1
|
Juvkam IS, Zlygosteva O, Sitarz M, Sørensen BS, Aass HCD, Edin NJ, Galtung HK, Søland TM, Malinen E. Proton- compared to X-irradiation leads to more acinar atrophy and greater hyposalivation accompanied by a differential cytokine response. Sci Rep 2024; 14:22311. [PMID: 39333378 PMCID: PMC11437014 DOI: 10.1038/s41598-024-73110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Proton therapy gives less dose to healthy tissue compared to conventional X-ray therapy, but systematic comparisons of normal tissue responses are lacking. The aim of this study was to investigate late tissue responses in the salivary glands following proton- or X-irradiation of the head and neck in mice. Moreover, we aimed at investigating molecular responses by monitoring the cytokine levels in serum and saliva. Female C57BL/6J mice underwent local fractionated irradiation with protons or X-rays to the maximally tolerated acute level. Saliva and serum were collected before and at different time points after irradiation to assess salivary gland function and cytokine expression. To study late responses in the major salivary glands, histological analyses were performed on tissues collected at day 105 after onset of irradiation. Saliva volume after proton and X-irradiation was significantly lower than for controls and remained reduced at all time points after irradiation. Protons caused reduced saliva production and fewer acinar cells in the submandibular glands compared to X-rays at day 105. X-rays induced a stronger inflammatory cytokine response in saliva compared to protons. This work supports previous preclinical findings and indicate that the relative biological effectiveness of protons in normal tissue might be higher than the commonly used value of 1.1.
Collapse
Affiliation(s)
- Inga Solgård Juvkam
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Radiation Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Olga Zlygosteva
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Mateusz Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Hans Christian D Aass
- The Blood Cell Research Group, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Nina Jeppesen Edin
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tine Merete Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Eirik Malinen
- Department of Radiation Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Zlygosteva O, Juvkam IS, Arous D, Sitarz M, Sørensen BS, Ankjærgaard C, Andersen CE, Galtung HK, Søland TM, Edin NJ, Malinen E. Acute normal tissue responses in a murine model following fractionated irradiation of the head and neck with protons or X-rays. Acta Oncol 2023; 62:1574-1580. [PMID: 37703217 DOI: 10.1080/0284186x.2023.2254481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND The purpose of this study was to investigate acute normal tissue responses in the head and neck region following proton- or X-irradiation of a murine model. MATERIALS AND METHODS Female C57BL/6J mice were irradiated with protons (25 or 60 MeV) or X-rays (100 kV). The radiation field covered the oral cavity and the major salivary glands. For protons, two different treatment plans were used, either with the Bragg Peak in the middle of the mouse (BP) or outside the mouse (transmission mode; TM). Delivered physical doses were 41, 45, and 65 Gy given in 6, 7, and 10 fractions for BP, TM, and X-rays, respectively. Alanine dosimetry was used to assess delivered doses. Oral mucositis and dermatitis were scored using CTC v.2.0-based tables. Saliva was collected at baseline, right after end of irradiation, and at day 35. RESULTS The measured dose distribution for protons (TM) and X-rays was very similar. Oral mucositis appeared earlier, had a higher score and was found in a higher percentage of mice after proton irradiation compared to X-irradiation. Dermatitis, on the other hand, had a similar appearance after protons and X-rays. Compared to controls, saliva production was lower right after termination of proton- and X-irradiation. The BP group demonstrated saliva recovery compared to the TM and X-ray group at day 35. CONCLUSION With lower delivered doses, proton irradiation resulted in similar skin reactions and increased oral mucositis compared to X-irradiation. This indicates that the relative biological effectiveness of protons for acute tissue responses in the mouse head and neck is greater than the clinical standard of 1.1. Thus, there is a need for further investigations of the biological effect of protons in normal tissues.
Collapse
Affiliation(s)
- Olga Zlygosteva
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Inga Solgård Juvkam
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Delmon Arous
- Department of Medical Physics, Cancer Clinic, Oslo University Hospital, Oslo, Norway
| | - Mateusz Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Claus E Andersen
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tine Merete Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Nina Jeppesen Edin
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Eirik Malinen
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Physics, Cancer Clinic, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Sagkrioti E, Biz GM, Takan I, Asfa S, Nikitaki Z, Zanni V, Kars RH, Hellweg CE, Azzam EI, Logotheti S, Pavlopoulou A, Georgakilas AG. Radiation Type- and Dose-Specific Transcriptional Responses across Healthy and Diseased Mammalian Tissues. Antioxidants (Basel) 2022; 11:2286. [PMID: 36421472 PMCID: PMC9687520 DOI: 10.3390/antiox11112286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 08/30/2023] Open
Abstract
Ionizing radiation (IR) is a genuine genotoxic agent and a major modality in cancer treatment. IR disrupts DNA sequences and exerts mutagenic and/or cytotoxic properties that not only alter critical cellular functions but also impact tissues proximal and distal to the irradiated site. Unveiling the molecular events governing the diverse effects of IR at the cellular and organismal levels is relevant for both radiotherapy and radiation protection. Herein, we address changes in the expression of mammalian genes induced after the exposure of a wide range of tissues to various radiation types with distinct biophysical characteristics. First, we constructed a publicly available database, termed RadBioBase, which will be updated at regular intervals. RadBioBase includes comprehensive transcriptomes of mammalian cells across healthy and diseased tissues that respond to a range of radiation types and doses. Pertinent information was derived from a hybrid analysis based on stringent literature mining and transcriptomic studies. An integrative bioinformatics methodology, including functional enrichment analysis and machine learning techniques, was employed to unveil the characteristic biological pathways related to specific radiation types and their association with various diseases. We found that the effects of high linear energy transfer (LET) radiation on cell transcriptomes significantly differ from those caused by low LET and are consistent with immunomodulation, inflammation, oxidative stress responses and cell death. The transcriptome changes also depend on the dose since low doses up to 0.5 Gy are related with cytokine cascades, while higher doses with ROS metabolism. We additionally identified distinct gene signatures for different types of radiation. Overall, our data suggest that different radiation types and doses can trigger distinct trajectories of cell-intrinsic and cell-extrinsic pathways that hold promise to be manipulated toward improving radiotherapy efficiency and reducing systemic radiotoxicities.
Collapse
Affiliation(s)
- Eftychia Sagkrioti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
- Biology Department, National and Kapodistrian University of Athens (NKUA), 15784 Athens, Greece
| | - Gökay Mehmet Biz
- Department of Technical Programs, Izmir Vocational School, Dokuz Eylül University, Buca, Izmir 35380, Turkey
| | - Işıl Takan
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Seyedehsadaf Asfa
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Zacharenia Nikitaki
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Vassiliki Zanni
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Rumeysa Hanife Kars
- Department of Biomedical Engineering, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Christine E. Hellweg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology, Linder Höhe, D-51147 Köln, Germany
| | | | - Stella Logotheti
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| | - Athanasia Pavlopoulou
- Izmir Biomedicine and Genome Center (IBG), Balcova, Izmir 35340, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Balcova, Izmir 35340, Turkey
| | - Alexandros G. Georgakilas
- DNA Damage Laboratory, Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780 Athens, Greece
| |
Collapse
|
4
|
Xie DH, Li YC, Ma S, Yang X, Lan RM, Chen AQ, Zhu HY, Mei Y, Peng LX, Li ZF, Huang BJ, Chen Y, Huang XY, Qian CN. Electron Ultra-High Dose Rate FLASH irradiation Study Using a Clinical Linac: Linac Modification, Dosimetry and Radiobiological outcome. Med Phys 2022; 49:6728-6738. [PMID: 35959736 DOI: 10.1002/mp.15920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 05/24/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Ultra-high dose rate FLASH irradiation (FLASH-IR) has been shown to cause less normal tissue damage compared with conventional irradiation (CONV-IR), this is known as the "FLASH effect". It has attracted immense research interest because its underlying mechanism is scarcely known. The purpose of this study was to determine whether FLASH-IR and CONV-IR induce differential inflammatory cytokine expression using a modified clinical linac. MATERIALS AND METHODS An Elekta Synergy linac was used to deliver 6 MeV CONV-IR and modified to deliver FLASH-IR. Female FvB mice were randomly assigned to three different groups: a non-irradiated control, CONV-IR, or FLASH-IR. The FLASH-IR beam was produced by single pulses repeated manually with a 20-second interval (Strategy 1), or single-trigger multiple pulses with a 10 millisecond (ms) interval (Strategy 2). Mice were immobilized in the prone position in a custom-designed applicator with Gafchromic films positioned under the body. The prescribed doses for the mice were 6 to 18 Gy and verified using Gafchromic films. Cytokine expression of three pro-inflammatory cytokines [tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin-6 (IL-6)] and one anti-inflammatory cytokine (IL-10) in serum samples and skin tissue were examined within 1- month post-IR. RESULTS The modified linac delivered radiation at an intra-pulse dose rate of around 1×106 Gy/s and a dose per pulse over 2 Gy at a source-to-surface distance (SSD) of 13 to 15 cms. The achieved dose coverage was 90 - 105% of the maximum dose within -20 ∼ 20 mm in the X direction and 95% within -30 ∼ 30 mm in the Y direction. The absolute deviations between the prescribed dose and the actual dose were 2.21, 6.04, 2.09 and 2.73% for 6, 9, 12 and 15 Gy as measured by EBT3 films, respectively; and 4.00, 4.49 and 2.30% for 10, 14 and 18 Gy as measured by the EBT XD films, respectively. The reductions in the CONV-IR versus the FLASH-IR group were 4.89, 10.28, -7.8 and -22.17 % for TNF-α, IFN-γ, IL-6 and IL-10 in the serum on D6, respectively; 37.26, 67.16, 56.68 and -18.95% in the serum on D31, respectively; and 62.67, 35.65, 37.75 and -12.20% for TNF-α, IFN-γ, IL-6 and IL-10 in the skin tissue, respectively. CONCLUSIONS Ultra-high dose rate electron FLASH caused lower pro-inflammatory cytokine levels in serum and skin tissue which might mediate differential tissue damage between FLASH-IR and CONV-IR. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- De-Huan Xie
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine
| | | | - Sai Ma
- Elekta Instrument Ltd. Beijing Branch
| | - Xin Yang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine
| | - Ruo-Ming Lan
- School of Physics and Electronics, Shandong Normal University
| | - Ao-Qiang Chen
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine
| | - Hong-Yu Zhu
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine
| | - Yan Mei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences
| | - Li-Xia Peng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine
| | | | - Bi-Jun Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine
| | - Yan Chen
- Elekta Instrument Ltd. Beijing Branch
| | - Xiao-Yan Huang
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine
| | - Chao-Nan Qian
- Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine.,Guangzhou Concord Cancer Center
| |
Collapse
|
5
|
Marcus D, Lieverse RIY, Klein C, Abdollahi A, Lambin P, Dubois LJ, Yaromina A. Charged Particle and Conventional Radiotherapy: Current Implications as Partner for Immunotherapy. Cancers (Basel) 2021; 13:1468. [PMID: 33806808 PMCID: PMC8005048 DOI: 10.3390/cancers13061468] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy (RT) has been shown to interfere with inflammatory signals and to enhance tumor immunogenicity via, e.g., immunogenic cell death, thereby potentially augmenting the therapeutic efficacy of immunotherapy. Conventional RT consists predominantly of high energy photon beams. Hypofractionated RT regimens administered, e.g., by stereotactic body radiation therapy (SBRT), are increasingly investigated in combination with cancer immunotherapy within clinical trials. Despite intensive preclinical studies, the optimal dose per fraction and dose schemes for elaboration of RT induced immunogenic potential remain inconclusive. Compared to the scenario of combined immune checkpoint inhibition (ICI) and RT, multimodal therapies utilizing other immunotherapy principles such as adoptive transfer of immune cells, vaccination strategies, targeted immune-cytokines and agonists are underrepresented in both preclinical and clinical settings. Despite the clinical success of ICI and RT combination, e.g., prolonging overall survival in locally advanced lung cancer, curative outcomes are still not achieved for most cancer entities studied. Charged particle RT (PRT) has gained interest as it may enhance tumor immunogenicity compared to conventional RT due to its unique biological and physical properties. However, whether PRT in combination with immune therapy will elicit superior antitumor effects both locally and systemically needs to be further investigated. In this review, the immunological effects of RT in the tumor microenvironment are summarized to understand their implications for immunotherapy combinations. Attention will be given to the various immunotherapeutic interventions that have been co-administered with RT so far. Furthermore, the theoretical basis and first evidences supporting a favorable immunogenicity profile of PRT will be examined.
Collapse
Affiliation(s)
- Damiënne Marcus
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Relinde I. Y. Lieverse
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Carmen Klein
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Clinical Cooperation Unit Translational Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany; (C.K.); (A.A.)
- Heidelberg Ion-Beam Therapy Center (HIT), Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- National Center for Radiation Oncology (NCRO), Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, 69120 Heidelberg, Germany
| | - Philippe Lambin
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW–School for Oncology and Developmental Biology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (D.M.); (R.I.Y.L.); (P.L.); (L.J.D.)
| |
Collapse
|
6
|
Leduc A, Chaouni S, Pouzoulet F, De Marzi L, Megnin-Chanet F, Corre E, Stefan D, Habrand JL, Sichel F, Laurent C. Differential normal skin transcriptomic response in total body irradiated mice exposed to scattered versus scanned proton beams. Sci Rep 2021; 11:5876. [PMID: 33712719 PMCID: PMC7955113 DOI: 10.1038/s41598-021-85394-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Proton therapy allows to avoid excess radiation dose on normal tissues. However, there are some limitations. Indeed, passive delivery of proton beams results in an increase in the lateral dose upstream of the tumor and active scanning leads to strong differences in dose delivery. This study aims to assess possible differences in the transcriptomic response of skin in C57BL/6 mice after TBI irradiation by active or passive proton beams at the dose of 6 Gy compared to unirradiated mice. In that purpose, total RNA was extracted from skin samples 3 months after irradiation and RNA-Seq was performed. Results showed that active and passive delivery lead to completely different transcription profiles. Indeed, 140 and 167 genes were differentially expressed after active and passive scanning compared to unirradiated, respectively, with only one common gene corresponding to RIKEN cDNA 9930021J03. Moreover, protein-protein interactions performed by STRING analysis showed that 31 and 25 genes are functionally related after active and passive delivery, respectively, with no common gene between both types of proton delivery. Analysis showed that active scanning led to the regulation of genes involved in skin development which was not the case with passive delivery. Moreover, 14 ncRNA were differentially regulated after active scanning against none for passive delivery. Active scanning led to 49 potential mRNA-ncRNA pairs with one ncRNA mainly involved, Gm44383 which is a miRNA. The 43 genes potentially regulated by the miRNA Gm44393 confirmed an important role of active scanning on skin keratin pathway. Our results demonstrated that there are differences in skin gene expression still 3 months after proton irradiation versus unirradiated mouse skin. And strong differences do exist in late skin gene expression between scattered or scanned proton beams. Further investigations are strongly needed to understand this discrepancy and to improve treatments by proton therapy.
Collapse
Affiliation(s)
- Alexandre Leduc
- Normandie Univ, UNICAEN, UNIROUEN, ABTE-EA4651, ToxEMAC, Cancer Centre François Baclesse, 14000, Caen, France
| | - Samia Chaouni
- Normandie Univ, UNICAEN, UNIROUEN, ABTE-EA4651, ToxEMAC, Cancer Centre François Baclesse, 14000, Caen, France
| | - Frédéric Pouzoulet
- Institut Curie, RadeXp Platform, centre universitaire, 91405, Orsay, France
| | - Ludovic De Marzi
- Institut Curie, PSL Research University, University Paris Saclay, Laboratoire d'Imagerie Translationnelle en Oncologie, INSERM, 91401, Orsay, France
- Institut Curie, PSL Research University, Radiation Oncology Department, Proton Therapy Centre, Centre Universitaire, 91898, Orsay, France
| | - Frédérique Megnin-Chanet
- INSERM U1196/UMR9187 CMIB, University Paris-Saclay, Institut Curie-Recherche, bât. 112, rue H. Becquerel, 91405, Orsay, France
| | - Erwan Corre
- CNRS, Sorbonne Université, R2424, ABiMS platform, Station Biologique, 29680, Roscoff, France
| | - Dinu Stefan
- Normandie Univ, UNICAEN, UNIROUEN, ABTE-EA4651, ToxEMAC, Cancer Centre François Baclesse, 14000, Caen, France
- Radiotherapy Department, Cancer Centre François Baclesse, 14000, Caen, France
| | - Jean-Louis Habrand
- Normandie Univ, UNICAEN, UNIROUEN, ABTE-EA4651, ToxEMAC, Cancer Centre François Baclesse, 14000, Caen, France
- Radiotherapy Department, Cancer Centre François Baclesse, 14000, Caen, France
| | - François Sichel
- Normandie Univ, UNICAEN, UNIROUEN, ABTE-EA4651, ToxEMAC, Cancer Centre François Baclesse, 14000, Caen, France
| | - Carine Laurent
- Normandie Univ, UNICAEN, UNIROUEN, ABTE-EA4651, ToxEMAC, Cancer Centre François Baclesse, 14000, Caen, France.
- SAPHYN/ARCHADE (Advanced Resource Centre for HADrontherapy in Europe), Cancer Centre François Baclesse, 14000, Caen, France.
| |
Collapse
|
7
|
Nielsen S, Bassler N, Grzanka L, Swakon J, Olko P, Horsman MR, Sørensen BS. Proton scanning and X-ray beam irradiation induce distinct regulation of inflammatory cytokines in a preclinical mouse model. Int J Radiat Biol 2020; 96:1238-1244. [PMID: 32780616 DOI: 10.1080/09553002.2020.1807644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Conventional X-ray radiotherapy induces a pro-inflammatory response mediated by altered expression of inflammation-regulating cytokines. Proton scanning and X-ray irradiation produce distinct changes to cytokine gene expression in vitro suggesting that proton beam therapy may induce an inflammatory response dissimilar to that of X-ray radiation. The purpose of the present study was to determine whether proton scanning beam radiation and conventional X-ray photon radiation would induce differential regulation of circulating cytokines in vivo. MATERIALS AND METHODS Female CDF1 mice were irradiated locally at the right hind leg using proton pencil beam scanning or X-ray photons. Blood samples were obtained from two separate mice groups. Samples from one group were drawn by retro-orbital puncture 16 months post irradiation, while samples from the other group were drawn 5 and 30 days post irradiation. Concentration of the cytokines IL-6, IL-1β, IL-10, IL-17A, IFN-γ, and TNFα was measured in plasma using bead-based immunoassays. RESULTS The cytokines IL-6, IL-1β, IL-10, IFN-γ, and TNFα were expressed at lower levels in plasma samples from proton-irradiated mice compared with X-ray-irradiated mice 16 months post irradiation. The same cytokines were downregulated in proton-irradiated mice 5 days post irradiation when compared to controls, while at day 30 expression had increased to the same level or higher. X-ray radiation did not markedly change expression levels at days 5 and 30. CONCLUSIONS The inflammatory response to proton and X-ray irradiation seem to be distinct as the principal pro-inflammatory cytokines are differentially regulated short- and long-term following irradiation. Both the development of normal tissue damage and efficacy of immunotherapy could be influenced by an altered inflammatory response to irradiation.
Collapse
Affiliation(s)
- Steffen Nielsen
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Bassler
- Medical Radiation Physics, Department of Physics, Stockholm University, Stockholm, Sweden
| | - Leszek Grzanka
- Proton Radiotherapy Group, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Jan Swakon
- Proton Radiotherapy Group, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Pawel Olko
- Proton Radiotherapy Group, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Michael R Horsman
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita Singers Sørensen
- Experimental Clinical Oncology, Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Burnet NG, Mackay RI, Smith E, Chadwick AL, Whitfield GA, Thomson DJ, Lowe M, Kirkby NF, Crellin AM, Kirkby KJ. Proton beam therapy: perspectives on the National Health Service England clinical service and research programme. Br J Radiol 2020; 93:20190873. [PMID: 31860337 PMCID: PMC7066938 DOI: 10.1259/bjr.20190873] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/05/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
The UK has an important role in the evaluation of proton beam therapy (PBT) and takes its place on the world stage with the opening of the first National Health Service (NHS) PBT centre in Manchester in 2018, and the second in London coming in 2020. Systematic evaluation of the role of PBT is a key objective. By September 2019, 108 patients had started treatment, 60 paediatric, 19 teenagers and young adults and 29 adults. Obtaining robust outcome data is vital, if we are to understand the strengths and weaknesses of current treatment approaches. This is important in demonstrating when PBT will provide an advantage and when it will not, and in quantifying the magnitude of benefit.The UK also has an important part to play in translational PBT research, and building a research capability has always been the vision. We are perfectly placed to perform translational pre-clinical biological and physical experiments in the dedicated research room in Manchester. The nature of DNA damage from proton irradiation is considerably different from X-rays and this needs to be more fully explored. A better understanding is needed of the relative biological effectiveness (RBE) of protons, especially at the end of the Bragg peak, and of the effects on tumour and normal tissue of PBT combined with conventional chemotherapy, targeted drugs and immunomodulatory agents. These experiments can be enhanced by deterministic mathematical models of the molecular and cellular processes of DNA damage response. The fashion of ultra-high dose rate FLASH irradiation also needs to be explored.
Collapse
Affiliation(s)
| | | | - Ed Smith
- The Christie NHS Foundation Trust, Manchester, and University of Manchester, M20 4BX, UK
| | - Amy L Chadwick
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, and The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | - Gillian A Whitfield
- The Christie NHS Foundation Trust, Manchester, and University of Manchester, M20 4BX, UK
| | - David J Thomson
- The Christie NHS Foundation Trust, Manchester, and University of Manchester, M20 4BX, UK
| | | | - Norman F Kirkby
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, and The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| | | | - Karen J Kirkby
- Division of Cancer Sciences, University of Manchester, Manchester Cancer Research Centre, Manchester Academic Health Science Centre, and The Christie NHS Foundation Trust, Manchester, M20 4BX, UK
| |
Collapse
|