1
|
Grahvendy M, Brown B, Wishart LR. Adverse Event Reporting in Cancer Clinical Trials: Incorporating Patient-Reported Methods. A Systematic Scoping Review. THE PATIENT 2024; 17:335-347. [PMID: 38589749 PMCID: PMC11189958 DOI: 10.1007/s40271-024-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND AND OBJECTIVE The history of clinical trials is fraught with unethical practices. Since 1945, robust frameworks have evolved to standardise the collection and reporting of safety data, most notably, the Common Terminology Criteria for Adverse Events (CTCAE) from the National Cancer Institute; used by investigators to report side effects experienced by participants. As medicine moves into the patient-centred model, interest has been growing to collect data on adverse events directly from participants (patient-reported adverse events). The aim of this systematic scoping review was to investigate the inclusion of patient-reported adverse event data within safety/tolerability analyses and explore the collection and reporting of patient-reported adverse event data. METHODS AND RESULTS A database search was undertaken and the Covidence platform was used to manage the review; results were analysed descriptively. Sixty-eight studies were included in the analysis. An increase in the number of studies that incorporate patient-reported adverse event data was seen by year. Seventy instruments were used for the collection of patient-reported adverse event data with recall period, mode, frequency and site of administration varying across studies; the duration of data collection ranged from 28 days to 6 years. Frequently, information on these details was omitted from publications. The number of instruments used by studies to collect patient-reported adverse event data ranged from one to seven instruments. CONCLUSIONS Despite growing calls for the inclusion of patient-reported adverse events, this has not yet translated into published reports. The collection and reporting of these data were variable and conducted using instruments that were not designed for purpose. To address these inconsistencies, standardisation of data collection and reporting using a purpose-built validated instrument is required.
Collapse
Affiliation(s)
- Minna Grahvendy
- Cancer Trials Unit, Princess Alexandra Hospital, Queensland Health, Brisbane, QLD, 4102, Australia.
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Bena Brown
- Southern Queensland Centre of Excellence in Aboriginal and Torres Strait, Islander Primary Health Care, Metro South Health, Brisbane, QLD, Australia
- School of Public Health, The University of Queensland, Brisbane, QLD, Australia
| | - Laurelie R Wishart
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
- Centre for Functioning and Health Research, Metro South Health, Brisbane, QLD, Australia
- Centre for Applied Health Economics, School of Medicine and Dentistry, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
2
|
Guo B, Stephans K, Godley A, Kolar M, Magnelli A, Tendulkar R, Mian O, Majkszak D, Xia P. Transperineal ultrasound is a good alternative for intra-fraction motion monitoring for prostate stereotactic body radiotherapy. J Appl Clin Med Phys 2023; 24:e14021. [PMID: 37144947 PMCID: PMC10562017 DOI: 10.1002/acm2.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/27/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023] Open
Abstract
PURPOSES To report our experience in a prospective study of implementing a transperineal ultrasound system to monitor intra-fractional prostate motion for prostate stereotactic body radiotherapy (SBRT). MATERIAL AND METHODS This IRB-approved prospective study included 23 prostate SBRT patients treated between 04/2016 and 11/2019 at our institution. The prescription doses were 36.25 Gy to the Low-Dose planning target volume (LD-PTV) and 40 Gy to the High-Dose PTV (HD-PTV) in five fractions with 3 mm planning margins. The transperineal ultrasound system was successfully used in 110 of the 115 fractions. For intra-fraction prostate motion, the real-time prostate displacements measured by ultrasound were exported for analysis. The percentage of time prostate movement exceeded a 2 mm threshold was calculated for each fraction of all patients. T-test was used for all statistical comparisons. RESULTS Ultrasound image quality was adequate for prostate delineation and prostate motion tracking. The setup time for each fraction under ultrasound-guided prostate SBRT was 15.0 ± 4.9 min and the total treatment time per fraction was 31.8 ± 10.5 min. The presence of an ultrasound probe did not compromise the contouring of targets or critical structures. For intra-fraction motion, prostate movement exceeded 2 mm tolerance in 23 of 110 fractions for 11 of 23 patients. For all fractions, the mean percentage of time when the prostate moved more than 2 mm in any direction during each fraction was 7%, ranging from 0% to 62% of a fraction. CONCLUSION Ultrasound-guided prostate SBRT is a good option for intra-fraction motion monitoring with clinically acceptable efficiency.
Collapse
Affiliation(s)
- Bingqi Guo
- Department of Radiation OncologyTaussig Cancer CenterCleveland ClinicClevelandOhioUSA
| | - Kevin Stephans
- Department of Radiation OncologyTaussig Cancer CenterCleveland ClinicClevelandOhioUSA
| | - Andrew Godley
- Department of Radiation OncologyTaussig Cancer CenterCleveland ClinicClevelandOhioUSA
| | - Matt Kolar
- Department of Radiation OncologyTaussig Cancer CenterCleveland ClinicClevelandOhioUSA
| | - Anthony Magnelli
- Department of Radiation OncologyTaussig Cancer CenterCleveland ClinicClevelandOhioUSA
| | - Rahul Tendulkar
- Department of Radiation OncologyTaussig Cancer CenterCleveland ClinicClevelandOhioUSA
| | - Omar Mian
- Department of Radiation OncologyTaussig Cancer CenterCleveland ClinicClevelandOhioUSA
| | - David Majkszak
- Department of Radiation OncologyTaussig Cancer CenterCleveland ClinicClevelandOhioUSA
| | - Ping Xia
- Department of Radiation OncologyTaussig Cancer CenterCleveland ClinicClevelandOhioUSA
| |
Collapse
|
3
|
Rectal retractor in prostate radiotherapy: pros and cons. Radiat Oncol 2022; 17:204. [PMID: 36494732 PMCID: PMC9737745 DOI: 10.1186/s13014-022-02176-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Dose escalation in prostate radiotherapy (RT) have led to improved biochemical controls and reduced the risk of distant metastases. Over the past three decades, despite technological advancements in RT planning and delivery, the rectum is a dose-limiting structure in prostate RT owing to the close anatomical proximity of the anterior rectal wall (ARW) to the prostate gland. RT-induced rectal toxicities remain a clinical challenge, limiting the prescribed dose during prostate RT. To address the spatial proximity challenge by physically increasing the distance between the posterior aspect of the prostate and the ARW, several physical devices such as endorectal balloons (ERBs), rectal hydrogel spacers, and rectal retractor (RR) have been developed. Previously, various aspects of ERBs and rectal hydrogel spacers have extensively been discussed. Over recent years, given the interest in the application of RR in prostate external beam radiotherapy (EBRT), this editorial will discuss opportunities and challenges of using RR during prostate EBRT and provide information regarding which aspects of this device need attention.
Collapse
|
4
|
Houben J, McColl G, Ham Kaanders J, Smeenk RJ. Patient reported toxicity and quality of life after hypofractionated high-dose intensity-modulated radiotherapy for intermediate- and high risk prostate cancer. Clin Transl Radiat Oncol 2021; 29:40-46. [PMID: 34113724 PMCID: PMC8170415 DOI: 10.1016/j.ctro.2021.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/04/2021] [Accepted: 05/16/2021] [Indexed: 11/25/2022] Open
Abstract
Background and purpose For irradiation of localized prostate-cancer, moderately-hypofractionated regimens with a variety of dose per fraction are used. We adopted a regimen of 70 Gy in 28 fractions of 2.5 Gy, using state of the art radiotherapy (RT) and closely monitored the efficacy, toxicity and health-related quality of life (HRQoL) in a large cohort, using patient-reported outcomes. Materials and methods Between 2008 and 2016, 462 patients with intermediate- to high-risk localized prostate cancer were treated with RT, 28 fractions of 2.5 Gy, using IMRT/VMAT, an online fiducial-maker based correction protocol and a daily inserted endorectal balloon. Overall freedom from failure (no biochemical or clinical recurrence) , as well as self-reported genitourinary (GU) and gastrointestinal (GI) related toxicity and HRQoL are reported. Results Overall freedom from failure rates at 3 and 5 years were 92.0% (89.1–94.9%) and 83.5% (78.6–88.4%), respectively. Prevalence rates of grade ≥ 2 GU/GI-toxicity were 16.3%/6.3% and 22,1%/3.2% after 3 and 5 years respectively. The 5-year actuarial incidences of grade ≥ 2 GU/GI-toxicity were 43.5%/18.5%. HRQoL worsened during RT and gradually recovered thereafter, In accordance with the prevalence rates. Conclusion Treatment of intermediate- or high-risk localized prostate cancer with RT to 70 Gy in 28 fractions with IMRT/VMAT, using fiducial markers and an endorectal balloon leads to good long-term tumor control rates and acceptable patient reported toxicity rates. Furthermore, patient-reported outcomes, including HRQoL, are essential for a good comparison between different studies. Finally, prevalence rates show a better correlation with HRQoL than actuarial incidence rates do and might therefore better represent the burden of toxicity.
Collapse
Affiliation(s)
- Jeroen Houben
- Department of Radiation Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Gill McColl
- Department of Radiation Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Johannes Ham Kaanders
- Department of Radiation Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Robert J Smeenk
- Department of Radiation Oncology, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
5
|
Speight R, Tyyger M, Schmidt MA, Liney G, Johnstone R, Eccles CL, Dubec M, George B, Henry A, Herbert T, Nyholm T, Mahmood F, Korhonen J, Sims R, Tijssen RHN, Vanhoutte F, Busoni S, Lacornerie T, McCallum H. IPEM Topical Report: an international IPEM survey of MRI use for external beam radiotherapy treatment planning. Phys Med Biol 2021; 66:075007. [PMID: 33631729 DOI: 10.1088/1361-6560/abe9f7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/25/2021] [Indexed: 11/12/2022]
Abstract
Introduction/Background. Despite growing interest in magnetic resonance imaging (MRI), integration in external beam radiotherapy (EBRT) treatment planning uptake varies globally. In order to understand the current international landscape of MRI in EBRT a survey has been performed in 11 countries. This work reports on differences and common themes identified.Methods. A multi-disciplinary Institute of Physics and Engineering in Medicine working party modified a survey previously used in the UK to understand current practice using MRI for EBRT treatment planning, investigate how MRI is currently used and managed as well as identify knowledge gaps. It was distributed electronically within 11 countries: Australia, Belgium, Denmark, Finland, France, Italy, the Netherlands, New Zealand, Sweden, the UK and the USA.Results. The survey response rate within the USA was <1% and hence these results omitted from the analysis. In the other 10 countries the survey had a median response rate of 77% per country. Direct MRI access, defined as either having a dedicated MRI scanner for radiotherapy (RT) or access to a radiology MRI scanner, varied between countries. France, Italy and the UK reported the lowest direct MRI access rates and all other countries reported direct access in ≥82% of centres. Whilst ≥83% of centres in Denmark and Sweden reported having dedicated MRI scanners for EBRT, all other countries reported ≤29%. Anatomical sites receiving MRI for EBRT varied between countries with brain, prostate, head and neck being most common. Commissioning and QA of image registration and MRI scanners varied greatly, as did MRI sequences performed, staffing models and training given to different staff groups. The lack of financial reimbursement for MR was a consistent barrier for MRI implementation for RT for all countries and MR access was a reported important barrier for all countries except Sweden and Denmark.Conclusion. No country has a comprehensive approach for MR in EBRT adoption and financial barriers are present worldwide. Variations between countries in practice, equipment, staffing models, training, QA and MRI sequences have been identified, and are likely to be due to differences in funding as well as a lack of consensus or guidelines in the literature. Access to dedicated MR for EBRT is limited in all but Sweden and Denmark, but in all countries there are financial challenges with ongoing per patient costs. Despite these challenges, significant interest exists in increasing MR guided EBRT planning over the next 5 years.
Collapse
Affiliation(s)
- Richard Speight
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Marcus Tyyger
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Maria A Schmidt
- Royal Marsden NHS Foundation Trust and Institute of Cancer Research, London, United Kingdom
| | - Gary Liney
- Ingham Institute for Applied Medical Research & Liverpool Cancer Therapy Centre, Liverpool, Sydney, NSW 2170, Australia
| | - Robert Johnstone
- Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Cynthia L Eccles
- The Christie NHS Foundation Trust and the University of Manchester, Manchester, United Kingdom
| | - Michael Dubec
- The Christie NHS Foundation Trust and the University of Manchester, Manchester, United Kingdom
| | - Ben George
- University of Oxford and GenesisCare, Oxford, United Kingdom
| | - Ann Henry
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust and University of Leeds, Leeds, United Kingdom
| | - Trina Herbert
- Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Tufve Nyholm
- Department of Radiation Sciences, Umeå University, Sweden
| | - Faisal Mahmood
- Odense University Hospital, Laboratory of Radiation Physics, Odense, Denmark and University of Southern Denmark, Department of Clinical Research, Denmark
| | - Juha Korhonen
- Department of Medical Imaging and Radiation Therapy, Kymenlaakso Central Hospital, Kotka, Finland
| | - Rick Sims
- Auckland Radiation Oncology, Epsom, Auckland, New Zealand and Icon Cancer Centres, Cairns, QLD, Australia
| | - Rob H N Tijssen
- Department of Radiation Oncology, Catharina Hospital, Eindhoven, The Netherlands
| | | | - Simone Busoni
- Department of Health Physics, AOU Careggi (Firenze University Hospital), Firenze, Italy
| | | | - Hazel McCallum
- Translational and Clinical Research Institute, Newcastle University and Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Patrick HM, Souhami L, Kildea J. Reduction of inter-observer contouring variability in daily clinical practice through a retrospective, evidence-based intervention. Acta Oncol 2021; 60:229-236. [PMID: 32988249 DOI: 10.1080/0284186x.2020.1825801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Inter-observer variations (IOVs) arising during contouring can potentially impact plan quality and patient outcomes. Regular assessment of contouring IOV is not commonly performed in clinical practice due to the large time commitment required of clinicians from conventional methods. This work uses retrospective information from past treatment plans to facilitate a time-efficient, evidence-based intervention to reduce contouring IOV. METHODS The contours of 492 prostate cancer treatment plans created by four radiation oncologists were analyzed in this study. Structure volumes, lengths, and DVHs were extracted from the treatment planning system and stratified based on primary oncologist and inclusion of a pelvic lymph node (PLN) target. Inter-observer variations and their dosimetric consequences were assessed using Student's t-tests. Results of this analysis were presented at an intervention meeting, where new consensus contour definitions were agreed upon. The impact of the intervention was assessed one-year later by repeating the analysis on 152 new plans. RESULTS Significant IOV in prostate and PLN target delineation existed pre-intervention between oncologists, impacting dose to nearby OARs. IOV was also present for rectum and penile-bulb structures. Post-intervention, IOV decreased for all previously discordant structures. Dosimetric variations were also reduced. Although target contouring concordance increased significantly, some variations still persisted for PLN structures, highlighting remaining areas for improvement. CONCLUSION We detected significant contouring IOV in routine practice using easily accessible retrospective data and successfully decreased IOV in our clinic through a reflective intervention. Continued application of this approach may aid improvements in practice standardization and enhance quality of care.
Collapse
Affiliation(s)
- H. M. Patrick
- Medical Physics Unit, McGill University, Montreal, Canada
| | - L. Souhami
- Department of Oncology, McGill University Health Centre, Montreal, Canada
| | - J. Kildea
- Medical Physics Unit, McGill University, Montreal, Canada
- Department of Oncology, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
7
|
Levegrün S, Pöttgen C, Xydis K, Guberina M, Abu Jawad J, Stuschke M. Spatial and dosimetric evaluation of residual distortions of prostate and seminal vesicle bed after image-guided definitive and postoperative radiotherapy of prostate cancer with endorectal balloon. J Appl Clin Med Phys 2020; 22:226-241. [PMID: 33377614 PMCID: PMC7856505 DOI: 10.1002/acm2.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/27/2020] [Accepted: 11/25/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose To quantify daily residual deviations from the planned geometry after image‐guided prostate radiotherapy with endorectal balloon and to evaluate their effect on the delivered dose distribution. Methods Daily kV‐CBCT imaging was used for online setup‐correction in six degrees of freedom (6‐dof) for 24 patients receiving definitive (12 RTdef patients) or postoperative (12 RTpostop patients) radiotherapy with endorectal balloon (overall 739 CBCTs). Residual deviations were evaluated using several spatial and dosimetric variables, including: (a) posterior Hausdorff distance HDpost (=maximum distance between planned and daily CTV contour), (b) point Pworst with largest HDpost over all fractions, (c) equivalent uniform dose using a cell survival model (EUDSF) and the generalized EUD concept (gEUDa with parameter a = −7 and a = −20). EUD values were determined for planned (EUDSFplan), daily (EUDSFind), and delivered dose distributions (EUDSFaccum) for plans with 6 mm (=clinical plans) and 2 mm CTV‐to‐PTV margin. Time series analyses of interfractional spatial and dosimetric deviations were conducted. Results Large HDpost values ≥ 12.5 mm (≥15 mm) were observed in 20/739 (5/739) fractions distributed across 7 (3) patients. Points Pworst were predominantly located at the posterior CTV boundary in the seminal vesicle region (16/24 patients, 6/7 patients with HDpost ≥ 12.5 mm). Time series analyses revealed a stationary white noise characteristic of HDpost and relative dose at Pworst. The EUDSF difference between planned and accumulated dose distributions was < 5.4% for all 6‐mm plans. Evaluating 2‐mm plans, EUDSF deteriorated by < 10% (<5%) in 75% (58.5%) of the patients. EUDSFaccum was well described by the median value of the EUDSFind distribution. PTV margin calculation at Pworst yielded 8.8 mm. Conclusions Accumulated dose distributions in prostate radiotherapy with endorectal balloon are forgiving of considerable residual distortions after 6‐dof patient setup if they are observed in a minority of fractions and the median value of EUDSFind determined per fraction stays within 95% of prescribed dose. Common PTV margin calculations are overly conservative because after online correction of translational and rotational errors only residual deformations need to be included. These results provide guidelines regarding online navigation, margin optimization, and treatment adaptation strategies.
Collapse
Affiliation(s)
- Sabine Levegrün
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Christoph Pöttgen
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | | | - Maja Guberina
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Jehad Abu Jawad
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
8
|
Splinter M, Sachpazidis I, Bostel T, Fechter T, Zamboglou C, Thieke C, Jäkel O, Huber PE, Debus J, Baltas D, Nicolay NH. Dosimetric Impact of the Positional Imaging Frequency for Hypofractionated Prostate Radiotherapy - A Voxel-by-Voxel Analysis. Front Oncol 2020; 10:564068. [PMID: 33134166 PMCID: PMC7550661 DOI: 10.3389/fonc.2020.564068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Background To investigate deviations between planned and applied treatment doses for hypofractionated prostate radiotherapy and to quantify dosimetric accuracy in dependence of the image guidance frequency. Methods Daily diagnostic in-room CTs were carried out in 10 patients in treatment position as image guidance for hypofractionated prostate radiotherapy. Fraction doses were mapped to the planning CTs and recalculated, and applied doses were accumulated voxel-wise using deformable registration. Non-daily imaging schedules were simulated by deriving position correction vectors from individual scans and used to rigidly register the following scans until the next repositioning before dose recalculation and accumulation. Planned and applied doses were compared regarding dose-volume indices and TCP and NTCP values in dependence of the imaging and repositioning frequency. Results Daily image-guided repositioning was associated with only negligible deviations of analyzed dose-volume parameters and conformity/homogeneity indices for the prostate, bladder and rectum. Average CTV T did not significantly deviate from the plan values, and rectum NTCPs were highly comparable, while bladder NTCPs were reduced. For non-daily image-guided repositioning, there were significant deviations in the high-dose range from the planned values. Similarly, CTV dose conformity and homogeneity were reduced. While TCPs and rectal NTCPs did not significantly deteriorate for non-daily repositioning, bladder NTCPs appeared falsely diminished in dependence of the imaging frequency. Conclusion Using voxel-by-voxel dose accumulation, we showed for the first time that daily image-guided repositioning resulted in only negligible dosimetric deviations for hypofractionated prostate radiotherapy. Regarding dosimetric aberrations for non-daily imaging, daily imaging is required to adequately deliver treatment.
Collapse
Affiliation(s)
- Mona Splinter
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Ilias Sachpazidis
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Tilman Bostel
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,Department of Radiation Oncology, University Medical Center Mainz, Mainz, Germany
| | - Tobias Fechter
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Constantinos Zamboglou
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Christian Thieke
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Jäkel
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Peter E Huber
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dimos Baltas
- Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| | - Nils H Nicolay
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center, Heidelberg, Germany.,Department of Radiation Oncology, University of Freiburg - Medical Center, Freiburg im Breisgau, Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
9
|
Thompson AB, Hamstra DA. Rectal Spacer Usage with Proton Radiation Therapy for Prostate Cancer. Int J Radiat Oncol Biol Phys 2020; 108:644-648. [DOI: 10.1016/j.ijrobp.2020.05.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023]
|
10
|
Overview of patient preparation strategies to manage internal organ motion during radiotherapy in the pelvis. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396919000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractIntroduction:Pelvic internal organs change in volume and position during radiotherapy. This may compromise the efficacy of treatment or worsen its toxicity. There may be limitations to fully correcting these changes using online image guidance; therefore, effective and consistent patient preparation and positioning remain important. This review aims to provide an overview of the extent of pelvic organ motion and strategies to manage this motion.Methods and Materials:Given the breadth of this topic, a systematic review was not undertaken. Instead, existing systematic reviews and individual high-quality studies addressing strategies to manage pelvic organ motion have been discussed. Suggested levels of evidence and grades of recommendation for each strategy have been applied.Results:Various strategies to manage rectal changes have been investigated including diet and laxatives, enemas and rectal emptying tubes and rectal displacement with endorectal balloons (ERBs) and rectal spacers. Bladder-filling protocols and bladder ultrasound have been used to try to standardise bladder volume. Positioning the patient supine, using a full bladder and positioning prone with or without a belly board, has been examined in an attempt to reduce the volume of irradiated small bowel. Some randomised trials have been performed, with evidence to support the use of ERBs, rectal spacers, bladder-filling protocols and the supine over prone position in prostate radiotherapy. However, there was a lack of consistent high-quality evidence that would be applicable to different disease sites within the pelvis. Many studies included small numbers of patients were non-randomised, used less conformal radiotherapy techniques or did not report clinical outcomes such as toxicity.Conclusions:There is uncertainty as to the clinical benefit of many of the commonly adopted interventions to minimise pelvic organ motion. Given this and the limitations in online image guidance compensation, further investigation of adaptive radiotherapy strategies is required.
Collapse
|
11
|
Effectiveness of rectal displacement devices in managing prostate motion: a systematic review. Strahlenther Onkol 2020; 197:97-115. [DOI: 10.1007/s00066-020-01633-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
|
12
|
Heemsbergen WD, Incrocci L, Pos FJ, Heijmen BJM, Witte MG. Local Dose Effects for Late Gastrointestinal Toxicity After Hypofractionated and Conventionally Fractionated Modern Radiotherapy for Prostate Cancer in the HYPRO Trial. Front Oncol 2020; 10:469. [PMID: 32346534 PMCID: PMC7169424 DOI: 10.3389/fonc.2020.00469] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/16/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose: Late gastrointestinal (GI) toxicity after radiotherapy for prostate cancer may have significant impact on the cancer survivor's quality of life. To date, little is known about local dose-effects after modern radiotherapy including hypofractionation. In the current study we related the local spatial distribution of radiation dose in the rectum to late patient-reported gastrointestinal (GI) toxicities for conventionally fractionated (CF) and hypofractionated (HF) modern radiotherapy in the randomized HYPRO trial. Material and Methods: Patients treated to 78 Gy in 2 Gy fractions (n = 298) or 64.6 Gy in 3.4 Gy fractions (n = 295) with available late toxicity questionnaires (n ≥ 2 within 1-5 years post-treatment) and available 3D planning data were eligible for this study. The majority received intensity modulated radiotherapy (IMRT). We calculated two types of dose surface maps: (1) the total delineated rectum with its central axis scaled to unity, and (2) the delineated rectum with a length of 7 cm along its central axis aligned on the prostate's half-height point (prostate-half). For each patient-reported GI symptom, dose difference maps were constructed by subtracting average co-registered EQD2 (equivalent dose in 2 Gy) dose maps of patients with and without the symptom of interest, separately for HF and CF. P-values were derived from permutation tests. We evaluated patient-reported moderate to severe GI symptoms. Results: Observed incidences of rectal bleeding and increased stool frequency were significantly higher in the HF group. For rectal bleeding (p = 0.016), mucus discharge (p = 0.015), and fecal incontinence (p = 0.001), significant local dose-effects were observed in HF patients but not in CF patients. For rectal pain, similar local dose-effects (p < 0.05) were observed in both groups. No significant local dose-effects were observed for increased stool frequency. Total rectum mapping vs. prostate-half mapping showed similar results. Conclusion: We demonstrated significant local dose-effect relationships for patient-reported late GI toxicity in patients treated with modern RT. HF patients were at higher risk for increased stool frequency and rectal bleeding, and showed the most pronounced local dose-effects in intermediate-high dose regions. These findings suggest that improvement of current treatment optimization protocols could lead to clinical benefit, in particular for HF treatment.
Collapse
Affiliation(s)
- Wilma D Heemsbergen
- Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Luca Incrocci
- Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Floris J Pos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Ben J M Heijmen
- Department of Radiation Oncology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marnix G Witte
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
13
|
Cross-modality applicability of rectal normal tissue complication probability models from photon- to proton-based radiotherapy. Radiother Oncol 2020; 142:253-260. [DOI: 10.1016/j.radonc.2019.09.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 11/21/2022]
|
14
|
Bird D, Henry AM, Sebag-Montefiore D, Buckley DL, Al-Qaisieh B, Speight R. A Systematic Review of the Clinical Implementation of Pelvic Magnetic Resonance Imaging-Only Planning for External Beam Radiation Therapy. Int J Radiat Oncol Biol Phys 2019; 105:479-492. [PMID: 31271829 DOI: 10.1016/j.ijrobp.2019.06.2530] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/22/2019] [Accepted: 06/21/2019] [Indexed: 11/24/2022]
Abstract
The use of magnetic resonance (MR) imaging scans alone for radiation therapy treatment planning (MR-only planning) has been highlighted as one method of improving patient outcomes. Recent technologic advances have meant that introducing MR-only planning to the clinic is becoming a reality, with several specialist radiation therapy clinics using this technique for treatment. As such, substantial efforts are being made to introduce this technique into wide-spread clinical implementation. A systematic review of publications investigating the clinical implementation of pelvic MR-only radiation therapy treatment planning was undertaken following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The Medline, Embase, Scopus, Science Direct, Cumulative Index to Nursing and Allied Health Literature, and Web of Science databases were searched (timespan: all years to January 2, 2019). Twenty-six articles met the inclusion criteria. The studies were grouped into the following categories: (1) MR acquisition and synthetic computed tomography generation verification, (2) MR distortion quantification and phantom development, (3) clinical validation of patient treatment positioning in an MR-only workflow, and (4) MR-only commissioning processes. Key conclusions from this review are (1) MR-only planning has been implemented clinically for prostate cancer treatments; (2) a substantial amount of work remains to translate MR-only planning into widespread clinical implementation for all pelvic sites; (3) MR scanner distortions are no longer a barrier to MR-only planning, but they must be managed appropriately; (4) MR-only-based patient positioning verification shows promise, but limited evidence is reported in the literature and further investigation is required; and (5) a number of MR-only commissioning processes have been reported, which can aid centers as they undertake local commissioning; however, this needs to be formalized in guidance from national bodies.
Collapse
Affiliation(s)
- David Bird
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Radiotherapy Research Group, Leeds, United Kingdom.
| | - Ann M Henry
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Radiotherapy Research Group, Leeds, United Kingdom
| | - David Sebag-Montefiore
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom; Radiotherapy Research Group, Leeds, United Kingdom
| | - David L Buckley
- Biomedical Imaging, University of Leeds, Leeds, United Kingdom
| | - Bashar Al-Qaisieh
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| | - Richard Speight
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom
| |
Collapse
|
15
|
Stereotactic beam radiotherapy for prostate cancer: is less, more? Lancet Oncol 2019; 20:1471-1472. [DOI: 10.1016/s1470-2045(19)30652-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 11/21/2022]
|
16
|
Draulans C, De Roover R, van der Heide UA, Haustermans K, Pos F, Smeenk RJ, De Boer H, Depuydt T, Kunze-Busch M, Isebaert S, Kerkmeijer L. Stereotactic body radiation therapy with optional focal lesion ablative microboost in prostate cancer: Topical review and multicenter consensus. Radiother Oncol 2019; 140:131-142. [PMID: 31276989 DOI: 10.1016/j.radonc.2019.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022]
Abstract
Stereotactic body radiotherapy (SBRT) for prostate cancer (PCa) is gaining interest by the recent publication of the first phase III trials on prostate SBRT and the promising results of many other phase II trials. Before long term results became available, the major concern for implementing SBRT in PCa in daily clinical practice was the potential risk of late genitourinary (GU) and gastrointestinal (GI) toxicity. A number of recently published trials, including late outcome and toxicity data, contributed to the growing evidence for implementation of SBRT for PCa in daily clinical practice. However, there exists substantial variability in delivering SBRT for PCa. The aim of this topical review is to present a number of prospective trials and retrospective analyses of SBRT in the treatment of PCa. We focus on the treatment strategies and techniques used in these trials. In addition, recent literature on a simultaneous integrated boost to the tumor lesion, which could create an additional value in the SBRT treatment of PCa, was described. Furthermore, we discuss the multicenter consensus of the FLAME consortium on SBRT for PCa with a focal boost to the macroscopic intraprostatic tumor nodule(s).
Collapse
Affiliation(s)
- Cédric Draulans
- Department of Radiation Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU Leuven, Belgium.
| | - Robin De Roover
- Department of Radiation Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU Leuven, Belgium.
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU Leuven, Belgium.
| | - Floris Pos
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Robert Jan Smeenk
- Department of Radiation Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Hans De Boer
- Department of Radiation Oncology, University Medical Center, Utrecht, The Netherlands.
| | - Tom Depuydt
- Department of Radiation Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU Leuven, Belgium.
| | - Martina Kunze-Busch
- Department of Radiation Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Sofie Isebaert
- Department of Radiation Oncology, University Hospitals Leuven, Belgium; Department of Oncology, KU Leuven, Belgium.
| | - Linda Kerkmeijer
- Department of Radiation Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Radiation Oncology, University Medical Center, Utrecht, The Netherlands.
| |
Collapse
|
17
|
Speight R, Schmidt MA, Liney GP, Johnstone RI, Eccles CL, Dubec M, George B, Henry A, McCallum H. IPEM Topical Report: A 2018 IPEM survey of MRI use for external beam radiotherapy treatment planning in the UK. Phys Med Biol 2019; 64:175021. [PMID: 31239419 DOI: 10.1088/1361-6560/ab2c7c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The benefits of integrating MRI into the radiotherapy pathway are well published, however there is little consensus in guidance on how to commission or implement its use. With a view to developing consensus guidelines for the use of MRI in external beam radiotherapy (EBRT) treatment planning in the UK, a survey was undertaken by an Institute of Physics and Engineering in Medicine (IPEM) working-party to assess the current landscape of MRI use in EBRT in the UK. A multi-disciplinary working-party developed a survey to understand current practice using MRI for EBRT treatment planning; investigate how MRI is currently used and managed; and identify knowledge gaps. The survey was distributed electronically to radiotherapy service managers and physics leads in 71 UK radiotherapy (RT) departments (all NHS and private groups). The survey response rate was 87% overall, with 89% of NHS and 75% of private centres responding. All responding centres include EBRT in some RT pathways: 94% using Picture Archiving and Communication System (PACS) images potentially acquired without any input from RT departments, and 69% had some form of MRI access for planning EBRT. Most centres reporting direct access use a radiology scanner within the same hospital in dedicated (26%) or non-dedicated (52%) RT scanning sessions. Only two centres reported having dedicated RT MRI scanners in the UK, lower than reported in other countries. Six percent of radiotherapy patients in England (data not publically available outside of England) have MRI as part of their treatment, which again is lower than reported elsewhere. Although a substantial number of centres acquire MRI scans for treatment planning purposes, most centres acquire less than five patient scans per month for each treatment site. Commissioning and quality assurance of both image registration and MRI scanners was found to be variable across the UK. In addition, staffing models and training given to different staff groups varied considerably across the UK, reflecting the current lack of national guidelines. The primary barriers reported to MRI implementation in EBRT planning included costs (e.g. lack of a national tariff for planning MRI), lack of MRI access and/or capacity within hospitals. Despite these challenges, significant interest remains in increasing MRI-assisted EBRT planning over the next five years.
Collapse
Affiliation(s)
- Richard Speight
- Leeds Cancer Centre, Leeds Teaching Hospitals NHS Trust, Leeds, United Kingdom. Author to whom correspondence should be addressed
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hickey BE, James ML, Daly T, Soh F, Jeffery M, Cochrane Urology Group. Hypofractionation for clinically localized prostate cancer. Cochrane Database Syst Rev 2019; 9:CD011462. [PMID: 31476800 PMCID: PMC6718288 DOI: 10.1002/14651858.cd011462.pub2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Using hypofractionation (fewer, larger doses of daily radiation) to treat localized prostate cancer may improve convenience and resource use. For hypofractionation to be feasible, it must be at least as effective for cancer-related outcomes and have comparable toxicity and quality of life outcomes as conventionally fractionated radiation therapy. OBJECTIVES To assess the effects of hypofractionated external beam radiation therapy compared to conventionally fractionated external beam radiation therapy for men with clinically localized prostate cancer. SEARCH METHODS We searched CENTRAL, MEDLINE (Ovid), Embase (Ovid) and trials registries from 1946 to 15 March 2019 with reference checking, citation searching and contact with study authors. Searches were not limited by language or publication status. We reran all searches within three months (15th March 2019) prior to publication. SELECTION CRITERIA Randomized controlled comparisons which included men with clinically localized prostate adenocarcinoma where hypofractionated radiation therapy (external beam radiation therapy) to the prostate using hypofractionation (greater than 2 Gy per fraction) compared with conventionally fractionated radiation therapy to the prostate delivered using standard fractionation (1.8 Gy to 2 Gy per fraction). DATA COLLECTION AND ANALYSIS We used standard Cochrane methodology. Two authors independently assessed trial quality and extracted data. We used Review Manager 5 for data analysis and meta-analysis. We used the inverse variance method and random-effects model for data synthesis of time-to-event data with hazard ratios (HR) and 95% confidence intervals (CI) reported. For dichotomous data, we used the Mantel-Haenzel method and random-effects model to present risk ratios (RR) and 95% CI. We used GRADE to assess evidence quality for each outcome. MAIN RESULTS We included 10 studies with 8278 men in our analysis comparing hypofractionation with conventional fractionation to treat prostate cancer.Primary outcomesHypofractionation may result in little or no difference in prostate cancer-specific survival [PC-SS] (HR 1.00, 95% CI 0.72 to 1.39; studies = 8, participants = 7946; median follow-up 72 months; low-certainty evidence). For men in the intermediate-risk group undergoing conventional fractionation this corresponds to 976 per 1000 men alive after 6 years and 0 more (44 fewer to 18 more) alive per 1000 men undergoing hypofractionation.We are uncertain about the effect of hypofractionation on late radiation therapy gastrointestinal (GI) toxicity (RR 1.10, 95% CI 0.68 to 1.78; studies = 4, participants = 3843; very low-certainty evidence).Hypofractionation probably results in little or no difference to late radiation therapy genitourinary (GU) toxicity (RR 1.05, 95% CI 0.93 to 1.18; studies = 4, participants = 3843; moderate-certainty evidence). This corresponds to 262 per 1000 late GU radiation therapy toxicity events with conventional fractionation and 13 more (18 fewer to 47 more) per 1000 men when undergoing hypofractionation.Secondary outcomesHypofractionation results in little or no difference in overall survival (HR 0.94, 95% CI 0.83 to 1.07; 10 studies, 8243 participants; high-certainty evidence). For men in the intermediate-risk group undergoing conventional fractionation this corresponds to 869 per 1000 men alive after 6 years and 17 fewer (54 fewer to 17 more) participants alive per 1000 men when undergoing hypofractionation.Hypofractionation may result in little to no difference in metastasis-free survival (HR 1.07, 95% CI 0.65 to 1.76; 5 studies, 4985 participants; low-certainty evidence). This corresponds to 981 men per 1000 men metastasis-free at 6 years when undergoing conventional fractionation and 5 more (58 fewer to 19 more) metastasis-free per 1000 when undergoing hypofractionation.Hypofractionation likely results in a small, possibly unimportant reduction in biochemical recurrence-free survival based on Phoenix criteria (HR 0.88, 95% CI 0.68 to 1.13; studies = 5, participants = 2889; median follow-up 90 months to 108 months; moderate-certainty evidence). In men of the intermediate-risk group, this corresponds to 804 biochemical-recurrence free men per 1000 participants at six years with conventional fractionation and 42 fewer (134 fewer to 37 more) recurrence-free men per 1000 participants with hypofractionationHypofractionation likely results in little to no difference to acute GU radiation therapy toxicity (RR 1.03, 95% CI 0.95 to 1.11; 4 studies, 4174 participants at 12 to 18 weeks' follow-up; moderate-certainty evidence). This corresponds to 360 episodes of toxicity per 1000 participants with conventional fractionation and 11 more (18 fewer to 40 more) per 1000 when undergoing hypofractionation. AUTHORS' CONCLUSIONS These findings suggest that moderate hypofractionation (up to a fraction size of 3.4 Gy) results in similar oncologic outcomes in terms of disease-specific, metastasis-free and overall survival. There appears to be little to no increase in both acute and late toxicity.
Collapse
Affiliation(s)
- Brigid E Hickey
- Princess Alexandra HospitalRadiation Oncology Mater Service31 Raymond TerraceBrisbaneQueenslandAustralia4101
- The University of QueenslandSchool of MedicineBrisbaneAustralia
| | - Melissa L James
- Christchurch HospitalCanterbury Regional Cancer and Haematology ServicePrivate Bag 4710ChristchurchNew Zealand8140
| | - Tiffany Daly
- Princess Alexandra HospitalRadiation Oncology Mater Service31 Raymond TerraceBrisbaneQueenslandAustralia4101
| | - Feng‐Yi Soh
- NHS HighlandDepartment of Clinical OncologyInvernessUK
| | - Mark Jeffery
- Christchurch HospitalCanterbury Regional Cancer and Haematology ServicePrivate Bag 4710ChristchurchNew Zealand8140
| | | |
Collapse
|
19
|
Leiker AJ, Desai NB, Folkert MR. Rectal radiation dose-reduction techniques in prostate cancer: a focus on the rectal spacer. Future Oncol 2018; 14:2773-2788. [PMID: 29939069 DOI: 10.2217/fon-2018-0286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the most common cancer in men. External beam radiotherapy by a variety of methods is a standard treatment option with excellent disease control. However, acute and late rectal side effects remain a limiting concern in intensification of therapy in higher-risk patients and in efforts to reduce treatment burden in others. A number of techniques have emerged that allow for high-radiation dose delivery to the prostate with reduced risk of rectal toxicity, including image-guided intensity-modulated radiation therapy, endorectal balloons and various forms of rectal spacers. Image-guided radiation therapy, either intensity-modulated radiation therapy or stereotactic ablative radiation therapy, in conjunction with a rectal spacer, is an efficacious means to reduce acute and long-term rectal toxicity.
Collapse
Affiliation(s)
- Andrew J Leiker
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75390-9303, USA
| | - Neil B Desai
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75390-9303, USA
| | - Michael R Folkert
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75390-9303, USA
| |
Collapse
|
20
|
Dubouloz A, Rouzaud M, Tsvang L, Verbakel W, Björkqvist M, Linthout N, Lencart J, Pérez-Moreno JM, Ozen Z, Escude L, Zilli T, Miralbell R. Urethra-sparing stereotactic body radiotherapy for prostate cancer: how much can the rectal wall dose be reduced with or without an endorectal balloon? Radiat Oncol 2018; 13:114. [PMID: 29921291 PMCID: PMC6008922 DOI: 10.1186/s13014-018-1059-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022] Open
Abstract
Background This is a dosimetric comparative study intended to establish appropriate low-to-intermediate dose-constraints for the rectal wall (Rwall) in the context of a randomized phase-II trial on urethra-sparing stereotactic body radiotherapy (SBRT) for prostate cancer. The effect of plan optimization on low-to-intermediate Rwall dose and the potential benefit of an endorectal balloon (ERB) are investigated. Methods Ten prostate cancer patients, simulated with and without an ERB, were planned to receive 36.25Gy (7.25Gyx5) to the planning treatment volume (PTV) and 32.5Gy to the urethral planning risk volume (uPRV). Reference plans with and without the ERB, optimized with respect to PTV and uPRV coverage objectives and the organs at risk dose constraints, were further optimized using a standardized stepwise approach to push down dose constraints to the Rwall in the low to intermediate range in five sequential steps to obtain paired plans with and without ERB (Vm1 to Vm5). Homogeneity index for the PTV and the uPRV, and the Dice similarity coefficient (DSC) for the PTV were analyzed. Dosimetric parameters for Rwall including the median dose and the dose received by 10 to 60% of the Rwall, bladder wall (Bwall) and femoral heads (FHeads) were compared. The monitor units (MU) per plan were recorded. Results Vm4 reduced by half D30%, D40%, D50%, and Dmed for Rwall and decreased by a third D60% while HIPTV, HIuPRV and DSC remained stable with and without ERB compared to Vmref. HIPTV worsened at Vm5 both with and without ERB. No statistical differences were observed between paired plans on Rwall, Bwall except a higher D2% for Fheads with and without an ERB. Conclusions Further optimization to the Rwall in the context of urethra sparing prostate SBRT is feasible without compromising the dose homogeneity to the target. Independent of the use or not of an ERB, low-to-intermediate doses to the Rwall can be significantly reduced using a four-step sequential optimization approach.
Collapse
Affiliation(s)
- Angèle Dubouloz
- Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1205, Genève, Switzerland. .,Radiation Oncology Department, Geneva University Hospital, CH-1211, 14, Geneva, Switzerland.
| | - Michel Rouzaud
- Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1205, Genève, Switzerland
| | - Lev Tsvang
- Department of Radiation Oncology, Chaim Sheba Medical Center, Tel-Hashomer, 52621, Ramat Gan, Israel
| | - Wilko Verbakel
- Department of Radiation Oncology, VU medical center, De Boelelaan 1117, P.O. Box 7057, 1007, MB, Amsterdam, The Netherlands
| | - Mikko Björkqvist
- Department of Oncology and Radiotherapy, Turku University Hospital, PO Box 52, 20521, Turku, Finland.,Department of Medical Physics, Turku University Hospital, PO Box 52, 20521, Turku, Finland
| | - Nadine Linthout
- Onze-Lieve-Vrouw Ziekenhuis, Moorselbaan 164, 9300, Aalst, Belgium
| | - Joana Lencart
- Serviço de Radioterapia Externa, Instituto Portugues de Oncologia, Rua Dr Antonio Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Juan María Pérez-Moreno
- Servicio de Oncología Radioterápica, Centro Integral Oncológico "Clara Campal", Hospital Universitario Madrid Sanchinarro, C/ Oña 10, 28050, Madrid, Spain
| | - Zeynep Ozen
- Neolife Medical Center, Nisbetiye Mah. Yucel Sokak, No: 6 Besiktas, 34340, Istanbul, Turkey
| | - Lluís Escude
- Servei de Radiooncologia, Institut Oncològic Teknon, C/ Vilana 12, 08022, Barcelona, Spain
| | - Thomas Zilli
- Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1205, Genève, Switzerland
| | - Raymond Miralbell
- Geneva University Hospital, Rue Gabrielle-Perret-Gentil 4, 1205, Genève, Switzerland.,Servei de Radiooncologia, Institut Oncològic Teknon, C/ Vilana 12, 08022, Barcelona, Spain
| |
Collapse
|
21
|
Krol R, McColl GM, Hopman WPM, Smeenk RJ. Anal and rectal function after intensity-modulated prostate radiotherapy with endorectal balloon. Radiother Oncol 2018; 128:364-368. [PMID: 29716753 DOI: 10.1016/j.radonc.2018.03.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND PURPOSE Late anorectal toxicity influences quality of life after external beam radiotherapy (EBRT) for prostate cancer. A daily inserted endorectal balloon (ERB) during EBRT aims to reduce anorectal toxicity. Our goal is to objectify anorectal function over time after prostate intensity-modulated radiotherapy (IMRT) with ERB. MATERIAL AND METHODS Sixty men, irradiated with IMRT and an ERB, underwent barostat measurements and anorectal manometry prior to EBRT and 6 months, one year and 2 years after radiotherapy. Primary outcome measures were rectal distensibility and rectal sensibility in response to stepwise isobaric distensions and anal pressures. RESULTS Forty-eight men completed all measurements. EBRT reduced maximal rectal capacity 2 years after EBRT (250 ± 10 mL vs. 211 ± 10 mL; p < 0.001), area under the pressure-volume curve (2878 ± 270 mL mmHg vs. 2521 ± 305 mL mmHg; p = 0.043) and rectal compliance (NS). Sensory pressure thresholds for first sense and first urge (both p < 0.01) increased. Anal maximum pressure diminished after IMRT (p = 0.006). CONCLUSIONS Rectal capacity and sensory function are increasingly affected over time after radiotherapy. There is an indication that these reductions are affected less with IMRT + ERB compared to conventional radiation techniques.
Collapse
Affiliation(s)
- Robin Krol
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Gill M McColl
- Department of Radiation Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Wim P M Hopman
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Robert J Smeenk
- Department of Radiation Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
22
|
Heemsbergen WD, Wortel RC, Incrocci L, Smeenk RJ, Witte MG, Pos FJ, Krol S. In Reply to Güngör et al. Int J Radiat Oncol Biol Phys 2018; 100:1291-1292. [DOI: 10.1016/j.ijrobp.2017.12.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 11/29/2022]
|
23
|
Güngör G, Aydın G, Özyar E. In Regard to Wortel et al. Int J Radiat Oncol Biol Phys 2018; 100:1291. [DOI: 10.1016/j.ijrobp.2017.12.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 12/20/2017] [Indexed: 10/17/2022]
|