (B.L.); (V.V.); (A.S.Y.); (M.S.); (L.B.S.); (B.W.L.)
| | - Lawrie B. Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (M.R.A.); (R.M.); (S.D.); (L.A.S.); (N.K.); (B.L.); (V.V.); (A.S.Y.); (M.S.); (L.B.S.); (B.W.L.)
| | - Edgar G. Engleman
- Stanford Blood Center, Stanford Health Care, Stanford, CA 94304, USA; (K.D.N.); (C.K.B.); (J.B.); (E.G.E.)
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Immunology & Rheumatology, Department of Internal Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; (S.M.); (M.R.A.); (R.M.); (S.D.); (L.A.S.); (N.K.); (B.L.); (V.V.); (A.S.Y.); (M.S.); (L.B.S.); (B.W.L.)
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tho D. Pham
- Stanford Blood Center, Stanford Health Care, Stanford, CA 94304, USA; (K.D.N.); (C.K.B.); (J.B.); (E.G.E.)
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| |
Collapse
|
8
|
Morris T, Rajapakse A, Lyatskaya Y, Zygmanski P, Bredfeldt J, Sajo E, Brivio D. Pulsed beam monitoring for electron FLASH. Med Phys 2025; 52:1810-1822. [PMID: 39625232 DOI: 10.1002/mp.17553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Safe implementation and translation of FLASH radiotherapy to the clinic requirehs development of beam monitoring devices capable of high temporal resolution with wide dynamic ranges. Ideal detectors should be able to monitor LINAC pulses, withstand high doses and dose rates, and provide information about the beam output, energy/range, and profile. PURPOSE Two novel detectors have been designed and tested for ultra-high dose-rate (UHDR) monitoring: a multilayer nano-structured 3-layer high-energy-current (HEC3) detector, and a segmented large area, 4-section flat (S4) detector with the goal of exploring their properties for a future combined design. METHODS A Novalis-TX LINAC was converted to produce a 10 MeV electron-FLASH beam. Pulses were monitored using both HEC3 and S4 detectors. The HEC3 detector structure consisted of three electrode layers separated by a nanoporous aerogel (Aero): Al(50 µm)-Aero(100 µm)-Ta(10 µm)-Aero(100 µm)-Al(50 µm). The S4 structure was comprised of three layers: Cu(100 nm)-air(1 mm)-Al(100 nm) with contact potential for charge collection. Both detectors are self-powered as they do not require an external voltage bias for charge collection. The beam was also characterized using a photodiode, Gafchromic EBT-XD Film, OSLDs, and an Advanced Markus Chamber. RESULTS The electron-FLASH beam displayed a Gaussian-like profile with 15 cm FWHM at isocenter. Electron-FLASH dose rates up to an average of 260 Gy/s were measured on the surface of a solid water phantom at isocenter with an instantaneous dose rate of 1.8 × 105 Gy/s and a dose per pulse of up to 1 Gy/pulse. Both HEC3 and S4 detectors could record individual pulses for repetition rates of 360 Hz with a 4 µs pulse-width. The HEC3 detector signal increased linearly with dose, MU, number of pulses, and dose rate up to 850 Gy/s with no loss of functionality at high doses or dose rates. The S4 detector showed linearity with MU and number of pulses at each of the four channels independently showing potential for spatial information and steering but lacked dose rate independence. CONCLUSIONS Two novel detectors, HEC3 and S4, successfully measured electron-FLASH pulses and hence can be considered capable of electron-FLASH beam monitoring in different capacities. HEC3 detector technology is suitable for monitoring high-dose and UHDR beams with high temporal resolution required for pulse counting. We envision the combination of the HEC3 internal structure with the S4 piece-wise design for real-time monitoring of the temporal structure, spatial profiles, energy, and dosimetric properties of UHDR beams.
Collapse
Affiliation(s)
- Toby Morris
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arith Rajapakse
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yulia Lyatskaya
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Piotr Zygmanski
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeremy Bredfeldt
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erno Sajo
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Davide Brivio
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Schönfeld AA, Hildreth J, Bourgouin A, Flatten V, Kozelka J, Simon W, Schüller A. A 2D detector array for relative dosimetry and beam steering for FLASH radiotherapy with electrons. Med Phys 2025; 52:1845-1857. [PMID: 39688375 PMCID: PMC11880641 DOI: 10.1002/mp.17573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND FLASH radiotherapy is an emerging treatment modality using ultra-high dose rate beams. Much effort has been made to develop suitable dosimeters for reference dosimetry, yet the spatial beam characteristics must also be characterized to enable computerized treatment planning, as well as quality control and service of a treatment delivery device. In conventional radiation therapy, this is commonly achieved by beam profile scans in a water phantom using a point detector. In ultra-high dose rate beams, the delivered dose needed for a set of beam profile scans may exceed the regulatory dose limit specified for a typical treatment room, or degrade components of the scanning system and scanning detector. Point detector scans also cannot quantify the pulse-to-pulse stability of a beam profile. Detector arrays can overcome these challenges, but to date, no detector arrays suitable for ultra-high dose rate beams are commercially available. PURPOSE The study presents the development and characterization of a two-dimensional detector array for measuring pulse-resolved spatial fluence distributions in real-time and temporal structure of intra-pulse dose rate of ultra-high pulsed dose rate (UHPDR) electron beams used in FLASH radiotherapy. METHODS The performance of the SunPoint 1 diode was evaluated by measuring the response of the EDGE Detector in a 20 MeV UHPDR electron beam with a dose per pulse of 0.04 Gy - 6 Gy at a pulse duration of 1 µs or 1.9 µs, and instantaneous dose rates of 0.040 - 3.2 MGy·s-1. Based on the findings regarding a suitable signal acquisition technique, a PROFILER 2 detector array made of SunPoint 1 diodes was then modified by minimizing trace resistance, applying a reverse bias, and implementing an RC component to each diode to optimize the transfer of the collected charge during a pulse. The resultant "FLASH Profiler" was then tested in the same UHPDR electron beam. RESULTS The FLASH Profiler exhibited a linear response within ± 3% deviation over the investigated dose per pulse range. The FLASH Profiler array showed good agreement with the absolute dose measured using a flashDiamond point detector and an integrating current transformer for dose-per-pulse values of up to 6 Gy. The FLASH Profiler was able to measure lateral beam profiles in real-time and on a single-pulse basis. The ability to capture and display the profiles during steering of UHPDR beams was demonstrated. The SunPoint 1 diode was able to measure the pulse duration and the intra-pulse dose rate with a time resolution of 4 ns. CONCLUSION The FLASH Profiler could be used for characterizing UHPDR electron beams and facilitating quality control and beam steering service of electron FLASH irradiators.
Collapse
Affiliation(s)
| | - Jeff Hildreth
- Research and DevelopmentSun Nuclear Corp.MelbourneFloridaUSA
| | - Alexandra Bourgouin
- Dosimetry for RadiotherapyPhysikalisch‐Technische BundesanstaltBraunschweig38116Germany
- Present address:
Metrology Research CenterNational Research Council of CanadaOttawaOntarioCanada
| | | | - Jakub Kozelka
- Research and DevelopmentSun Nuclear Corp.MelbourneFloridaUSA
| | - William Simon
- Research and DevelopmentSun Nuclear Corp.MelbourneFloridaUSA
| | - Andreas Schüller
- Dosimetry for RadiotherapyPhysikalisch‐Technische BundesanstaltBraunschweig38116Germany
| |
Collapse
|
10
|
Li XK, Amirkhanyan Z, Grebinyk A, Gross M, Komar Y, Riemer F, Asoyan A, Boonpornprasert P, Borchert P, Davtyan H, Dmytriiev D, Frohme M, Hoffmann A, Krasilnikov M, Loisch G, Lotfi Z, Müller F, Schmitz M, Obier F, Oppelt A, Philipp S, Richard C, Vashchenko G, Villani D, Worm S, Stephan F. Demonstration of ultra-high dose rate electron irradiation at FLASH lab@PITZ. Phys Med Biol 2025; 70:055010. [PMID: 39907068 DOI: 10.1088/1361-6560/adb276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
Objective.The photo injector test facility at DESY in Zeuthen (PITZ) is building up an R&D platform, known as FLASHlab@PITZ, for systematically studying the FLASH effect in cancer treatment with its high-brightness electron beams, which can provide a uniquely large dose parameter range for radiation experiments. In this paper, we demonstrate the capabilities by experiments with a reduced parameter range on a startup beamline and study the potential performance of the full beamline by simulations.Approach.To measure the dose, Gafchromic films are installed both in front of and after the samples; Monte Carlo simulations are conducted to predict the dose distribution during beam preparation and help understand the dose distribution inside the sample. Plasmid DNA is irradiated under various doses at conventional and ultra-high dose rate (UHDR) to study the DNA damage by radiations. Start-to-end simulations are performed to verify the performance of the full beamline.Main results.On the startup beamline, reproducible irradiation has been established with optimized electron beams and the delivered dose distributions have been measured with Gafchromic films and compared to FLUKA simulations. The functionality of this setup has been further demonstrated in biochemical experiments at conventional dose rate of 0.05 Gy s-1and UHDR of several 105 Gy s-1and a varying dose up to 60 Gy, with the UHDR experiments finished within a single RF pulse (less than 1 millisecond); the observed conformation yields of the irradiated plasmid DNA revealed its dose-dependent radiation damage. The upgrade to the full FLASHlab@PITZ beamline is justified by simulations with homogeneous radiation fields generated by both pencil beam scanning and scattering beams.Significance.With the demonstration of UHDR irradiation and the simulated performance of the new beamline, FLASHlab@PITZ will serve as a powerful platform for studying the FLASH effects in cancer treatment.
Collapse
Affiliation(s)
- X-K Li
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Z Amirkhanyan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - A Grebinyk
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
- Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - M Gross
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Y Komar
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
- Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - F Riemer
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - A Asoyan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - P Boonpornprasert
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - P Borchert
- Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - H Davtyan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - D Dmytriiev
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - M Frohme
- Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - A Hoffmann
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - M Krasilnikov
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - G Loisch
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Z Lotfi
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - F Müller
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - M Schmitz
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - F Obier
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - A Oppelt
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - S Philipp
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - C Richard
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - G Vashchenko
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - D Villani
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - S Worm
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - F Stephan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| |
Collapse
|
11
|
Palmiero A, Liu K, Colnot J, Chopra N, Neill D, Connell L, Velasquez B, Koong AC, Lin SH, Balter P, Tailor R, Robert C, Germond J, Gonçalves Jorge P, Geyer R, Beddar S, Moeckli R, Schüler E. On the acceptance, commissioning, and quality assurance of electron FLASH units. Med Phys 2025; 52:1207-1223. [PMID: 39462477 PMCID: PMC11788050 DOI: 10.1002/mp.17483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND AND PURPOSE FLASH or ultra-high dose rate (UHDR) radiation therapy (RT) has gained attention in recent years for its ability to spare normal tissues relative to conventional dose rate (CDR) RT in various preclinical trials. However, clinical implementation of this promising treatment option has been limited because of the lack of availability of accelerators capable of delivering UHDR RT. Commercial options are finally reaching the market that produce electron beams with average dose rates of up to 1000 Gy/s. We established a framework for the acceptance, commissioning, and periodic quality assurance (QA) of electron FLASH units and present an example of commissioning. METHODS A protocol for acceptance, commissioning, and QA of UHDR linear accelerators was established by combining and adapting standards and professional recommendations for standard linear accelerators based on the experience with UHDR at four clinical centers that use different UHDR devices. Non-standard dosimetric beam parameters considered included pulse width, pulse repetition frequency, dose per pulse, and instantaneous dose rate, together with recommendations on how to acquire these measurements. RESULTS The 6- and 9-MeV beams of an UHDR electron device were commissioned by using this developed protocol. Measurements were acquired with a combination of ion chambers, beam current transformers (BCTs), and dose-rate-independent passive dosimeters. The unit was calibrated according to the concept of redundant dosimetry using a reference setup. CONCLUSION This study provides detailed recommendations for the acceptance testing, commissioning, and routine QA of low-energy electron UHDR linear accelerators. The proposed framework is not limited to any specific unit, making it applicable to all existing eFLASH units in the market. Through practical insights and theoretical discourse, this document establishes a benchmark for the commissioning of UHDR devices for clinical use.
Collapse
Affiliation(s)
- Allison Palmiero
- Department of Radiation OncologyJames Cancer Hospital and Solove Research InstituteThe Ohio State UniversityColumbusOhioUSA
| | - Kevin Liu
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Graduate School of Biomedical SciencesThe University of TexasHoustonTexasUSA
| | - Julie Colnot
- INSERM U1030, Gustave RoussyUniversité Paris‐SaclayVillejuifFrance
| | - Nitish Chopra
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Denae Neill
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Luke Connell
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Graduate School of Biomedical SciencesThe University of TexasHoustonTexasUSA
| | - Brett Velasquez
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Albert C. Koong
- Division of Radiation OncologyDepartment of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Steven H. Lin
- Division of Radiation OncologyDepartment of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Peter Balter
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ramesh Tailor
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Charlotte Robert
- INSERM U1030, Gustave RoussyUniversité Paris‐SaclayVillejuifFrance
| | - Jean‐François Germond
- Institute of Radiation PhysicsLausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | - Patrik Gonçalves Jorge
- Institute of Radiation PhysicsLausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | - Reiner Geyer
- Institute of Radiation PhysicsLausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | - Sam Beddar
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Graduate School of Biomedical SciencesThe University of TexasHoustonTexasUSA
| | - Raphael Moeckli
- Institute of Radiation PhysicsLausanne University Hospital and Lausanne UniversityLausanneSwitzerland
| | - Emil Schüler
- Division of Radiation OncologyDepartment of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Graduate School of Biomedical SciencesThe University of TexasHoustonTexasUSA
| |
Collapse
|
12
|
Panaino CMV, Piccinini S, Andreassi MG, Bandini G, Borghini A, Borgia M, Di Naro A, Labate LU, Maggiulli E, Portaluri MGA, Gizzi LA. Very High-Energy Electron Therapy Toward Clinical Implementation. Cancers (Basel) 2025; 17:181. [PMID: 39857964 PMCID: PMC11763822 DOI: 10.3390/cancers17020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The use of very high energy electron (VHEE) beams, with energies between 50 and 400 MeV, has drawn considerable interest in radiotherapy due to their deep tissue penetration, sharp beam edges, and low sensitivity to tissue density. VHEE beams can be precisely steered with magnetic components, positioning VHEE therapy as a cost-effective option between photon and proton therapies. However, the clinical implementation of VHEE therapy (VHEET) requires advances in several areas: developing compact, stable, and efficient accelerators; creating sophisticated treatment planning software; and establishing clinically validated protocols. In addition, the perspective of VHEE to access ultra-high dose-rate regime presents a promising avenue for the practical integration of FLASH radiotherapy of deep tumors and metastases with VHEET (FLASH-VHEET), enhancing normal tissue sparing while maintaining the inherent dosimetric advantages of VHEET. However, FLASH-VHEET systems require validation of time-dependent dose parameters, thus introducing additional technological challenges. Here, we discuss recent progress in VHEET research, focusing on both conventional and FLASH modalities, and covering key aspects including dosimetric properties, radioprotection, accelerator technology, beam focusing, radiobiological effects, and clinical outcomes. Furthermore, we comprehensively analyze initial VHEET in silico studies on coverage across various tumor sites.
Collapse
Affiliation(s)
- Costanza Maria Vittoria Panaino
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Simona Piccinini
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Maria Grazia Andreassi
- Institute of Clinical Physiology, National Research Council of Italy, 56124 Pisa, Italy; (M.G.A.); (A.B.)
| | - Gabriele Bandini
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
| | - Andrea Borghini
- Institute of Clinical Physiology, National Research Council of Italy, 56124 Pisa, Italy; (M.G.A.); (A.B.)
| | | | - Angelo Di Naro
- ASST Papa Giovanni XXIII Hospital, Radiotherapy, 24127 Bergamo, Italy; (A.D.N.); (M.G.A.P.)
| | - Luca Umberto Labate
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
- National Institute for Nuclear Physics, 56127 Pisa, Italy
| | | | | | - Leonida Antonio Gizzi
- Intense Laser Irradiation Laboratory, National Institute of Optics, National Research Council of Italy, 56124 Pisa, Italy; (S.P.); (G.B.); (L.U.L.); (L.A.G.)
- National Institute for Nuclear Physics, 56127 Pisa, Italy
| |
Collapse
|
13
|
Melemenidis S, Nguyen KD, Baraceros-Pineda R, Barclay CK, Bautista J, Lau H, Ashraf MR, Manjappa R, Dutt S, Soto LA, Katila N, Lau B, Visvanathan V, Yu AS, Surucu M, Skinner LB, Engleman EG, Loo BW, Pham TD. Rapid Sterilization of Clinical Apheresis Blood Products using Ultra-High Dose Rate Radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.14.628469. [PMID: 39713317 PMCID: PMC11661200 DOI: 10.1101/2024.12.14.628469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
BACKGROUND AND OBJECTIVES Apheresis platelets products and plasma are essential for medical interventions, but both still have inherent risks associated with contamination and viral transmission. Platelet products are vulnerable to bacterial contamination due to storage conditions, while plasma requires extensive screening to minimize virus transmission risks. Here we investigate rapid irradiation to sterilizing doses for bacteria and viruses as an innovative pathogen reduction technology. MATERIALS AND METHODS We configured a clinical linear accelerator to deliver ultra-high dose rate (6 kGy/min) irradiation to platelet and plasma blood components. Platelet aliquots spiked with 105 CFU of E.coli were irradiated with 0.1-20 kGy, followed by E.coli growth and platelet count assays. COVID Convalescent Plasma (CCP) aliquots were irradiated at a virus-sterilizing dose of 25 kGy and subsequently, RBD-specific antibody binding was assessed. RESULTS 1 kGy irradiation of bacteria-spiked platelets reduced E.coli growth by 2.7-log without significant change of platelet count, and 5 kGy or higher produced complete growth suppression. The estimated sterilization (6-log bacterial reduction) dose was 2.3 kGy, corresponding to 31% platelet count reduction. A 25 kGy virus sterilizing dose to CCP produced a 9.2% average drop of RBD-specific IgG binding. CONCLUSION This study shows proof-of-concept of a novel rapid blood sterilization technique using a clinical linear accelerator. Promising platelet counts and CCP antibody binding were maintained at bacteria and virus sterilizing doses, respectively. This represents a potential point-of-care blood product sterilization solution. If additional studies corroborate these findings, this may be a practical method for ensuring blood products safety.
Collapse
Affiliation(s)
- Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Khoa D. Nguyen
- Stanford Blood Center, Stanford Health Care, Stanford, California, USA
| | - Rosella Baraceros-Pineda
- Department of Health Policy, Center for Innovation to Implementation, Veterans Affairs Health Care, Palo Alto, California, USA
| | - Cherie K. Barclay
- Stanford Blood Center, Stanford Health Care, Stanford, California, USA
| | - Joanne Bautista
- Stanford Blood Center, Stanford Health Care, Stanford, California, USA
| | - Hubert Lau
- Department of Health Policy, Center for Innovation to Implementation, Veterans Affairs Health Care, Palo Alto, California, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - M. Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Luis Armando Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Nikita Katila
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Vignesh Visvanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Amy S. Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Lawrie B. Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Edgar G. Engleman
- Stanford Blood Center, Stanford Health Care, Stanford, California, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
- Division of Immunology & Rheumatology, Department of Internal Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Tho D. Pham
- Stanford Blood Center, Stanford Health Care, Stanford, California, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
14
|
Drayson OGG, Melemenidis S, Katila N, Viswanathan V, Kramár EA, Zhang R, Kim R, Ru N, Petit B, Dutt S, Manjappa R, Ramish Ashraf M, Lau B, Soto L, Skinner L, Yu AS, Surucu M, Maxim PG, Zebadua-Ballasteros P, Wood MA, Montay-Gruel P, Baulch JE, Vozenin MC, Loo BW, Limoli CL. A multi-institutional study to investigate the sparing effect after whole brain electron FLASH in mice: Reproducibility and temporal evolution of functional, electrophysiological, and neurogenic endpoints. Radiother Oncol 2024; 201:110534. [PMID: 39293721 PMCID: PMC11588524 DOI: 10.1016/j.radonc.2024.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND AND PURPOSE Ultra-high dose-rate radiotherapy (FLASH) has been shown to mitigate normal tissue toxicities associated with conventional dose rate radiotherapy (CONV) without compromising tumor killing in preclinical models. A prominent challenge in preclinical radiation research, including FLASH, is validating both the physical dosimetry and the biological effects across multiple institutions. MATERIALS AND METHODS We previously demonstrated dosimetric reproducibility of two different electron FLASH devices at separate institutions using standardized phantoms and dosimeters. In this study, tumor-free adult female mice were given 10 Gy whole brain FLASH and CONV irradiation at both institutions and evaluated for the reproducibility and temporal evolution of multiple neurobiological endpoints. RESULTS FLASH sparing of behavioral performance on novel object recognition (4 months post-irradiation) and of electrophysiologic long-term potentiation (LTP, 5 months post-irradiation) was reproduced between institutions. Differences between FLASH and CONV on the endpoints of hippocampal neurogenesis (Sox2, doublecortin), neuroinflammation (microglial activation), and electrophysiology (LTP) were not observed at early times (48 h to 2 weeks), but recovery of immature neurons by 3 weeks was greater with FLASH. CONCLUSION In summary, we demonstrated reproducible FLASH sparing effects on the brain between two different beams at two different institutions with validated dosimetry. FLASH sparing effects on the endpoints evaluated manifested at later but not the earliest time points.
Collapse
Affiliation(s)
- Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nikita Katila
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Richard Zhang
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Rachel Kim
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Ning Ru
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Benoit Petit
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Luis Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amu S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Paola Zebadua-Ballasteros
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland; Laboratorio de Fisica Medica, Instituto Nacional de Neurología y Neurocirugía MVS, México City 14269, Mexico
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Pierre Montay-Gruel
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland; Radiation Oncology Department, Iridium Netwerk, Wilrijk, Antwerp, Belgium; Antwerp Research in Radiation Oncology (AReRO), Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Janet E Baulch
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Department of Radiation Oncology, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
15
|
Liu K, Holmes S, Khan AU, Hooten B, DeWerd L, Schüler E, Beddar S. Development of novel ionization chambers for reference dosimetry in electron flash radiotherapy. Med Phys 2024; 51:9275-9289. [PMID: 39311014 DOI: 10.1002/mp.17425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 09/10/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Reference dosimetry in ultra-high dose rate (UHDR) beamlines is significantly hindered by limitations in conventional ionization chamber design. In particular, conventional chambers suffer from severe charge collection efficiency (CCE) degradation in high dose per pulse (DPP) beams. PURPOSE The aim of this study was to optimize the design and performance of parallel plate ion chambers for use in UHDR dosimetry applications, and evaluate their potential as reference class chambers for calibration purposes. Three chamber designs were produced to determine the influence of the ion chamber response on electrode separation, field strength, and collection volume on the ion chamber response under UHDR and ultra-high dose per pulse (UHDPP) conditions. METHODS Three chambers were designed and produced: the A11-VAR (0.2-1.0 mm electrode gap, 20 mm diameter collector), the A11-TPP (0.3 mm electrode gap, 20 mm diameter collector), and the A30 (0.3 mm electrode gap, 5.4 mm diameter collector). The chambers underwent full characterization using an UHDR 9 MeV electron beam with individually varied beam parameters of pulse repetition frequency (PRF, 10-120 Hz), pulse width (PW, 0.5-4 µs), and pulse amplitude (0.01-9 Gy/pulse). The response of the ion chambers was evaluated as a function of the DPP, PRF, PW, dose rate, electric field strength, and electrode gap. RESULTS The chamber response was found to be dependent on DPP and PW, and these dependencies were mitigated with larger electric field strengths and smaller electrode spacing. At a constant electric field strength, we measured a larger CCE as a function of DPP for ion chambers with a smaller electrode gap in the A11-VAR. For ion chambers with identical electrode gap (A11-TPP and A30), higher electric field strengths were found to yield better CCE at higher DPP. A PW dependence was observed at low electric field strengths (500 V/mm) for DPP values ranging from 1 to 5 Gy at PWs ranging from 0.5 to 4 µs, but at electric field strengths of 1000 V/mm and higher, these effects become negligible. CONCLUSION This study confirmed that the CCE of ion chambers depends strongly on the electrode spacing and the electric field strength, and also on the DPP and the PW of the UHDR beam. A significant finding of this study is that although chamber performance does depend on PW, the effect on the CCE becomes negligible with reduced electrode spacing and increased electric field. A CCE of ≥95% was achieved for DPPs of up to 5 Gy with no observable dependence on PW using the A30 chamber, while still achieving an acceptable performance in conventional dose rate beams, opening up the possibility for this type of chamber to be used as a reference class chamber for calibration purposes of electron FLASH beamlines.
Collapse
Affiliation(s)
- Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | | | - Ahtesham Ullah Khan
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Hooten
- Standard Imaging Inc., Middleton, Wisconsin, USA
| | - Larry DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Sam Beddar
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
16
|
Guan F, Jiang D, Wang X, Yang M, Iga K, Li Y, Bronk L, Bronk J, Wang L, Guo Y, Sahoo N, Grosshans DR, Koong AC, Zhu XR, Mohan R. Mimicking large spot-scanning radiation fields for proton FLASH preclinical studies with a robotic motion platform. PRECISION RADIATION ONCOLOGY 2024; 8:168-181. [PMID: 40337456 PMCID: PMC11934911 DOI: 10.1002/pro6.1243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 10/07/2024] [Indexed: 05/09/2025] Open
Abstract
Previously, a synchrotron-based horizontal proton beamline (87.2 MeV) was successfully commissioned to deliver radiation doses in FLASH and conventional dose rate modes to small fields and volumes. In this study, we developed a strategy to increase the effective radiation field size using a custom robotic motion platform to automatically shift the positions of biological samples. The beam was first broadened with a thin tungsten scatterer and shaped by customized brass collimators for irradiating cell/organoid cultures in 96-well plates (a 7-mm-diameter circle) or for irradiating mice (1-cm2 square). Motion patterns of the robotic platform were written in G-code, with 9-mm spot spacing used for the 96-well plates and 10.6-mm spacing for the mice. The accuracy of target positioning was verified with a self-leveling laser system. The dose delivered in the experimental conditions was validated with EBT-XD film attached to the 96-well plate or the back of the mouse. Our film-measured dose profiles matched Monte Carlo calculations well (1D gamma pass rate >95% with the criteria of 2%/1 mm/2% dose threshold). The FLASH dose rates were 113.7 Gy/s for cell/organoid irradiation and 191.3 Gy/s for mouse irradiation. These promising results indicate that this robotic platform can be used to effectively increase the field size for preclinical experiments with proton FLASH.
Collapse
Affiliation(s)
- Fada Guan
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Dadi Jiang
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Xiaochun Wang
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ming Yang
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Kiminori Iga
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Particle Therapy DivisionHitachi America, LtdSanta ClaraCaliforniaUSA
| | - Yuting Li
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Lawrence Bronk
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Julianna Bronk
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Liang Wang
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Youming Guo
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Narayan Sahoo
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - David R. Grosshans
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Albert C. Koong
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Xiaorong R. Zhu
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Radhe Mohan
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
17
|
Wang J, Melemenidis S, Manjappa R, Viswanathan V, Ashraf RM, Levy K, Skinner LB, Soto LA, Chow S, Lau B, Ko RB, Graves EE, Yu AS, Bush KK, Surucu M, Rankin EB, Loo BW, Schüler E, Maxim PG. Dosimetric calibration of anatomy-specific ultra-high dose rate electron irradiation platform for preclinical FLASH radiobiology experiments. Med Phys 2024; 51:9166-9178. [PMID: 39331834 DOI: 10.1002/mp.17432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/27/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
BACKGROUND FLASH radiation therapy (RT) offers a promising avenue for the broadening of the therapeutic index. However, to leverage the full potential of FLASH in the clinical setting, an improved understanding of the biological principles involved is critical. This requires the availability of specialized equipment optimized for the delivery of conventional (CONV) and ultra-high dose rate (UHDR) irradiation for preclinical studies. One method to conduct such preclinical radiobiological research involves adapting a clinical linear accelerator configured to deliver both CONV and UHDR irradiation. PURPOSE We characterized the dosimetric properties of a clinical linear accelerator configured to deliver ultra-high dose rate irradiation to two anatomic sites in mice and for cell-culture FLASH radiobiology experiments. METHODS Delivered doses of UHDR electron beams were controlled by a microcontroller and relay interfaced with the respiratory gating system. We also produced beam collimators with indexed stereotactic mouse positioning devices to provide anatomically specific preclinical treatments. Treatment delivery was monitored directly with an ionization chamber, and charge measurements were correlated with radiochromic film measurements at the entry surface of the mice. The setup for conventional dose rate irradiation utilized the same collimation system but at increased source-to-surface distance. Monte Carlo simulations and film dosimetry were used to characterize beam properties and dose distributions. RESULTS The mean electron beam energies before the flattening filter were 18.8 MeV (UHDR) and 17.7 MeV (CONV), with corresponding values at the mouse surface of 17.2 and 16.2 MeV. The charges measured with an external ion chamber were linearly correlated with the mouse entrance dose. The use of relay gating for pulse control initially led to a delivery failure rate of 20% (± 1 pulse); adjustments to account for the linac latency improved this rate to < 1/20. Beam field sizes for two anatomically specific mouse collimators (4 × 4 cm2 for whole-abdomen and 1.5 × 1.5 cm2 for unilateral lung irradiation) were accurate within < 5% and had low radiation leakage (< 4%). Normalizing the dose at the center of the mouse (∼0.75 cm depth) produced UHDR and CONV doses to the irradiated volumes with > 95% agreement. CONCLUSION We successfully configured a clinical linear accelerator for increased output and developed a robust preclinical platform for anatomically specific irradiation, with highly accurate and precise temporal and spatial dose delivery, for both CONV and UHDR irradiation applications.
Collapse
Affiliation(s)
- Jinghui Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Ramish M Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Karen Levy
- Department of Gynecologic Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Lawrie B Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Luis A Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Stephanie Chow
- Department of Gynecologic Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Ryan B Ko
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Amy S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Karl K Bush
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
- Department of Gynecologic Oncology, Stanford University School of Medicine, Stanford, California, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Emil Schüler
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Peter G Maxim
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
18
|
Gao F, Lin B, Yang Y, Xiao D, Zhou Z, Zhang Y, Feng G, Li J, Wu D, Du X, Shi Q. Effects of ultra-high dose rate radiotherapy with different fractions and dose rate on acute and chronic lung injury in mice. Heliyon 2024; 10:e40298. [PMID: 39641017 PMCID: PMC11617221 DOI: 10.1016/j.heliyon.2024.e40298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 04/27/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Ultra-high dose rate radiotherapy (FLASH radiation) can naturally render normal tissues around the tumor tissue resistant to radiotherapy. In contrast, the tumor tissue remains sensitive to radiation under the same conditions. However, the effects of different fractions and dose rates on FLASH radiation remain unclear. This study aimed to determine the optimal dose rate and fraction of FLASH radiation for thoracic radiotherapy. Female Balb/c mice aged 6-8 weeks were irradiated with different dose rates (100 Gy/s or 250 Gy/s) and fractions (1, 2, or 4). Survival was observed in mice receiving 30Gy, with lung tissue examined for acute radiation damage 48 h post-radiation. Late radiation pneumonia and survival rates were monitored in mice irradiated with 20 Gy. The median overall survival (OS) was not reached on the 95th day for mice irradiated with 250 Gy/s FLASH radiation, while it was 89.5 days for those irradiated with 100 Gy/s (P = 0.0436). Mice irradiated with 30 Gy/2 Fr and 250 Gy/s FLASH had shorter median OS than those with 30 Gy/1F (P = 0.0132). However, there was no significant difference in OS between mice irradiated with 30 Gy/2 F and 30 Gy/4 F. Survival curves for mice receiving 20 Gy showed no significant difference in toxicity between different dose rates and fractions. FLASH radiation at 250 Gy/s reduced the incidence of acute radiation pneumonitis in mice compared to 100 Gy/s. Different fractions of irradiation influenced survival in mice, but they were only observed in acute radiation reactions and not chronic radiation reactions. Among the tested fraction methods, fraction 2 had the worst impact on the survival of mice, while fractions 1 and 4 showed similar effects and improved survival compared to fraction 2.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, 621000, China
| | - Binwei Lin
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, 621000, China
| | - Yiwei Yang
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Dexin Xiao
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Zheng Zhou
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Yu Zhang
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, 621000, China
| | - Gang Feng
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, 621000, China
| | - Jie Li
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, 621000, China
| | - Dai Wu
- Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, 621900, China
| | - Xiaobo Du
- Departmant of Oncology, Nuclear Medicine Laboratory of Mianyang Central Hospital, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang, 621000, China
| | - Qiuling Shi
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Public Health, Chongqing Medical University, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
19
|
Alhaddad L, Osipov AN, Leonov S. FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application. Int J Mol Sci 2024; 25:12506. [PMID: 39684218 DOI: 10.3390/ijms252312506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Radiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the delivery of ultra-high dose rate (UHDR) several orders of magnitude higher than what is presently used in conventional RT (CONV-RT). The FLASH-RT clinical trials have been designed to examine the UHDR deliverability, the effectiveness of tumor control, the dose tolerance of normal tissue, and the reproducibility of treatment effects across several institutions. Although it is still in its infancy, FLASH-RT has been shown to have potential to rival current RT in terms of safety. Several studies have suggested that the adoption of FLASH-RT is very limited, and the incorporation of this new technique into routine clinical RT will require the use of accurate dosimetry methods and reproducible equipment that enable the reliable and robust measurements of doses and dose rates. The purpose of this review is to highlight the advantages of this technology, the potential mechanisms underpinning the FLASH-RT effect, and the major challenges that need to be tackled in the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Lina Alhaddad
- Department of Environmental Sciences, Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria
| | - Andreyan N Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia
| | - Sergey Leonov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
20
|
Wang L, Liu T, Xiao L, Zhang H, Wang C, Zhang W, Zhang M, Wang Y, Deng S. Investigating the Potential of X-Ray-Based Cancer Treatment Equipment for the Sterile Insect Technique in Aedes aegypti Control Programs. INSECTS 2024; 15:898. [PMID: 39590497 PMCID: PMC11594760 DOI: 10.3390/insects15110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024]
Abstract
The sterile insect technique (SIT) stands as an eco-friendly approach for mosquito control, but it is impeded by the limited availability of γ-ray radiation source. This research sought to investigate a different radiation source-the Varian Clinac 23EX linear accelerator, which is frequently used for X-ray therapy in cancer treatment. Evaluation parameters including emergence rate, average survival time, induced sterility (IS), male mating competitiveness of irradiated males and fecundity (the number of eggs per female per batch), and the egg hatch rate of females mated with irradiated males were assessed to gauge the application potential of this cancer treatment equipment in the realm of the SIT. The results indicated that X-rays from radiation therapy equipment can effectively suppress the hatch rate of offspring mosquitoes without adversely affecting the emergence rate of irradiated males or the fecundity of females. In addition, at an X-ray dose of 60 Gy, the induced sterility in Ae. aegypti was comparable to the sterility induced by 40 Gy of γ-rays with both treatments resulting in 99.6% sterility. Interestingly, when a release ratio of 7:1 (irradiated males:unirradiated males) was used to competitively mate with females, the IS results resulted by 60 Gy X-rays and 40 Gy γ-rays were still at 70.3% and 73.7%, respectively. In conclusion, the results underscored the potential of the Varian Clinac 23EX linear accelerator as an X-ray source in SIT research.
Collapse
Affiliation(s)
- Linmin Wang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.W.); (H.Z.); (C.W.); (W.Z.)
| | - Tingting Liu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China;
| | - Liang Xiao
- Department of Radiotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China;
| | - Haiting Zhang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.W.); (H.Z.); (C.W.); (W.Z.)
| | - Cunchen Wang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.W.); (H.Z.); (C.W.); (W.Z.)
| | - Weixian Zhang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.W.); (H.Z.); (C.W.); (W.Z.)
| | - Mao Zhang
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.W.); (H.Z.); (C.W.); (W.Z.)
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing 400038, China;
| | - Shengqun Deng
- Department of Pathogen Biology, Anhui Province Key Laboratory of Zoonoses, The Provincial Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China; (L.W.); (H.Z.); (C.W.); (W.Z.)
| |
Collapse
|
21
|
Tobias Böhlen T, Psoroulas S, Aylward JD, Beddar S, Douralis A, Delpon G, Garibaldi C, Gasparini A, Schüler E, Stephan F, Moeckli R, Subiel A. Recording and reporting of ultra-high dose rate "FLASH" delivery for preclinical and clinical settings. Radiother Oncol 2024; 200:110507. [PMID: 39245070 DOI: 10.1016/j.radonc.2024.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Treatments at ultra-high dose rate (UHDR) have the potential to improve the therapeutic index of radiation therapy (RT) by sparing normal tissues compared to conventional dose rate irradiations. Insufficient and inconsistent reporting in physics and dosimetry of preclinical and translational studies may have contributed to a reproducibility crisis of radiobiological data in the field. Consequently, the development of a common terminology, as well as common recording, reporting, dosimetry, and metrology standards is required. In the context of UHDR irradiations, the temporal dose delivery parameters are of importance, and under-reporting of these parameters is also a concern.This work proposes a standardization of terminology, recording, and reporting to enhance comparability of both preclinical and clinical UHDR studies and and to allow retrospective analyses to aid the understanding of the conditions which give rise to the FLASH effect.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland; Klinik für Radio-Onkologie, UniversitätsSpital Zürich, Switzerland
| | - Jack D Aylward
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK; Medical Physics, School of Applied Sciences, University of the West of England, Bristol, UK
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Grégory Delpon
- Institut de Cancérologie de l'Ouest, Medical Physics Department, Saint-Herblain, France; Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, Nantes, France
| | - Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessia Gasparini
- CORE, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Medical Physics Department, Iridium Netwerk, Wilrijk, Belgium
| | - Emil Schüler
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Stephan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
22
|
McDonnell C, McLaughlin O, McGarry CK, Hounsell AR, O'Keeffe S, Lewis E, Prise KM. Performance evaluation of an inorganic optical fibre dosimeter for use in external beam radiotherapy with pulsed beams. Phys Med Biol 2024; 69:215013. [PMID: 39379004 DOI: 10.1088/1361-6560/ad84b7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Objective. Optical fibre dosimeters (OFDs) offer great promise for real-timein vivodose measurement in radiation-based treatment modalities such as radiotherapy and brachytherapy. This is attributed to their many useful qualities such as high spatial resolution and sensitivity. However, there are several requirements that an optical fibre dosimeter must meet to be acceptable for dose measurement in a specified treatment modality. In this work, the dosimetric performance of a novel optical fibre dosimeter for use in external beam radiotherapy is presented.Approach. The dosimeter was characterised for photon beam energies between 6-15 MV using a Varian TrueBeam Linac at dose rates between 100-2400 MU/min and assessed based on its repeatability, dose dependence, dose rate dependence, energy dependence and dose-per-pulse dependence.Main Results. The results demonstrated excellent short-term repeatability of 0.3%, good linearity in response (R2>0.9997), and minor dose rate dependence between 0.53%-2.49% for all beam qualities investigated. As the scintillator of the OFD is non-water equivalent, Monte-Carlo-TOPAS simulations were used to calculate the absorbed dose energy dependence. A dose-per-pulse dependence was also investigated and compared with dosimetry measurements made with an ionisation chamber and simulated from the treatment planning system. An over-response of 20%was found at the lowest investigated dose-per-pulse, and an under-response of 34%was found at the highest investigated dose-per-pulse. This is believed to be due to an intrinsic energy dependence making this type of OFD unsuitable for external beam radiotherapy dosimetry.Significance. The OFD evaluated in this work was primarily designed for high-dose-rate brachytherapy whereas this study includes the first measurements made in external beam radiotherapy and highlights the challenges of transferability of the dosimeter to a different radiation source.
Collapse
Affiliation(s)
- C McDonnell
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| | - O McLaughlin
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| | - C K McGarry
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
- Department of Radiotherapy Medical Physics, Northern Ireland Cancer Centre Belfast Health and Social Care Trust, Belfast BT9 7AB, United Kingdom
| | - A R Hounsell
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
- Department of Radiotherapy Medical Physics, Northern Ireland Cancer Centre Belfast Health and Social Care Trust, Belfast BT9 7AB, United Kingdom
| | - S O'Keeffe
- Optical Fibre Sensors Research Centre University of Limerick, Limerick, Ireland
| | - E Lewis
- Optical Fibre Sensors Research Centre University of Limerick, Limerick, Ireland
| | - K M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, United Kingdom
| |
Collapse
|
23
|
Chaikh A, Édouard M, Huet C, Milliat F, Villagrasa C, Isambert A. Towards clinical application of ultra-high dose rate radiotherapy and the FLASH effect: Challenges and current status. Cancer Radiother 2024; 28:463-473. [PMID: 39304401 DOI: 10.1016/j.canrad.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 09/22/2024]
Abstract
Ultra-high dose rate external beam radiotherapy (UHDR-RT) uses dose rates of several tens to thousands of Gy/s, compared with the dose rate of the order of a few Gy/min for conventional radiotherapy techniques, currently used in clinical practice. The use of such dose rate is likely to improve the therapeutic index by obtaining a radiobiological effect, known as the "FLASH" effect. This would maintain tumor control while enhancing tissues protection. To date, this effect has been achieved using beams of electrons, photons, protons, and heavy ions. However, the conditions required to achieve this "FLASH" effect are not well defined, and raise several questions, particularly with regard to the definition of the prescription, including dose fractionation, irradiated volume and the temporal structure of the pulsed beam. In addition, the dose delivered over a very short period induces technical challenges, particularly in terms of detectors, which must be mastered to guarantee safe clinical implementation. IRSN has carried out an in-depth literature review of the UHDR-RT technique, covering various aspects relating to patient radiation protection: the radiobiological mechanisms associated with the FLASH effect, the used temporal structure of the UHDR beams, accelerators and dose control, the properties of detectors to be used with UHDR beams, planning, clinical implementation, and clinical studies already carried out or in progress.
Collapse
Affiliation(s)
| | | | | | - Fabien Milliat
- IRSN/PSE-SANTÉ-SERAMED/LRMed, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
24
|
Gesualdi F, de Marzi L, Dutreix M, Favaudon V, Fouillade C, Heinrich S. A multidisciplinary view of flash irradiation. Cancer Radiother 2024; 28:453-462. [PMID: 39343695 DOI: 10.1016/j.canrad.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024]
Abstract
The delivery of ultra-high dose rates of radiation, called flash irradiation or flash-RT, has emerged as a new modality of radiotherapy shaking up the paradigm of proportionality of effect and dose whatever the method of delivery of the radiation. The hallmark of flash-RT is healthy tissue sparing from the side effects of radiation without decrease of the antitumor efficiency in animal models. In this review we will define its specificities, the molecular mechanisms underlying the flash effect and the ongoing developments to bring this new modality to patient treatment.
Collapse
Affiliation(s)
- Flavia Gesualdi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France
| | - Ludovic de Marzi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France; Institut Curie, université PSL, université Paris-Saclay, Inserm Lito U1288, centre universitaire, 91898 Orsay, France
| | - Marie Dutreix
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Vincent Favaudon
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Charles Fouillade
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Sophie Heinrich
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France.
| |
Collapse
|
25
|
Ashraf MR, Melemenidis S, Liu K, Grilj V, Jansen J, Velasquez B, Connell L, Schulz JB, Bailat C, Libed A, Manjappa R, Dutt S, Soto L, Lau B, Garza A, Larsen W, Skinner L, Yu AS, Surucu M, Graves EE, Maxim PG, Kry SF, Vozenin MC, Schüler E, Loo BW. Multi-Institutional Audit of FLASH and Conventional Dosimetry With a 3D Printed Anatomically Realistic Mouse Phantom. Int J Radiat Oncol Biol Phys 2024; 120:287-300. [PMID: 38493902 DOI: 10.1016/j.ijrobp.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE We conducted a multi-institutional dosimetric audit between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3-dimensional (3D) printed mouse phantom. METHODS AND MATERIALS A computed tomography (CT) scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene (∼1.02 g/cm3) and polylactic acid (∼1.24 g/cm3) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid (∼0.64 g/cm3). Hounsfield units (HU), densities, and print-to-print stability of the phantoms were assessed. Three institutions were each provided a phantom and each institution performed 2 replicates of irradiations at selected anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. RESULTS Compared with the reference CT scan, CT scans of the phantom demonstrated mass density differences of 0.10 g/cm3 for bone, 0.12 g/cm3 for lung, and 0.03 g/cm3 for soft tissue regions. Differences in HU between phantoms were <10 HU for soft tissue and bone, with lung showing the most variation (54 HU), but with minimal effect on dose distribution (<0.5%). Mean differences between FLASH and CONV decreased from the first to the second replicate (4.3%-1.2%), and differences from the prescribed dose decreased for both CONV (3.6%-2.5%) and FLASH (6.4%-2.7%). Total dose accuracy suggests consistent pulse dose and pulse number, although these were not specifically assessed. Positioning variability was observed, likely due to the absence of robust positioning aids or image guidance. CONCLUSIONS This study marks the first dosimetric audit for FLASH using a nonhomogeneous phantom, challenging conventional calibration practices reliant on homogeneous phantoms. The comparison protocol offers a framework for credentialing multi-institutional studies in FLASH preclinical research to enhance reproducibility of biologic findings.
Collapse
Affiliation(s)
- M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Jeannette Jansen
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Switzerland
| | - Brett Velasquez
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luke Connell
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph B Schulz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Aaron Libed
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Luis Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Aaron Garza
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - William Larsen
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Amy S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine, California
| | - Stephen F Kry
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Imaging and Radiation Oncology Core, MD Anderson Cancer Center, Houston, USA
| | - Marie-Catherine Vozenin
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Switzerland; Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland.
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
26
|
McAnespie CA, Chaudhary P, Calvin L, Streeter MJV, Nersysian G, McMahon SJ, Prise KM, Sarri G. Laser-driven electron source suitable for single-shot Gy-scale irradiation of biological cells at dose rates exceeding 10^{10} Gy/s. Phys Rev E 2024; 110:035204. [PMID: 39425326 DOI: 10.1103/physreve.110.035204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 08/19/2024] [Indexed: 10/21/2024]
Abstract
We report on the first systematic characterization of a tuneable laser-driven electron source capable of delivering Gy-scale doses in a duration of 10-20 ps in a single irradiation, thus reaching unprecedented dose rates in the range of 10^{10}-10^{12} Gy/s. Detailed characterization of the source indicates, in agreement with Monte Carlo simulations, dose delivery over cm-scale areas with a high degree of spatial uniformity. The results reported here confirm that a laser-driven source of this kind can be used for systematic studies of the response of biological cells to picosecond-scale radiation at ultrahigh dose rates.
Collapse
|
27
|
Tsai P, Yang Y, Wu M, Chen C, Yu F, Simone CB, Choi JI, Tomé WA, Lin H. A comprehensive pre-clinical treatment quality assurance program using unique spot patterns for proton pencil beam scanning FLASH radiotherapy. J Appl Clin Med Phys 2024; 25:e14400. [PMID: 38831639 PMCID: PMC11302823 DOI: 10.1002/acm2.14400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/14/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND Quality assurance (QA) for ultra-high dose rate (UHDR) irradiation is a crucial aspect in the emerging field of FLASH radiotherapy (FLASH-RT). This innovative treatment approach delivers radiation at UHDR, demanding careful adoption of QA protocols and procedures. A comprehensive understanding of beam properties and dosimetry consistency is vital to ensure the safe and effective delivery of FLASH-RT. PURPOSE To develop a comprehensive pre-treatment QA program for cyclotron-based proton pencil beam scanning (PBS) FLASH-RT. Establish appropriate tolerances for QA items based on this study's outcomes and TG-224 recommendations. METHODS A 250 MeV proton spot pattern was designed and implemented using UHDR with a 215nA nozzle beam current. The QA pattern that covers a central uniform field area, various spot spacings, spot delivery modes and scanning directions, and enabling the assessment of absolute, relative and temporal dosimetry QA parameters. A strip ionization chamber array (SICA) and an Advanced Markus chamber were utilized in conjunction with a 2 cm polyethylene slab and a range (R80) verification wedge. The data have been monitored for over 3 months. RESULTS The relative dosimetries were compliant with TG-224. The variations of temporal dosimetry for scanning speed, spot dwell time, and spot transition time were within ± 1 mm/ms, ± 0.2 ms, and ± 0.2 ms, respectively. While the beam-to-beam absolute output on the same day reached up to 2.14%, the day-to-day variation was as high as 9.69%. High correlation between the absolute dose and dose rate fluctuations were identified. The dose rate of the central 5 × 5 cm2 field exhibited variations within 5% of the baseline value (155 Gy/s) during an experimental session. CONCLUSIONS A comprehensive QA program for FLASH-RT was developed and effectively assesses the performance of a UHDR delivery system. Establishing tolerances to unify standards and offering direction for future advancements in the evolving FLASH-RT field.
Collapse
Affiliation(s)
| | - Yunjie Yang
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Mengjou Wu
- New York Proton CenterNew YorkNew YorkUSA
| | | | - Francis Yu
- New York Proton CenterNew YorkNew YorkUSA
| | | | | | - Wolfgang A. Tomé
- Department of Radiation OncologyMontefiore Medical Center and Albert Einstein College of MedicineBronxNew YorkUSA
| | - Haibo Lin
- New York Proton CenterNew YorkNew YorkUSA
- Department of Radiation OncologyMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Department of Radiation OncologyMontefiore Medical Center and Albert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
28
|
Held KD, McNamara AL, Daartz J, Bhagwat MS, Rothwell B, Schuemann J. Dose Rate Effects from the 1950s through to the Era of FLASH. Radiat Res 2024; 202:161-176. [PMID: 38954556 PMCID: PMC11426361 DOI: 10.1667/rade-24-00024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
Numerous dose rate effects have been described over the past 6-7 decades in the radiation biology and radiation oncology literature depending on the dose rate range being discussed. This review focuses on the impact and understanding of altering dose rates in the context of radiation therapy, but does not discuss dose rate effects as relevant to radiation protection. The review starts with a short historic review of early studies on dose rate effects, considers mechanisms thought to underlie dose rate dependencies, then discusses some current issues in clinical findings with altered dose rates, the importance of dose rate in brachytherapy, and the current timely topic of the use of very high dose rates, so-called FLASH radiotherapy. The discussion includes dose rate effects in vitro in cultured cells, in in vivo experimental systems and in the clinic, including both tumors and normal tissues. Gaps in understanding dose rate effects are identified, as are opportunities for improving clinical use of dose rate modulation.
Collapse
Affiliation(s)
- Kathryn D Held
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
- National Council on Radiation Protection and Measurements, Bethesda, Maryland 20814
| | - Aimee L McNamara
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Juliane Daartz
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Mandar S Bhagwat
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Bethany Rothwell
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital Hospital/Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
29
|
Dai T, Sloop AM, Schönfeld A, Flatten V, Kozelka J, Hildreth J, Bill S, Sunnerberg JP, Clark MA, Jarvis L, Pogue BW, Bruza P, Gladstone DJ, Zhang R. Electron beam response corrections for an ultra-high-dose-rate capable diode dosimeter. Med Phys 2024; 51:5738-5745. [PMID: 38762909 PMCID: PMC11752437 DOI: 10.1002/mp.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Ultra-high-dose-rate (UHDR) electron beams have been commonly utilized in FLASH studies and the translation of FLASH Radiotherapy (RT) to the clinic. The EDGE diode detector has potential use for UHDR dosimetry albeit with a beam energy dependency observed. PURPOSE The purpose is to present the electron beam response for an EDGE detector in dependence on beam energy, to characterize the EDGE detector's response under UHDR conditions, and to validate correction factors derived from the first detailed Monte Carlo model of the EDGE diode against measurements, particularly under UHDR conditions. METHODS Percentage depth doses (PDDs) for the UHDR Mobetron were measured with both EDGE detectors and films. A detailed Monte Carlo (MC) model of the EDGE detector has been configured according to the blueprint provided by the manufacturer under an NDA agreement. Water/silicon dose ratios of EDGE detector for a series of mono-energetic electron beams have been calculated. The dependence of the water/silicon dose ratio on depth for a FLASH relevant electron beam was also studied. An analytical approach for the correction of PDD measured with EDGE detectors was established. RESULTS Water/silicon dose ratio decreased with decreasing electron beam energy. For the Mobetron 9 MeV UHDR electron beam, the ratio decreased from 1.09 to 1.03 in the build-up region, maintained in range of 0.98-1.02 at the fall-off region and raised to a plateau in value of 1.08 at the tail. By applying the corrections, good agreement between the PDDs measured by the EDGE detector and those measured with film was achieved. CONCLUSIONS Electron beam response of an UHDR capable EDGE detector was derived from first principles utilizing a sophisticated MC model. An analytical approach was validated for the PDDs of UHDR electron beams. The results demonstrated the capability of EDGE detector in measuring PDDs of UHDR electron beams.
Collapse
Affiliation(s)
- Tianyuan Dai
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China
| | - Austin M. Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | | | | | | | - Simon Bill
- Sun Nuclear Corp, Melbourne, Florida, USA
| | - Jacob P. Sunnerberg
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Megan A. Clark
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Lesley Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Radiation Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
30
|
Sloop A, Ashraf MR, Rahman M, Sunnerberg J, Dexter CA, Thompson L, Gladstone DJ, Pogue BW, Bruza P, Zhang R. Rapid Switching of a C-Series Linear Accelerator Between Conventional and Ultrahigh-Dose-Rate Research Mode With Beamline Modifications and Output Stabilization. Int J Radiat Oncol Biol Phys 2024; 119:1317-1325. [PMID: 38552990 DOI: 10.1016/j.ijrobp.2024.01.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/24/2023] [Accepted: 01/28/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE In this study, a C-series linear accelerator was configured to enable rapid and reliable conversion between the production of conventional electron beams and an ultrahigh-dose-rate (UHDR) electron beamline to the treatment room isocenter for FLASH radiation therapy. Efforts to tune the beam resulted in a consistent, stable UHDR beamline. METHODS AND MATERIALS The linear accelerator was configured to allow for efficient switching between conventional and modified electron output modes within 2 minutes. Additions to the air system allow for retraction of the x-ray target from the beamline when the 10 MV photon mode is selected. With the carousel set to an empty port, this grants access to the higher current pristine electron beam normally used to produce clinical photon fields. Monitoring signals related to the automatic frequency control system allows for tuning of the waveguide while the machine is in a hold state so a stable beam is produced from the initial pulse. A pulse counting system implemented on an field-programmable gate array-based controller platform controls the delivery to a desired number of pulses. Beam profiles were measured with Gafchromic film. Pulse-by-pulse dosimetry was measured using a custom electrometer designed around the EDGE diode. RESULTS This method reliably produces a stable UHDR electron beam. Open-field measurements of the 16-cm full-width, half-maximum gaussian beam saw average dose rates of 432 Gy/s at treatment isocenter. Pulse overshoots were limited and ramp up was eliminated. Over the last year, there have been no recorded incidents that resulted in machine downtime due to the UHDR conversions. CONCLUSIONS Stable 10 MeV UHDR beams were generated to produce an average dose rate of 432 Gy/s at the treatment room isocenter. With a reliable pulse-counting beam control system, consistent doses can be delivered for FLASH experiments with the ability to accommodate a wide range of field sizes, source-to-surface distances, and other experimental apparatus that may be relevant for future clinical translation.
Collapse
Affiliation(s)
- Austin Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - M Ramish Ashraf
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Jacob Sunnerberg
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | | | | | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Dartmouth Health, New Hampshire, Lebanon; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire.
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Department of Radiation Medicine, New York Medical College, Valhalla, New York
| |
Collapse
|
31
|
Chow JCL, Ruda HE. Impact of Scattering Foil Composition on Electron Energy Distribution in a Clinical Linear Accelerator Modified for FLASH Radiotherapy: A Monte Carlo Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3355. [PMID: 38998435 PMCID: PMC11243336 DOI: 10.3390/ma17133355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
This study investigates how scattering foil materials and sampling holder placement affect electron energy distribution in electron beams from a modified medical linear accelerator for FLASH radiotherapy. We analyze electron energy spectra at various positions-ionization chamber, mirror, and jaw-to evaluate the impact of Cu, Pb-Cu, Pb, and Ta foils. Our findings show that close proximity to the source intensifies the dependence of electron energy distribution on foil material, enabling precise beam control through material selection. Monte Carlo simulations are effective for designing foils to achieve desired energy distributions. Moving the sampling holder farther from the source reduces foil material influence, promoting more uniform energy spreads, particularly in the 0.5-10 MeV range for 12 MeV electron beams. These insights emphasize the critical role of tailored material selection and sampling holder positioning in optimizing electron energy distribution and fluence intensity for FLASH radiotherapy research, benefiting both experimental design and clinical applications.
Collapse
Affiliation(s)
- James C L Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Harry E Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| |
Collapse
|
32
|
Mossahebi S, Byrne K, Jiang K, Gerry A, Deng W, Repetto C, Jackson IL, Sawant A, Poirier Y. A high-throughput focused collimator for OAR-sparing preclinical proton FLASH studies: commissioning and validation. Phys Med Biol 2024; 69:14NT01. [PMID: 38876112 DOI: 10.1088/1361-6560/ad589f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Objective. To fabricate and validate a novel focused collimator designed to spare normal tissue in a murine hemithoracic irradiation model using 250 MeV protons delivered at ultra-high dose rates (UHDRs) for preclinical FLASH radiation therapy (FLASH-RT) studies.Approach. A brass collimator was developed to shape 250 MeV UHDR protons from our Varian ProBeam. Six 13 mm apertures, of equivalent size to kV x-ray fields historically used to perform hemithorax irradiations, were precisely machined to match beam divergence, allowing concurrent hemithoracic irradiation of six mice while sparing the contralateral lung and abdominal organs. The collimated field profiles were characterized by film dosimetry, and a radiation survey of neutron activation was performed to ensure the safety of staff positioning animals.Main results. The brass collimator produced 1.2 mm penumbrae radiation fields comparable to kV x-rays used in preclinical studies. The penumbrae in the six apertures are similar, with full-width half-maxima of 13.3 mm and 13.5 mm for the central and peripheral apertures, respectively. The collimator delivered a similar dose at an average rate of 52 Gy s-1for all apertures. While neutron activation produces a high (0.2 mSv h-1) initial ambient equivalent dose rate, a parallel work-flow in which imaging and setup are performed without the collimator ensures safety to staff.Significance. Scanned protons have the greatest potential for future translation of FLASH-RT in clinical treatments due to their ability to treat deep-seated tumors with high conformality. However, the Gaussian distribution of dose in proton spots produces wider lateral penumbrae compared to other modalities. This presents a challenge in small animal pre-clinical studies, where millimeter-scale penumbrae are required to precisely target the intended volume. Offering high-throughput irradiation of mice with sharp penumbrae, our novel collimator-based platform serves as an important benchmark for enabling large-scale, cost-effective radiobiological studies of the FLASH effect in murine models.
Collapse
Affiliation(s)
- Sina Mossahebi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Kevin Byrne
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Kai Jiang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Andrew Gerry
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Wei Deng
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Carlo Repetto
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Isabel L Jackson
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
- True North Biopharm, LLC, Rockville, MD, United States of America
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
33
|
Fu J, Yang Z, Melemenidis S, Viswanathan V, Dutt S, Manjappa R, Lau B, Soto LA, Ashraf MR, Skinner L, Yu SJ, Surucu M, Casey KM, Rankin EB, Graves E, Lu W, Loo BW, Gu X. Exploring Deep Learning for Estimating the Isoeffective Dose of FLASH Irradiation From Mouse Intestinal Histological Images. Int J Radiat Oncol Biol Phys 2024; 119:1001-1010. [PMID: 38171387 DOI: 10.1016/j.ijrobp.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/09/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE Ultrahigh-dose-rate (FLASH) irradiation has been reported to reduce normal tissue damage compared with conventional dose rate (CONV) irradiation without compromising tumor control. This proof-of-concept study aims to develop a deep learning (DL) approach to quantify the FLASH isoeffective dose (dose of CONV that would be required to produce the same effect as the given physical FLASH dose) with postirradiation mouse intestinal histology images. METHODS AND MATERIALS Eighty-four healthy C57BL/6J female mice underwent 16 MeV electron CONV (0.12 Gy/s; n = 41) or FLASH (200 Gy/s; n = 43) single fraction whole abdominal irradiation. Physical dose ranged from 12 to 16 Gy for FLASH and 11 to 15 Gy for CONV in 1 Gy increments. Four days after irradiation, 9 jejunum cross-sections from each mouse were hematoxylin and eosin stained and digitized for histological analysis. CONV data set was randomly split into training (n = 33) and testing (n = 8) data sets. ResNet101-based DL models were retrained using the CONV training data set to estimate the dose based on histological features. The classical manual crypt counting (CC) approach was implemented for model comparison. Cross-section-wise mean squared error was computed to evaluate the dose estimation accuracy of both approaches. The validated DL model was applied to the FLASH data set to map the physical FLASH dose into the isoeffective dose. RESULTS The DL model achieved a cross-section-wise mean squared error of 0.20 Gy2 on the CONV testing data set compared with 0.40 Gy2 of the CC approach. Isoeffective doses estimated by the DL model for FLASH doses of 12, 13, 14, 15, and 16 Gy were 12.19 ± 0.46, 12.54 ± 0.37, 12.69 ± 0.26, 12.84 ± 0.26, and 13.03 ± 0.28 Gy, respectively. CONCLUSIONS Our proposed DL model achieved accurate CONV dose estimation. The DL model results indicate that in the physical dose range of 13 to 16 Gy, the biologic dose response of small intestinal tissue to FLASH irradiation is represented by a lower isoeffective dose compared with the physical dose. Our DL approach can be a tool for studying isoeffective doses of other radiation dose modifying interventions.
Collapse
Affiliation(s)
- Jie Fu
- Department of Radiation Oncology, University of Washington, Seattle, Washington; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Zi Yang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Luis A Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Shu-Jung Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, California
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Edward Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Weiguo Lu
- Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| | - Xuejun Gu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
34
|
Garibaldi C, Beddar S, Bizzocchi N, Tobias Böhlen T, Iliaskou C, Moeckli R, Psoroulas S, Subiel A, Taylor PA, Van den Heuvel F, Vanreusel V, Verellen D. Minimum and optimal requirements for a safe clinical implementation of ultra-high dose rate radiotherapy: A focus on patient's safety and radiation protection. Radiother Oncol 2024; 196:110291. [PMID: 38648991 DOI: 10.1016/j.radonc.2024.110291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/28/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicola Bizzocchi
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Charoula Iliaskou
- Division of Medical Physics, Department of Radiation Oncology, University Medical Center Freiburg, 79106, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institut, Villigen, Switzerland
| | - Anna Subiel
- National Physical Laboratory, Medical Radiation Science, Teddington, UK
| | - Paige A Taylor
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Van den Heuvel
- Zuidwest Radiotherapeutisch Institute, Vlissingen, the Netherlands; Dept of Oncology, University of Oxford, Oxford, UK
| | - Verdi Vanreusel
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium; SCK CEN (Research in Dosimetric Applications), Mol, Belgium
| | - Dirk Verellen
- Iridium Netwerk, Antwerp University (Centre for Oncological Research, CORE), Antwerpen, Belgium
| |
Collapse
|
35
|
Wanstall HC, Korysko P, Farabolini W, Corsini R, Bateman JJ, Rieker V, Hemming A, Henthorn NT, Merchant MJ, Santina E, Chadwick AL, Robertson C, Malyzhenkov A, Jones RM. VHEE FLASH sparing effect measured at CLEAR, CERN with DNA damage of pBR322 plasmid as a biological endpoint. Sci Rep 2024; 14:14803. [PMID: 38926450 PMCID: PMC11208499 DOI: 10.1038/s41598-024-65055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Ultra-high dose rate (UHDR) irradiation has been shown to have a sparing effect on healthy tissue, an effect known as 'FLASH'. This effect has been studied across several radiation modalities, including photons, protons and clinical energy electrons, however, very little data is available for the effect of FLASH with Very High Energy Electrons (VHEE). pBR322 plasmid DNA was used as a biological model to measure DNA damage in response to Very High Energy Electron (VHEE) irradiation at conventional (0.08 Gy/s), intermediate (96 Gy/s) and ultra-high dose rates (UHDR, (2 × 109 Gy/s) at the CERN Linear Electron Accelerator (CLEAR) user facility. UHDRs were used to determine if the biological FLASH effect could be measured in the plasmid model, within a hydroxyl scavenging environment. Two different concentrations of the hydroxyl radical scavenger Tris were used in the plasmid environment to alter the proportions of indirect damage, and to replicate a cellular scavenging capacity. Indirect damage refers to the interaction of ionising radiation with molecules and species to generate reactive species which can then attack DNA. UHDR irradiated plasmid was shown to have significantly reduced amounts of damage in comparison to conventionally irradiated, where single strand breaks (SSBs) was used as the biological endpoint. This was the case for both hydroxyl scavenging capacities. A reduced electron energy within the VHEE range was also determined to increase the DNA damage to pBR322 plasmid. Results indicate that the pBR322 plasmid model can be successfully used to explore and test the effect of UHDR regimes on DNA damage. This is the first study to report FLASH sparing with VHEE, with induced damage to pBR322 plasmid DNA as the biological endpoint. UHDR irradiated plasmid had reduced amounts of DNA single-strand breaks (SSBs) in comparison with conventional dose rates. The magnitude of the FLASH sparing was a 27% reduction in SSB frequency in a 10 mM Tris environment and a 16% reduction in a 100 mM Tris environment.
Collapse
Affiliation(s)
- Hannah C Wanstall
- Department of Physics and Astronomy, Faculty of Science and Engineering, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK.
- Daresbury Laboratory, The Cockcroft Institute, Daresbury, Warrington, WA4 4AD, UK.
| | - Pierre Korysko
- University of Oxford, Oxford, OX1 2JD, UK
- CERN, Geneva, 1211, Geneva 23, Switzerland
| | | | | | | | - Vilde Rieker
- CERN, Geneva, 1211, Geneva 23, Switzerland
- University of Oslo, 0316, Oslo, Norway
| | - Abigail Hemming
- Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Nicholas T Henthorn
- Manchester Academic Health Science Centre, Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Michael J Merchant
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Elham Santina
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | | | | | - Roger M Jones
- Department of Physics and Astronomy, Faculty of Science and Engineering, University of Manchester, Schuster Building, Oxford Road, Manchester, M13 9PL, UK
- Daresbury Laboratory, The Cockcroft Institute, Daresbury, Warrington, WA4 4AD, UK
| |
Collapse
|
36
|
Kutsaev SV, Agustsson R, Boucher S, Carriere P, Ghoniem N, Kaneta K, Kravchenko M, Li A, Moro A, Patel S, Sheng K. Feasibility study of high-power electron linac for clinical X-ray ROAD-FLASH therapy system. FRONTIERS IN MEDICAL ENGINEERING 2024; 2:1382025. [PMID: 39925363 PMCID: PMC11805532 DOI: 10.3389/fmede.2024.1382025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Introduction This study examines how a practical source of X-ray radiation, capable of delivering unprecedented X-ray of 100 Gy/s at 1 m for X-ray FLASH radiotherapy can be designed. Methods We proposed the design of a linac, capable of accelerating 18 MeV 8 mA electron beam with further conversion to bremsstrahlung X-rays. The design is based on L-band traveling wave accelerating structures with high power efficiency, operating in a short-burst/long-pulse regime that allows operating power supply in a regime, beyond its specifications. Results This study demonstrates the feasibility of a high-power linac for a clinical X-ray FLASH therapy system, using detailed analysis and simulations. Despite ~500x higher output than a standard clinical linac, the design utilizes available accelerator components for maximal practicality. Discussion Recent studies have demonstrated that the FLASH effect that allows to effectively kill tumor cells while sparing normal tissue occurs when large dose rates (≥40 Gy/s) are delivered in less than 1 s. Photons are very attractive since modest energies of several MeV are needed, which can be achieved with compact and cost-efficient accelerators. However, since the efficiency of electron-to-photon conversion is only a few percent, the required beam intensity must be an order of magnitude higher than that state-of-the-art accelerators can provide. The proposed ROAD-FLASH accelerator layout allows achieving both the FLASH dose rate and superior dose conformity, comparing to the similar projects. The current paper focuses on providing a technical roadmap for building an economical and practical linear accelerator for ROAD X-ray FLASH delivery.
Collapse
Affiliation(s)
| | | | - Salime Boucher
- RadiaBeam Technologies, LLC, Santa Monica, CA, United States
| | - Paul Carriere
- RadiaBeam Technologies, LLC, Santa Monica, CA, United States
| | - Nasr Ghoniem
- Digital Materials Solutions, Inc., Carlsbad, CA, United States
| | - Kenichi Kaneta
- RadiaBeam Technologies, LLC, Santa Monica, CA, United States
| | | | - Alan Li
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Adam Moro
- RadiaBeam Technologies, LLC, Santa Monica, CA, United States
| | - Sohun Patel
- Digital Materials Solutions, Inc., Carlsbad, CA, United States
| | - Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
37
|
Liu K, Holmes S, Schüler E, Beddar S. A comprehensive investigation of the performance of a commercial scintillator system for applications in electron FLASH radiotherapy. Med Phys 2024; 51:4504-4512. [PMID: 38507253 PMCID: PMC11147715 DOI: 10.1002/mp.17030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Dosimetry in ultra-high dose rate (UHDR) beamlines is significantly challenged by limitations in real-time monitoring and accurate measurement of beam output, beam parameters, and delivered doses using conventional radiation detectors, which exhibit dependencies in ultra-high dose-rate (UHDR) and high dose-per-pulse (DPP) beamline conditions. PURPOSE In this study, we characterized the response of the Exradin W2 plastic scintillator (Standard Imaging, Inc.), a water-equivalent detector that provides measurements with a time resolution of 100 Hz, to determine its feasibility for use in UHDR electron beamlines. METHODS The W2 scintillator was exposed to an UHDR electron beam with different beam parameters by varying the pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude settings of an electron UHDR linear accelerator system. The response of the W2 scintillator was evaluated as a function of the total integrated dose delivered, DPP, and mean and instantaneous dose rate. To account for detector radiation damage, the signal sensitivity (pC/Gy) of the W2 scintillator was measured and tracked as a function of dose history. RESULTS The W2 scintillator demonstrated mean dose rate independence and linearity as a function of integrated dose and DPP for DPP ≤ 1.5 Gy (R2 > 0.99) and PRF ≤ 90 Hz. At DPP > 1.5 Gy, nonlinear behavior and signal saturation in the blue and green signals as a function of DPP, PRF, and integrated dose became apparent. In the absence of Cerenkov correction, the W2 scintillator exhibited PW dependence, even at DPP values <1.5 Gy, with a difference of up to 31% and 54% in the measured blue and green signal for PWs ranging from 0.5 to 3.6 µs. The change in signal sensitivity of the W2 scintillator as a function of accumulated dose was approximately 4%/kGy and 0.3%/kGy for the measured blue and green signal responses, respectively, as a function of integrated dose history. CONCLUSION The Exradin W2 scintillator can provide output measurements that are both dose rate independent and linear in response if the DPP is kept ≤1.5 Gy (corresponding to a mean dose rate up to 290 Gy/s in the used system), as long as proper calibration is performed to account for PW and changes in signal sensitivity as a function of accumulated dose. For DPP > 1.5 Gy, the W2 scintillator's response becomes nonlinear, likely due to limitations in the electrometer related to the high signal intensity.
Collapse
Affiliation(s)
- Kevin Liu
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Emil Schüler
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sam Beddar
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
38
|
Pageot C, Zerouali K, Guillet D, Muir B, Renaud J, Lalonde A. The effect of electron backscatter and charge build up in media on beam current transformer signal for ultra-high dose rate (FLASH) electron beam monitoring. Phys Med Biol 2024; 69:105016. [PMID: 38640916 DOI: 10.1088/1361-6560/ad40f7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/19/2024] [Indexed: 04/21/2024]
Abstract
Objective.Beam current transformers (BCT) are promising detectors for real-time beam monitoring in ultra-high dose rate (UHDR) electron radiotherapy. However, previous studies have reported a significant sensitivity of the BCT signal to changes in source-to-surface distance (SSD), field size, and phantom material which have until now been attributed to the fluctuating levels of electrons backscattered within the BCT. The purpose of this study is to evaluate this hypothesis, with the goal of understanding and mitigating the variations in BCT signal due to changes in irradiation conditions.Approach.Monte Carlo simulations and experimental measurements were conducted with a UHDR-capable intra-operative electron linear accelerator to analyze the impact of backscattered electrons on BCT signal. The potential influence of charge accumulation in media as a mechanism affecting BCT signal perturbation was further investigated by examining the effects of phantom conductivity and electrical grounding. Finally, the effectiveness of Faraday shielding to mitigate BCT signal variations is evaluated.Main Results.Monte Carlo simulations indicated that the fraction of electrons backscattered in water and on the collimator plastic at 6 and 9 MeV is lower than 1%, suggesting that backscattered electrons alone cannot account for the observed BCT signal variations. However, our experimental measurements confirmed previous findings of BCT response variation up to 15% for different field diameters. A significant impact of phantom type on BCT response was also observed, with variations in BCT signal as high as 14.1% when comparing measurements in water and solid water. The introduction of a Faraday shield to our applicators effectively mitigated the dependencies of BCT signal on SSD, field size, and phantom material.Significance.Our results indicate that variations in BCT signal as a function of SSD, field size, and phantom material are likely driven by an electric field originating in dielectric materials exposed to the UHDR electron beam. Strategies such as Faraday shielding were shown to effectively prevent these electric fields from affecting BCT signal, enabling reliable BCT-based electron UHDR beam monitoring.
Collapse
Affiliation(s)
- Charles Pageot
- École Polytechnique de Montréal, Montreal, QC, Canada
- Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, QC, Canada
| | - Karim Zerouali
- Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, QC, Canada
| | - Dominique Guillet
- Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, QC, Canada
| | - Bryan Muir
- National Research Council, Ottawa, ON, Canada
| | | | - Arthur Lalonde
- Centre Hospitalier de l'Université de Montreal (CHUM), Montreal, QC, Canada
- Université de Montréal , Montreal, QC, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Montreal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
39
|
Liu K, Waldrop T, Aguilar E, Mims N, Neill D, Delahoussaye A, Li Z, Swanson D, Lin SH, Koong AC, Taniguchi CM, Loo BW, Mitra D, Schüler E. Redefining FLASH RT: the impact of mean dose rate and dose per pulse in the gastrointestinal tract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590158. [PMID: 38712109 PMCID: PMC11071383 DOI: 10.1101/2024.04.19.590158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Background The understanding of how varying radiation beam parameter settings affect the induction and magnitude of the FLASH effect remains limited. Purpose We sought to evaluate how the magnitude of radiation-induced gastrointestinal (GI) toxicity (RIGIT) depends on the interplay between mean dose rate (MDR) and dose per pulse (DPP). Methods C57BL/6J mice were subjected to total abdominal irradiation (11-14 Gy single fraction) under conventional irradiation (low DPP and low MDR, CONV) and various combinations of DPP and MDR up to ultra-high-dose-rate (UHDR) beam conditions. The effects of DPP were evaluated for DPPs of 1-6 Gy while the total dose and MDR were kept constant; the effects of MDR were evaluated for the range 0.3- 1440 Gy/s while the total dose and DPP were kept constant. RIGIT was quantified in non-tumor-bearing mice through the regenerating crypt assay and survival assessment. Tumor response was evaluated through tumor growth delay. Results Within each tested total dose using a constant MDR (>100 Gy/s), increasing DPP led to better sparing of regenerating crypts, with a more prominent effect seen at 12 and 14 Gy TAI. However, at fixed DPPs >4 Gy, similar sparing of crypts was demonstrated irrespective of MDR (from 0.3 to 1440 Gy/s). At a fixed high DPP of 4.7 Gy, survival was equivalently improved relative to CONV for all MDRs from 0.3 Gy/s to 104 Gy/s, but at a lower DPP of 0.93 Gy, increasing MDR produced a greater survival effect. We also confirmed that high DPP, regardless of MDR, produced the same magnitude of tumor growth delay relative to CONV using a clinically relevant melanoma mouse model. Conclusions This study demonstrates the strong influence that the beam parameter settings have on the magnitude of the FLASH effect. Both high DPP and UHDR appeared independently sufficient to produce FLASH sparing of GI toxicity, while isoeffective tumor response was maintained across all conditions.
Collapse
|
40
|
Evin M, Koumeir C, Bongrand A, Delpon G, Haddad F, Mouchard Q, Potiron V, Saade G, Servagent N, Villoing D, Métivier V, Chiavassa S. Methodology for small animals targeted irradiations at conventional and ultra-high dose rates 65 MeV proton beam. Phys Med 2024; 120:103332. [PMID: 38518627 DOI: 10.1016/j.ejmp.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024] Open
Abstract
As part of translational research projects, mice may be irradiated on radiobiology platforms such as the one at the ARRONAX cyclotron. Generally, these platforms do not feature an integrated imaging system. Moreover, in the context of ultra-high dose-rate radiotherapy (FLASH-RT), treatment planning should consider potential changes in the beam characteristics and internal movements in the animal. A patient-like set-up and methodology has been implemented to ensure target coverage during conformal irradiations of the brain, lungs and intestines. In addition, respiratory cycle amplitudes were quantified by fluoroscopic acquisitions on a mouse, to ensure organ coverage and to assess the impact of respiration during FLASH-RT using the 4D digital phantom MOBY. Furthermore, beam incidence direction was studied from mice µCBCT and Monte Carlo simulations. Finally,in vivodosimetry with dose-rate independent radiochromic films (OC-1) and their LET dependency were investigated. The immobilization system ensures that the animal is held in a safe and suitable position. The geometrical evaluation of organ coverage, after the addition of the margins around the organs, was satisfactory. Moreover, no measured differences were found between CONV and FLASH beams enabling a single model of the beamline for all planning studies. Finally, the LET-dependency of the OC-1 film was determined and experimentally verified with phantoms, as well as the feasibility of using these filmsin vivoto validate the targeting. The methodology developed ensures accurate and reproducible preclinical irradiations in CONV and FLASH-RT without in-room image guidance in terms of positioning, dose calculation andin vivodosimetry.
Collapse
Affiliation(s)
- Manon Evin
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France.
| | - Charbel Koumeir
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France; GIP ARRONAX, Saint-Herblain, France
| | - Arthur Bongrand
- GIP ARRONAX, Saint-Herblain, France; Institut de Cancérologie de l'Ouest, site de Saint-Herblain, France
| | - Gregory Delpon
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France; Institut de Cancérologie de l'Ouest, site de Saint-Herblain, France
| | - Ferid Haddad
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France; GIP ARRONAX, Saint-Herblain, France
| | - Quentin Mouchard
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France
| | - Vincent Potiron
- Institut de Cancérologie de l'Ouest, site de Saint-Herblain, France; Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France
| | - Gaëlle Saade
- Nantes Université, CNRS, US2B, UMR 6286, F-44000 Nantes, France
| | - Noël Servagent
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France
| | - Daphnée Villoing
- Institut de Cancérologie de l'Ouest, site de Saint-Herblain, France
| | - Vincent Métivier
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France
| | - Sophie Chiavassa
- Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, F-44000 Nantes, France; Institut de Cancérologie de l'Ouest, site de Saint-Herblain, France
| |
Collapse
|
41
|
Cengel KA, Kim MM, Diffenderfer ES, Busch TM. FLASH Radiotherapy: What Can FLASH's Ultra High Dose Rate Offer to the Treatment of Patients With Sarcoma? Semin Radiat Oncol 2024; 34:218-228. [PMID: 38508786 DOI: 10.1016/j.semradonc.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
FLASH is an emerging treatment paradigm in radiotherapy (RT) that utilizes ultra-high dose rates (UHDR; >40 Gy)/s) of radiation delivery. Developing advances in technology support the delivery of UHDR using electron and proton systems, as well as some ion beam units (eg, carbon ions), while methods to achieve UHDR with photons are under investigation. The major advantage of FLASH RT is its ability to increase the therapeutic index for RT by shifting the dose response curve for normal tissue toxicity to higher doses. Numerous preclinical studies have been conducted to date on FLASH RT for murine sarcomas, alongside the investigation of its effects on relevant normal tissues of skin, muscle, and bone. The tumor control achieved by FLASH RT of sarcoma models is indistinguishable from that attained by treatment with standard RT to the same total dose. FLASH's high dose rates are able to mitigate the severity or incidence of RT side effects on normal tissues as evaluated by endpoints ranging from functional sparing to histological damage. Large animal studies and clinical trials of canine patients show evidence of skin sparing by FLASH vs. standard RT, but also caution against delivery of high single doses with FLASH that exceed those safely applied with standard RT. Also, a human clinical trial has shown that FLASH RT can be delivered safely to bone metastasis. Thus, data to date support continued investigations of clinical translation of FLASH RT for the treatment of patients with sarcoma. Toward this purpose, hypofractionated irradiation schemes are being investigated for FLASH effects on sarcoma and relevant normal tissues.
Collapse
Affiliation(s)
- Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania..
| | - Michele M Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric S Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Konradsson E, Ericsson Szecsenyi R, Wahlqvist P, Thoft A, Blad B, Bäck SÅ, Ceberg C, Petersson K. Reconfiguring a Plane-Parallel Transmission Ionization Chamber to Extend the Operating Range into the Ultra-High Dose-per-pulse Regime. Radiat Res 2024; 201:252-260. [PMID: 38308528 DOI: 10.1667/rade-23-00177.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
This study aims to investigate the feasibility of enhancing the charge collection efficiency (CCE) of a transmission chamber by reconfiguring its design and operation. The goal was to extend the range of dose-per-pulse (DPP) values with no or minimal recombination effects up to the ultra-high dose rate (UHDR) regime. The response of two transmission chambers, with electrode distance of 1 mm and 0.6 mm, respectively, was investigated as a function of applied voltage. The chambers were mounted one-by-one in the electron applicator of a 10 MeV FLASH-modified clinical linear accelerator. The chamber signals were measured as a function of nominal DPP, which was determined at the depth of dose maximum using EBT-XD film in solid water and ranged from 0.6 mGy per pulse to 0.9 Gy per pulse, for both the standard voltage of 320 V and the highest possible safe voltage of 1,200 V. The CCE was calculated and fitted with an empirical logistic function that incorporated the electrode distance and the chamber voltage. The CCE decreased with increased DPP. The CCE at the highest achievable DPP was 24% (36%) at 320 V and 51% (82%) at 1,200 V, for chambers with 1 mm (0.6 mm) electrode distance. For the combination of 1,200 V- and 0.6-mm electrode distance, the CCE was ∼100% for average dose rate up to 70 Gy/s at the depth of dose maximum in the phantom at a source-to-surface distance of 100 cm. Our findings indicate that minor modifications to a plane-parallel transmission chamber can substantially enhance the CCE and extending the chamber's operating range to the UHDR regime. This supports the potential of using transmission chamber-based monitoring solutions for UHDR beams, which could facilitate the delivery of UHDR treatments using an approach similar to conventional clinical delivery.
Collapse
Affiliation(s)
- Elise Konradsson
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Pontus Wahlqvist
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Andreas Thoft
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Börje Blad
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Sven Åj Bäck
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristoffer Petersson
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
43
|
Liu K, Velasquez B, Schüler E. Technical note: High-dose and ultra-high dose rate (UHDR) evaluation of Al 2 O 3 :C optically stimulated luminescent dosimeter nanoDots and powdered LiF:Mg,Ti thermoluminescent dosimeters for radiation therapy applications. Med Phys 2024; 51:2311-2319. [PMID: 37991111 PMCID: PMC10939935 DOI: 10.1002/mp.16832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Dosimetry in ultra-high dose rate (UHDR) electron beamlines poses a significant challenge owing to the limited usability of standard dosimeters in high dose and high dose-per-pulse (DPP) applications. PURPOSE In this study, Al2 O3 :C nanoDot optically stimulated luminescent dosimeters (OSLDs), single-use powder-based LiF:Mg,Ti thermoluminescent dosimeters (TLDs), and Gafchromic EBT3 film were evaluated at extended dose ranges (up to 40 Gy) in conventional dose rate (CONV) and UHDR beamlines to determine their usability for calibration and dose verification in the setting of FLASH radiation therapy. METHODS OSLDs and TLDs were evaluated against established dose-rate-independent Gafchromic EBT3 film with regard to the potential influence of mean dose rate, instantaneous dose rate, and DPP on signal response. The dosimeters were irradiated at CONV or UHDR conditions on a 9-MeV electron beam. Under UHDR conditions, different settings of pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude were used to characterize the individual dosimeters' response in order to isolate their potential dependencies on dose, dose rate, and DPP. RESULTS The OSLDs, TLDs, and Gafchromic EBT3 film were found to be suitable at a dose range of up to 40 Gy without any indication of saturation in signal. The response of OSLDs and TLDs in UHDR conditions were found to be independent of mean dose rate (up to 1440 Gy/s), instantaneous dose rate (up to 2 MGy/s), and DPP (up to 7 Gy), with uncertainties on par with nominal values established in CONV beamlines (± 4%). In cross-comparing the response of OSLDs, TLDs and Gafchromic film at dose rates of 0.18-245 Gy/s, the coefficient of variation or relative standard deviation in the measured dose between the three dosimeters (inter-dosimeter comparison) was found to be within 2%. CONCLUSIONS We demonstrated the dynamic range of OSLDs, TLDs, and Gafchromic film to be suitable up to 40 Gy, and we developed a protocol that can be used to accurately translate the measured signal in each respective dosimeter to dose. OSLDs and powdered TLDs were shown to be viable for dosimetric measurement in UHDR beamlines, providing dose measurements with accuracies on par with Gafchromic EBT3 film and their concurrent use demonstrating a means for redundant dosimetry in UHDR conditions.
Collapse
Affiliation(s)
- Kevin Liu
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Brett Velasquez
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emil Schüler
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
44
|
Kaulfers T, Lattery G, Cheng C, Zhao X, Selvaraj B, Wu H, Chhabra AM, Choi JI, Lin H, Simone CB, Hasan S, Kang M, Chang J. Pencil Beam Scanning Proton Bragg Peak Conformal FLASH in Prostate Cancer Stereotactic Body Radiotherapy. Cancers (Basel) 2024; 16:798. [PMID: 38398188 PMCID: PMC10886659 DOI: 10.3390/cancers16040798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Bragg peak FLASH radiotherapy (RT) uses a distal tracking method to eliminate exit doses and can achieve superior OAR sparing. This study explores the application of this novel method in stereotactic body radiotherapy prostate FLASH-RT. An in-house platform was developed to enable intensity-modulated proton therapy (IMPT) planning using a single-energy Bragg peak distal tracking method. The patients involved in the study were previously treated with proton stereotactic body radiotherapy (SBRT) using the pencil beam scanning (PBS) technique to 40 Gy in five fractions. FLASH plans were optimized using a four-beam arrangement to generate a dose distribution similar to the conventional opposing beams. All of the beams had a small angle of two degrees from the lateral direction to increase the dosimetry quality. Dose metrics were compared between the conventional PBS and the Bragg peak FLASH plans. The dose rate histogram (DRVH) and FLASH metrics of 40 Gy/s coverage (V40Gy/s) were investigated for the Bragg peak plans. There was no significant difference between the clinical and Bragg peak plans in rectum, bladder, femur heads, large bowel, and penile bulb dose metrics, except for Dmax. For the CTV, the FLASH plans resulted in a higher Dmax than the clinical plans (116.9% vs. 103.3%). For the rectum, the V40Gy/s reached 94% and 93% for 1 Gy dose thresholds in composite and single-field evaluations, respectively. Additionally, the FLASH ratio reached close to 100% after the application of the 5 Gy threshold in composite dose rate assessment. In conclusion, the Bragg peak distal tracking method can yield comparable plan quality in most OARs while preserving sufficient FLASH dose rate coverage, demonstrating that the ultra-high dose technique can be applied in prostate FLASH SBRT.
Collapse
Affiliation(s)
- Tyler Kaulfers
- Department of Physics and Astronomy, Hofstra University, Hempstead, NY 11549, USA; (T.K.); (G.L.)
| | - Grant Lattery
- Department of Physics and Astronomy, Hofstra University, Hempstead, NY 11549, USA; (T.K.); (G.L.)
| | - Chingyun Cheng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA;
| | - Xingyi Zhao
- New York Proton Center, 225 E 126th Street, New York, NY 10035, USA; (X.Z.); (B.S.); (A.M.C.); (J.I.C.); (H.L.); (S.H.)
| | - Balaji Selvaraj
- New York Proton Center, 225 E 126th Street, New York, NY 10035, USA; (X.Z.); (B.S.); (A.M.C.); (J.I.C.); (H.L.); (S.H.)
| | - Hui Wu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China;
| | - Arpit M. Chhabra
- New York Proton Center, 225 E 126th Street, New York, NY 10035, USA; (X.Z.); (B.S.); (A.M.C.); (J.I.C.); (H.L.); (S.H.)
| | - Jehee Isabelle Choi
- New York Proton Center, 225 E 126th Street, New York, NY 10035, USA; (X.Z.); (B.S.); (A.M.C.); (J.I.C.); (H.L.); (S.H.)
| | - Haibo Lin
- New York Proton Center, 225 E 126th Street, New York, NY 10035, USA; (X.Z.); (B.S.); (A.M.C.); (J.I.C.); (H.L.); (S.H.)
| | - Charles B. Simone
- New York Proton Center, 225 E 126th Street, New York, NY 10035, USA; (X.Z.); (B.S.); (A.M.C.); (J.I.C.); (H.L.); (S.H.)
| | - Shaakir Hasan
- New York Proton Center, 225 E 126th Street, New York, NY 10035, USA; (X.Z.); (B.S.); (A.M.C.); (J.I.C.); (H.L.); (S.H.)
| | - Minglei Kang
- New York Proton Center, 225 E 126th Street, New York, NY 10035, USA; (X.Z.); (B.S.); (A.M.C.); (J.I.C.); (H.L.); (S.H.)
| | - Jenghwa Chang
- Department of Physics and Astronomy, Hofstra University, Hempstead, NY 11549, USA; (T.K.); (G.L.)
- Northwell, 2000 Marcus Ave, Suite 300, New Hyde Park, NY 11042, USA
| |
Collapse
|
45
|
Byrne KE, Poirier Y, Xu J, Gerry A, Foley MJ, Jackson IL, Sawant A, Jiang K. Technical note: A small animal irradiation platform for investigating the dependence of the FLASH effect on electron beam parameters. Med Phys 2024; 51:1421-1432. [PMID: 38207016 DOI: 10.1002/mp.16909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The recent rediscovery of the FLASH effect, a normal tissue sparing phenomenon observed in ultra-high dose rate (UHDR) irradiations, has instigated a surge of research endeavors aiming to close the gap between experimental observation and clinical treatment. However, the dependences of the FLASH effect and its underpinning mechanisms on beam parameters are not well known, and large-scale in vivo studies using murine models of human cancer are needed for these investigations. PURPOSE To commission a high-throughput, variable dose rate platform providing uniform electron fields (≥15 cm diameter) at conventional (CONV) and UHDRs for in vivo investigations of the FLASH effect and its dependences on pulsed electron beam parameters. METHODS A murine whole-thoracic lung irradiation (WTLI) platform was constructed using a 1.3 cm thick Cerrobend collimator forming a 15 × 1.6 cm2 slit. Control of dose and dose rate were realized by adjusting the number of monitor units and couch vertical position, respectively. Achievable doses and dose rates were investigated using Gafchromic EBT-XD film at 1 cm depth in solid water and lung-density phantoms. Percent depth dose (PDD) and dose profiles at CONV and various UHDRs were also measured at depths from 0 to 2 cm. A radiation survey was performed to assess radioactivation of the Cerrobend collimator by the UHDR electron beam in comparison to a precision-machined copper alternative. RESULTS This platform allows for the simultaneous thoracic irradiation of at least three mice. A linear relationship between dose and number of monitor units at a given UHDR was established to guide the selection of dose, and an inverse-square relationship between dose rate and source distance was established to guide the selection of dose rate between 20 and 120 Gy·s-1 . At depths of 0.5 to 1.5 cm, the depth range relevant to murine lung irradiation, measured PDDs varied within ±1.5%. Similar lateral dose profiles were observed at CONV and UHDRs with the dose penumbrae widening from 0.3 mm at 0 cm depth to 5.1 mm at 2.0 cm. The presence of lung-density plastic slabs had minimal effect on dose distributions as compared to measurements made with only solid water slabs. Instantaneous dose rate measurements of the activated copper collimator were up to two orders of magnitude higher than that of the Cerrobend collimator. CONCLUSIONS A high-throughput, variable dose rate platform has been developed and commissioned for murine WTLI electron FLASH radiotherapy. The wide field of our UHDR-enabled linac allows for the simultaneous WTLI of at least three mice, and for the average dose rate to be modified by changing the source distance, without affecting dose distribution. The platform exhibits uniform, and comparable dose distributions at CONV and UHDRs up to 120 Gy·s-1 , owing to matched and flattened 16 MeV CONV and UHDR electron beams. Considering radioactivation and exposure to staff, Cerrobend collimators are recommended above copper alternatives for electron FLASH research. This platform enables high-throughput animal irradiation, which is preferred for experiments using a large number of animals, which are required to effectively determine UHDR treatment efficacies.
Collapse
Affiliation(s)
- Kevin E Byrne
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physics, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Junliang Xu
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrew Gerry
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mark J Foley
- Department of Physics, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Isabel Lauren Jackson
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kai Jiang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
46
|
Cetnar AJ, Jain S, Gupta N, Chakravarti A. Technical note: Commissioning of a linear accelerator producing ultra-high dose rate electrons. Med Phys 2024; 51:1415-1420. [PMID: 38159300 DOI: 10.1002/mp.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Ultra-high dose rate radiation (UHDR) is being explored by researchers in promise of advancing radiation therapy treatments. PURPOSE This work presents the commissioning of Varian's Flash Extension for research (FLEX) conversion of a Clinac to deliver UHDR electrons. METHODS A Varian Clinac iX with the FLEX conversion was commissioned for non-clinical research use with 16 MeV UHDR (16H) energy. This involved addition of new hardware, optimizing the electron gun voltages, radiofrequency (RF) power, and steering coils in order to maximize the accelerated electron beam current, sending the beam through custom scattering foils to produce the UHDR with 16H beam. Profiles and percent depth dose (PDD) measurements for 16H were obtained using radiochromic film in a custom vertical film holder and were compared to 16 MeV conventional electrons (16C). Dose rate and dose per pulse (DPP) were calculated from measured dose in film. Linearity and stability were assessed using an Advanced Markus ionization chamber. RESULTS Energies for 16H and 16C had similar beam quality based on PDD measurements. Measurements at the head of the machine (61.3 cm SSD) with jaws set to 10×10 cm2 showed the FWHM of the profile as 7.2 cm, with 3.4 Gy as the maximum DPP and instantaneous dose rate of 8.1E5 Gy/s. Measurements at 100 cm SSD with 10 cm standard cone showed the full width at half max (FWHM) of the profile as 10.5 cm, 1.08 Gy as the maximum DPP and instantaneous dose rate of 2.E5 Gy/s. Machine output with number of pulses was linear (R = 1) from 1 to 99 delivered pulses. Output stability was measured within ±1% within the same session and within ±2% for daily variations. CONCLUSIONS The FLEX conversion of the Clinac is able to generate UHDR electron beams which are reproducible with beam properties similar to clinically used electrons at 16 MeV. Having a platform which can quickly transition between UHDR and conventional modes (<1 min) can be advantageous for future research applications.
Collapse
Affiliation(s)
- Ashley J Cetnar
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sagarika Jain
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Nilendu Gupta
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
47
|
Oh K, Gallagher KJ, Hyun M, Schott D, Wisnoskie S, Lei Y, Hendley S, Wong J, Wang S, Graff B, Jenkins C, Rutar F, Ahmed M, McNeur J, Taylor J, Schmidt M, Senadheera L, Smith W, Umstadter D, Lele SM, Dai R, Jianghu (James) D, Yan Y, Su‐min Z. Initial experience with an electron FLASH research extension (FLEX) for the Clinac system. J Appl Clin Med Phys 2024; 25:e14159. [PMID: 37735808 PMCID: PMC10860433 DOI: 10.1002/acm2.14159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
PURPOSE Radiotherapy delivered at ultra-high-dose-rates (≥40 Gy/s), that is, FLASH, has the potential to effectively widen the therapeutic window and considerably improve the care of cancer patients. The underlying mechanism of the FLASH effect is not well understood, and commercial systems capable of delivering such dose rates are scarce. The purpose of this study was to perform the initial acceptance and commissioning tests of an electron FLASH research product for preclinical studies. METHODS A linear accelerator (Clinac 23EX) was modified to include a non-clinical FLASH research extension (the Clinac-FLEX system) by Varian, a Siemens Healthineers company (Palo Alto, CA) capable of delivering a 16 MeV electron beam with FLASH and conventional dose rates. The acceptance, commissioning, and dosimetric characterization of the FLEX system was performed using radiochromic film, optically stimulated luminescent dosimeters, and a plane-parallel ionization chamber. A radiation survey was conducted for which the shielding of the pre-existing vault was deemed sufficient. RESULTS The Clinac-FLEX system is capable of delivering a 16 MeV electron FLASH beam of approximately 1 Gy/pulse at isocenter and reached a maximum dose rate >3.8 Gy/pulse near the upper accessory mount on the linac gantry. The percent depth dose curves of the 16 MeV FLASH and conventional modes for the 10 × 10 cm2 applicator agreed within 0.5 mm at a range of 50% of the maximum dose. Their respective profiles agreed well in terms of flatness but deviated for field sizes >10 × 10 cm2 . The output stability of the FLASH system exhibited a dose deviation of <1%. Preliminary cell studies showed that the FLASH dose rate (180 Gy/s) had much less impact on the cell morphology of 76N breast normal cells compared to the non-FLASH dose rate (18 Gy/s), which induced large-size cells. CONCLUSION Our studies characterized the non-clinical Clinac-FLEX system as a viable solution to conduct FLASH research that could substantially increase access to ultra-high-dose-rate capabilities for scientists.
Collapse
Affiliation(s)
- Kyuhak Oh
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Megan Hyun
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Diane Schott
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Yu Lei
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Jeffrey Wong
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shuo Wang
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Brendan Graff
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Frank Rutar
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Md Ahmed
- Varian Medical SystemsPalo AltoCaliforniaUSA
| | | | | | | | | | - Wendy Smith
- Varian Medical SystemsPalo AltoCaliforniaUSA
| | | | | | - Ran Dai
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Ying Yan
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Zhou Su‐min
- University of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
48
|
Konradsson E, Wahlqvist P, Thoft A, Blad B, Bäck S, Ceberg C, Petersson K. Beam control system and output fine-tuning for safe and precise delivery of FLASH radiotherapy at a clinical linear accelerator. Front Oncol 2024; 14:1342488. [PMID: 38304871 PMCID: PMC10830783 DOI: 10.3389/fonc.2024.1342488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction We have previously adapted a clinical linear accelerator (Elekta Precise, Elekta AB) for ultra-high dose rate (UHDR) electron delivery. To enhance reliability in future clinical FLASH radiotherapy trials, the aim of this study was to introduce and evaluate an upgraded beam control system and beam tuning process for safe and precise UHDR delivery. Materials and Methods The beam control system is designed to interrupt the beam based on 1) a preset number of monitor units (MUs) measured by a monitor detector, 2) a preset number of pulses measured by a pulse-counting diode, or 3) a preset delivery time. For UHDR delivery, an optocoupler facilitates external control of the accelerator's thyratron trigger pulses. A beam tuning process was established to maximize the output. We assessed the stability of the delivery, and the independent interruption capabilities of the three systems (monitor detector, pulse counter, and timer). Additionally, we explored a novel approach to enhance dosimetric precision in the delivery by synchronizing the trigger pulse with the charging cycle of the pulse forming network (PFN). Results Improved beam tuning of gun current and magnetron frequency resulted in average dose rates at the dose maximum at isocenter distance of >160 Gy/s or >200 Gy/s, with or without an external monitor chamber in the beam path, respectively. The delivery showed a good repeatability (standard deviation (SD) in total film dose of 2.2%) and reproducibility (SD in film dose of 2.6%). The estimated variation in DPP resulted in an SD of 1.7%. The output in the initial pulse depended on the PFN delay time. Over the course of 50 measurements employing PFN synchronization, the absolute percentage error between the delivered number of MUs calculated by the monitor detector and the preset MUs was 0.8 ± 0.6% (mean ± SD). Conclusion We present an upgraded beam control system and beam tuning process for safe and stable UHDR electron delivery of hundreds of Gy/s at isocenter distance at a clinical linac. The system can interrupt the beam based on monitor units and utilize PFN synchronization for improved dosimetric precision in the dose delivery, representing an important advancement toward reliable clinical FLASH trials.
Collapse
Affiliation(s)
- Elise Konradsson
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Pontus Wahlqvist
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Andreas Thoft
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Börje Blad
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Sven Bäck
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristoffer Petersson
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Galts A, Hammi A. FLASH radiotherapy sparing effect on the circulating lymphocytes in pencil beam scanning proton therapy: impact of hypofractionation and dose rate. Phys Med Biol 2024; 69:025006. [PMID: 38081067 DOI: 10.1088/1361-6560/ad144e] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024]
Abstract
Purpose. The sparing effect of ultra-high dose rate (FLASH) radiotherapy has been reported, but its potential to mitigate depletion of circulating blood and lymphocytes (CL) has not been investigated in pencil-beam scanning-based (PBS) proton therapy, which could potentially reduce the risk of radiation-induced lymphopenia.Material and methods. A time-dependent framework was used to score the dose to the CL during the course of radiotherapy. For brain patients, cerebral vasculatures were semi-automatic segmented from 3T MR-angiography data. A dynamic beam delivery system was developed capable of simulating spatially varying instantaneous dose rates of PBS treatment plans, and which is based on realistic beam delivery parameters that are available clinically. We simulated single and different hypofractionated PBS intensity modulated proton therapy (IMPT) FLASH schemes using 600 nA beam current along with conventionally fractionated IMPT treatment plan at 2 nA beam current. The dosimetric impact of treatment schemes on CL was quantified, and we also evaluated the depletion in subsets of CL based on their radiosensitivity.Results. The proton FLASH sparing effect on CL was observed. In single-fraction PBS FLASH, just 1.5% of peripheral blood was irradiated, whereas hypofractionated FLASH irradiated 7.3% of peripheral blood. In contrast, conventional fractionated IMPT exposed 42.4% of peripheral blood to radiation. PBS FLASH reduced the depletion rate of CL by 69.2% when compared to conventional fractionated IMPT.Conclusion. Our dosimetric blood flow model provides quantitative measures of the PBS FLASH sparing effect on the CL in radiotherapy for brain cancer. FLASH Single treatment fraction offers superior CL sparing when compared to hypofractionated FLASH and conventional IMPT, supporting assumptions about reducing risks of lymphopenia compared to proton therapy at conventional dose rates. The results also indicate that faster conformal FLASH delivery, such as passive patient-specific energy modulation, may further enhance the sparing of the immune system.
Collapse
|
50
|
Liu K, Holmes S, Hooten B, Schüler E, Beddar S. Evaluation of ion chamber response for applications in electron FLASH radiotherapy. Med Phys 2024; 51:494-508. [PMID: 37696271 PMCID: PMC10840726 DOI: 10.1002/mp.16726] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
Ion chambers are required for calibration and reference dosimetry applications in radiation therapy (RT). However, exposure of ion chambers in ultra-high dose rate (UHDR) conditions pertinent to FLASH-RT leads to severe saturation and ion recombination, which limits their performance and usability. The purpose of this study was to comprehensively evaluate a set of commonly used commercially available ion chambers in RT, all with different design characteristics, and use this information to produce a prototype ion chamber with improved performance in UHDR conditions as a first step toward ion chambers specific for FLASH-RT. The Advanced Markus and Exradin A10, A26, and A20 ion chambers were evaluated. The chambers were placed in a water tank, at a depth of 2 cm, and exposed to an UHDR electron beam at different pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude settings on an IntraOp Mobetron. Ion chamber responses were investigated for the various beam parameter settings to isolate their dependence on integrated dose, mean dose rate and instantaneous dose rate, dose-per-pulse (DPP), and their design features such as chamber type, bias voltage, and collection volume. Furthermore, a thin parallel-plate (TPP) prototype ion chamber with reduced collector plate separation and volume was constructed and equally evaluated as the other chambers. The charge collection efficiency of the investigated ion chambers decreased with increasing DPP, whereas the mean dose rate did not affect the response of the chambers (± 1%). The dependence of the chamber response on DPP was found to be solely related to the total dose within the pulse, and not on mean dose rate, PW, or instantaneous dose rate within the ranges investigated. The polarity correction factor (Ppol ) values of the TPP prototype, A10, and Advanced Markus chambers were found to be independent of DPP and dose rate (± 2%), while the A20 and A26 chambers yielded significantly larger variations and dependencies under the same conditions. Ion chamber performance evaluated under different irradiation conditions of an UHDR electron beam revealed a strong dependence on DPP and a negligible dependence on the mean and instantaneous dose rates. These results suggest that modifications to ion chambers design to improve their usability in UHDR beamlines should focus on minimizing DPP effects, with emphasis on optimizing the electric field strength, through the construction of smaller electrode separation and larger bias voltages. This was confirmed through the production and evaluation of a prototype ion chamber specifically designed with these characteristics.
Collapse
Affiliation(s)
- Kevin Liu
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | | | | | - Emil Schüler
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | - Sam Beddar
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| |
Collapse
|