1
|
Masuda T, Koto M, Ikawa H, Takei H, Aoki K, Nakaji T, Kasamatsu K, Inaniwa T. Design of multi-ion therapy for head and neck cancers using carbon-, oxygen-, and neon-ion beams: potential efficacy against tumor hypoxia. Phys Med Biol 2025; 70:085003. [PMID: 40138796 DOI: 10.1088/1361-6560/adc5d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/26/2025] [Indexed: 03/29/2025]
Abstract
Objective. In order to initiate multi-ion therapy for head and neck cancers, it is necessary to predetermine the target dose-averaged linear energy transfer (LETd) prescription to the gross tumor volume (GTV). This study investigated LETdoptimized treatment plans with carbon-, oxygen-, and neon-ion beams and demonstrated their potential efficacy against tumor hypoxia.Approach. Sixteen head and neck cancer patients with GTV sizes ranging from 5.5 to 143.1 cm3were selected for this retrospective planning study. Carbon, oxygen, and neon ions were used alone or in combination with two ion species. The treatment plans were optimized to increase LETdwithin the GTV and to make the LETddistribution uniform while maintaining the relative biological effectiveness weighted dose distributions of conventional intensity modulated carbon-ion therapy (IMIT). The effective dose improvement rate against IMIT was then estimated by changing oxygen partial pressure within the GTV to 0 mmHg because a substantial number of anoxic cancer cells is predicted to exist in a hypoxic tumor microenvironment.Main results. The target LETdof 90 keVμm-1was prescribable without deteriorating the dose distributions when: for example, carbon- and oxygen-ion beams were used for small tumors (around 20 cm3); oxygen-ion beams alone were used for medium tumors (around 50 cm3); and carbon- and neon-ion beams were used for large tumors (around 100 cm3). The uniformity of the LETddistributions within the GTV was about 10%. With the LETdprescription, the improvement rate of the effective dose covering 98% (i.e.D98%) of the GTV against anoxic cancer cells was about 30%.Significance. For the application to the first multi-ion therapy program, the target LETdprescription to the GTV was determined to be 90 keVμm-1. If tumor hypoxia contributes to the cause of recurrence, the proposed treatment may offer better local tumor control without compromising normal tissue sparing.
Collapse
Affiliation(s)
- Takamitsu Masuda
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
- Department of Radiation Oncology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Hiroaki Ikawa
- QST Hospital, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Hideyuki Takei
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Katsumi Aoki
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Taku Nakaji
- QST Hospital, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Koki Kasamatsu
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| |
Collapse
|
2
|
Baltazar F, Longarino FK, Stengl C, Liermann J, Mein S, Debus J, Tessonnier T, Mairani A. Investigating LETd optimization strategies in carbon ion radiotherapy for pancreatic cancer: a dosimetric study using an anthropomorphic phantom. Med Phys 2025; 52:1746-1757. [PMID: 39656067 PMCID: PMC11880654 DOI: 10.1002/mp.17569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/29/2024] [Accepted: 11/29/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Clinical carbon ion beams offer the potential to overcome hypoxia-induced radioresistance in pancreatic tumors, due to their high dose-averaged Linear Energy Transfer (LETd), as previous studies have linked a minimum LETd within the tumor to improved local control. Current clinical practices at the Heidelberg Ion-Beam Therapy Center (HIT), which use two posterior beams, do not fully exploit the LETd advantage of carbon ions, as the high LETd is primarily focused on the beams' distal edges. Different LETd-boosting strategies, such as Spot-scanning Hadron Arc (SHArc), could enhance LETd distribution by concentrating high-LETd values in potential hypoxic tumor cores while sparing organs at risk. PURPOSE This study aims to investigate and verify different LETd-boosting strategies using an anthropomorphic pancreas phantom. METHODS Various LETd-boosting strategies were investigated for a cylindrical and a pancreas-shaped target in an anthropomorphic pancreas phantom. Treatment plans were optimized using single field optimization (SFO) or multi field optimization (MFO), with objective functions based on either physical dose (Phys), relative biological effectiveness (RBE)-weighted dose, or a combination of RBE and LETd-based objectives (LETopt). The LETd-boosting planning strategies were optimized with the goal of increasing the minimum LETd in the tumor without compromising its homogeneous dose coverage. Beam configurations investigated included the two-beam in-house clinical standard (2-SFOPhys, 2-SFORBE and 2-MFORBE-LETopt), a three-beam configuration (3-MFORBE and 3-MFORBE-LETopt) and SHArc (SHArcPhys, SHArcRBE and SHArcRBE-LETopt) using step-and-shoot delivery. The different plans were verified using an anthropomorphic pancreas phantom at HIT and compared to treatment planning system (TPS) predictions. RESULTS All investigated LETd-boosting strategies altered the LETd distribution while meeting optimization goals and constraints, resulting in varying degrees of LETd enhancement. For the cylindrical volume, the SHArc plan resulted in the highest LETd concentration in the tumor core, with the minimum LETd in the GTV scaling up to 91 keV/µm. For the pancreas-shaped volume, however, the 3-MFORBE-LETopt achieved a higher minimum LETd in the GTV than SHArcRBE (75.6 and 62.3 keV/µm, respectively). When combining SHArc with LETd optimization, a minimum LETd of 76.3 keV/µm was achieved, suggesting a potential benefit from this combined approach. Most dosimetric verifications showed dose deviations to the TPS within a 5% range, for both beam-per-beam and total dose. LETd-optimized and SHArc plans exhibited slightly higher mean dose deviations (2.0%-4.6%) compared to the standard RBE-based plans (<1.5%). CONCLUSION This study demonstrated the feasibility of enhancing LETd in pancreatic tumors using carbon ion arc delivery coupled with LETd optimization. The possibility of delivering these plans was verified through irradiation of an anthropomorphic pancreas phantom, which showed agreement between dose measurements and predictions.
Collapse
Affiliation(s)
- Filipa Baltazar
- Heidelberg Ion‐Beam Therapy Center (HIT)Department of Radiation OncologyHeidelbergGermany
- Clinical Cooperation Unit Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
| | - Friderike K. Longarino
- Clinical Cooperation Unit Translational Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
| | - Christina Stengl
- Medical FacultyHeidelberg UniversityHeidelbergGermany
- Division of Medical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
| | - Jakob Liermann
- Heidelberg Ion‐Beam Therapy Center (HIT)Department of Radiation OncologyHeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
- Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
- Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
- National Center for Tumor diseases (NCT)HeidelbergGermany
| | - Stewart Mein
- Heidelberg Ion‐Beam Therapy Center (HIT)Department of Radiation OncologyHeidelbergGermany
- Clinical Cooperation Unit Translational Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of Accelerator and Medical PhysicsInstitute for Quantum Medical ScienceNational Institutes for Quantum Science and TechnologyChibaJapan
| | - Jürgen Debus
- Heidelberg Ion‐Beam Therapy Center (HIT)Department of Radiation OncologyHeidelbergGermany
- Clinical Cooperation Unit Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Medical FacultyHeidelberg UniversityHeidelbergGermany
- Department of Radiation OncologyHeidelberg University HospitalHeidelbergGermany
- Heidelberg Institute of Radiation Oncology (HIRO)HeidelbergGermany
- National Center for Tumor diseases (NCT)HeidelbergGermany
- German Cancer Consortium (DKTK) Core Centre HeidelbergHeidelbergGermany
| | - Thomas Tessonnier
- Heidelberg Ion‐Beam Therapy Center (HIT)Department of Radiation OncologyHeidelbergGermany
- Clinical Cooperation Unit Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Andrea Mairani
- Heidelberg Ion‐Beam Therapy Center (HIT)Department of Radiation OncologyHeidelbergGermany
- Clinical Cooperation Unit Translational Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Centro Nazionale di Adroterapia Oncologica (CNAO)PaviaItaly
| |
Collapse
|
3
|
Mein S, Wuyckens S, Li X, Both S, Carabe A, Vera MC, Engwall E, Francesco F, Graeff C, Gu W, Hong L, Inaniwa T, Janssens G, de Jong B, Li T, Liang X, Liu G, Lomax A, Mackie T, Mairani A, Mazal A, Nesteruk KP, Paganetti H, Pérez Moreno JM, Schreuder N, Soukup M, Tanaka S, Tessonnier T, Volz L, Zhao L, Ding X. Particle arc therapy: Status and potential. Radiother Oncol 2024; 199:110434. [PMID: 39009306 DOI: 10.1016/j.radonc.2024.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 06/23/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
There is a rising interest in developing and utilizing arc delivery techniques with charged particle beams, e.g., proton, carbon or other ions, for clinical implementation. In this work, perspectives from the European Society for Radiotherapy and Oncology (ESTRO) 2022 physics workshop on particle arc therapy are reported. This outlook provides an outline and prospective vision for the path forward to clinically deliverable proton, carbon, and other ion arc treatments. Through the collaboration among industry, academic, and clinical research and development, the scientific landscape and outlook for particle arc therapy are presented here to help our community understand the physics, radiobiology, and clinical principles. The work is presented in three main sections: (i) treatment planning, (ii) treatment delivery, and (iii) clinical outlook.
Collapse
Affiliation(s)
- Stewart Mein
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA; Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Sophie Wuyckens
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Macarena Chocan Vera
- UCLouvain, Molecular Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | | | | | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Wenbo Gu
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Liu Hong
- Ion Beam Applications SA, Louvain-la-Neuve, Belgium
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan; Department of Medical Physics and Engineering, Graduate School of Medicine, Division of Health Sciences, Osaka University, Osaka, Japan
| | | | - Bas de Jong
- Department of Radiation Oncology, University Medical Center Groningen, Groningen, The Netherlands
| | - Taoran Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Gang Liu
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA; Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Antony Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; ETH, Department of Physics, Zürich, Switzerland
| | - Thomas Mackie
- Department of Human Oncology, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | | | - Konrad P Nesteruk
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA; Harvard Medical School, Boston, USA
| | | | | | | | - Sodai Tanaka
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Lennart Volz
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany; Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Lewei Zhao
- Department of Radiation Oncology, Stanford University, Stanford, CA, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health, William Beaumont University Hospital, Proton Therapy Center, Royal Oak, MI, USA.
| |
Collapse
|
4
|
Schafasand M, Resch AF, Nachankar A, Góra J, Martino G, Traneus E, Glimelius L, Georg D, Fossati P, Carlino A, Stock M. Dose averaged linear energy transfer optimization for large sacral chordomas in carbon ion therapy. Med Phys 2024; 51:3950-3960. [PMID: 38696546 DOI: 10.1002/mp.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Carbon ion beams are well accepted as densely ionizing radiation with a high linear energy transfer (LET). However, the current clinical practice does not fully exploit the highest possible dose-averaged LET (LETd) and, consequently, the biological potential in the target. This aspect becomes worse in larger tumors for which inferior clinical outcomes and corresponding lower LETd was reported. PURPOSE The vicinity to critical organs in general and the inferior overall survival reported for larger sacral chordomas treated with carbon ion radiotherapy (CIRT), makes the treatment of such tumors challenging. In this work it was aimed to increase the LETd in large volume tumors while maintaining the relative biological effectiveness (RBE)-weighted dose, utilizing the LETd optimization functions of a commercial treatment planning system (TPS). METHODS Ten reference sequential boost carbon ion treatment plans, designed to mimic clinical plans for large sacral chordoma tumors, were generated. High dose clinical target volumes (CTV-HD) larger than250 cm 3 $250 \,{\rm cm}^{3}$ were considered as large targets. The total RBE-weighted median dose prescription with the local effect model (LEM) wasD RBE , 50 % = 73.6 Gy $\textrm {D}_{\rm RBE, 50\%}=73.6 \,{\rm Gy}$ in 16 fractions (nine to low dose and seven to high dose planning target volume). No LETd optimization was performed in the reference plans, while LETd optimized plans used the minimum LETd (Lmin) optimization function in RayStation 2023B. Three different Lmin values were investigated and specified for the seven boost fractions:L min = 60 keV / μ m $\textrm {L}_{\rm min}=60 \,{\rm keV}/{\umu }{\rm m}$ ,L min = 80 keV / μ m $\textrm {L}_{\rm min}=80 \,{\rm keV}/{\umu }{\rm m}$ andL min = 100 keV / μ m $\textrm {L}_{\rm min}=100 \,{\rm keV}/{\umu }{\rm m}$ . To compare the LETd optimized against reference plans, LETd and RBE-weighted dose based goals similar to and less strict than clinical ones were specified for the target. The goals for the organs at risk (OAR) remained unchanged. Robustness evaluation was studied for eight scenarios (± 3.5 % $\pm 3.5\%$ range uncertainty and± 3 mm $\pm 3 \,{\rm mm}$ setup uncertainty along the main three axes). RESULTS The optimization method withL min = 60 keV / μ m $\textrm {L}_{\rm min}=60 \,{\rm keV}/{\umu }{\rm m}$ resulted in an optimal LETd distribution with an average increase ofLET d , 98 % ${\rm {LET}}_{{\rm {d,}}98\%}$ (andLET d , 50 % ${\rm {LET}}_{{\rm {d,}}50\%}$ ) in the CTV-HD by8.9 ± 1.5 keV / μ m $8.9\pm 1.5 \,{\rm keV}/{\umu }{\rm m}$ (27 % $27\%$ ) (and6.9 ± 1.3 keV / μ m $6.9\pm 1.3 \,{\rm keV}/{\umu }{\rm m}$ (17 % $17\%$ )), without significant difference in the RBE-weighted dose. By allowing± 5 % $\pm 5\%$ over- and under-dosage in the target, theLET d , 98 % ${\rm {LET}}_{{\rm {d,}}98\%}$ (andLET d , 50 % ${\rm {LET}}_{{\rm {d,}}50\%}$ ) can be increased by11.3 ± 1.2 keV / μ m $11.3\pm 1.2 \,{\rm keV}/{\umu }{\rm m}$ (34 % $34\%$ ) (and11.7 ± 3.4 keV / μ m $11.7\pm 3.4 \,{\rm keV}/{\umu }{\rm m}$ (29 % $29\%$ )), using the optimization parametersL min = 80 keV / μ m $\textrm {L}_{\rm min}=80 \,{\rm keV}/{\umu }{\rm m}$ . The pass rate for the OAR goals in the LETd optimized plans was in the same level as the reference plans. LETd optimization lead to less robust plans compared to reference plans. CONCLUSIONS Compared to conventionally optimized treatment plans, the LETd in the target was increased while maintaining the RBE-weighted dose using TPS LETd optimization functionalities. Regularly assessing RBE-weighted dose robustness and acquiring more in-room images remain crucial and inevitable aspects during treatment.
Collapse
Affiliation(s)
- Mansure Schafasand
- Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Ankita Nachankar
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- ACMIT Gmbh, Wiener Neustadt, Austria
| | - Joanna Góra
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | | | | | - Dietmar Georg
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Piero Fossati
- Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | | | - Markus Stock
- Department of General and Translational Oncology and Hematology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
5
|
Inaniwa T, Kanematsu N, Koto M. Biological dose optimization incorporating intra-tumoural cellular radiosensitivity heterogeneity in ion-beam therapy treatment planning. Phys Med Biol 2024; 69:115017. [PMID: 38636504 DOI: 10.1088/1361-6560/ad4085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Objective.Treatment plans of ion-beam therapy have been made under an assumption that all cancer cells within a tumour equally respond to a given radiation dose. However, an intra-tumoural cellular radiosensitivity heterogeneity clearly exists, and it may lead to an overestimation of therapeutic effects of the radiation. The purpose of this study is to develop a biological model that can incorporate the radiosensitivity heterogeneity into biological optimization for ion-beam therapy treatment planning.Approach.The radiosensitivity heterogeneity was modeled as the variability of a cell-line specific parameter in the microdosimetric kinetic model following the gamma distribution. To validate the developed intra-tumoural-radiosensitivity-heterogeneity-incorporated microdosimetric kinetic (HMK) model, a treatment plan with H-ion beams was made for a chordoma case, assuming a radiosensitivity heterogeneous region within the tumour. To investigate the effects of the radiosensitivity heterogeneity on the biological effectiveness of H-, He-, C-, O-, and Ne-ion beams, the relative biological effectiveness (RBE)-weighted dose distributions were planned for a cuboid target with the stated ion beams without considering the heterogeneity. The planned dose distributions were then recalculated by taking the heterogeneity into account.Main results. The cell survival fraction and corresponding RBE-weighted dose were formulated based on the HMK model. The first derivative of the RBE-weighted dose distribution was also derived, which is needed for fast biological optimization. For the patient plan, the biological optimization increased the dose to the radiosensitivity heterogeneous region to compensate for the heterogeneity-induced reduction in biological effectiveness of the H-ion beams. The reduction in biological effectiveness due to the heterogeneity was pronounced for low linear energy transfer (LET) beams but moderate for high-LET beams. The RBE-weighted dose in the cuboid target decreased by 7.6% for the H-ion beam, while it decreased by just 1.4% for the Ne-ion beam.Significance.Optimal treatment plans that consider intra-tumoural cellular radiosensitivity heterogeneity can be devised using the HMK model.
Collapse
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
- Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
6
|
Koto M, Ikawa H, Inaniwa T, Imai R, Shinoto M, Takiyama H, Isozaki T, Mizuno H, Kohno R, Takahashi I, Yoshida N, Yamada S. Dose-averaged LET optimized carbon-ion radiotherapy for head and neck cancers. Radiother Oncol 2024; 194:110180. [PMID: 38403023 DOI: 10.1016/j.radonc.2024.110180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
This feasibility study confirmed the initial safety and efficacy of a novel carbon-ion radiotherapy (CIRT) using linear energy transfer (LET) painting for head and neck cancer. This study is the first step toward establishing CIRT with LET painting in clinical practice and making it a standard practice in the future.
Collapse
Affiliation(s)
- Masashi Koto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan.
| | - Hiroaki Ikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Reiko Imai
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Shinoto
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hirotoshi Takiyama
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Tetsuro Isozaki
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hideyuki Mizuno
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ryosuke Kohno
- Department of Radiologic Sciences, Graduate School of Health and Welfare Sciences, International University of Health and Welfare, Tokyo, Japan
| | | | | | - Shigeru Yamada
- QST Hospital, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
7
|
Parisi A, Beltran CJ, Furutani KM. Variable RBE in proton radiotherapy: a comparative study with the predictive Mayo Clinic Florida microdosimetric kinetic model and phenomenological models of cell survival. Phys Med Biol 2023; 68:185020. [PMID: 38133518 DOI: 10.1088/1361-6560/acf43b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/25/2023] [Indexed: 12/23/2023]
Abstract
Objectives. (1) To examine to what extent the cell- and exposure- specific information neglected in the phenomenological proton relative biological effectiveness (RBE) models could influence the computed RBE in proton therapy. (2) To explore similarities and differences in the formalism and the results between the linear energy transfer (LET)-based phenomenological proton RBE models and the microdosimetry-based Mayo Clinic Florida microdosimetric kinetic model (MCF MKM). (3) To investigate how the relationship between the RBE and the dose-mean proton LET is affected by the proton energy spectrum and the secondary fragments.Approach. We systematically compared six selected phenomenological proton RBE models with the MCF MKM in track-segment simulations, monoenergetic proton beams in a water phantom, and two spread-out Bragg peaks. A representative comparison within vitrodata for human glioblastoma cells (U87 cell line) is also included.Main results. Marked differences were observed between the results of the phenomenological proton RBE models, as reported in previous studies. The dispersion of these models' results was found to be comparable to the spread in the MCF MKM results obtained by varying the cell-specific parameters neglected in the phenomenological models. Furthermore, while single cell-specific correlation between RBE and the dose-mean proton LET seems reasonable above 2 keVμm-1, caution is necessary at lower LET values due to the relevant contribution of secondary fragments. The comparison within vitrodata demonstrates comparable agreement between the MCF MKM predictions and the results of the phenomenological models.Significance. The study highlights the importance of considering cell-specific characteristics and detailed radiation quality information for accurate RBE calculations in proton therapy. Furthermore, these results provide confidence in the use of the MCF MKM for clonogenic survival RBE calculations in proton therapy, offering a more mechanistic approach compared to phenomenological models.
Collapse
Affiliation(s)
- Alessio Parisi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States of America
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States of America
| | - Keith M Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States of America
| |
Collapse
|
8
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
9
|
Troshina MV, Koryakina EV, Potetnya VI, Solov'ev AN, Saburov VO, Lychagin AA, Ivanov SA, Kaprin AD, Koryakin SN. Biological Response of Chinese Hamster B14-150 Cells to Sequential Combined Exposure to Protons and 12C Ions. Bull Exp Biol Med 2023; 176:38-41. [PMID: 38091135 DOI: 10.1007/s10517-023-05963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 12/19/2023]
Abstract
Proton and ion radiation therapy, when used both as single radiation and in mixed radiation mode, have a number of advantages over the conventional γ-therapy that are determined by physical characteristics of accelerated particles. The paper presents the results of an in vitro study of the effectiveness of sequential exposures of Chinese hamster tumor cells B14-150 to proton (p) and 12C ion beams. We used 4 irradiation schemes differing by the sequence of exposure and the contribution of each radiation to the total dose. Synergism was shown for 12C ions dose contribution of 45% (taking into account the coefficient of relative biological efficiency) and the sequence 12C→p.
Collapse
Affiliation(s)
- M V Troshina
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia.
| | - E V Koryakina
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - V I Potetnya
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - A N Solov'ev
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University (MEPhI), Obninsk, Russia
| | - V O Saburov
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - A A Lychagin
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - S A Ivanov
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - A D Kaprin
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
- National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - S N Koryakin
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
- Obninsk Institute for Nuclear Power Engineering, National Research Nuclear University (MEPhI), Obninsk, Russia
| |
Collapse
|
10
|
Matchuk ON, Selivanova EI, Yakimova AO, Saburov VO, Solov'ev AN, Troshina MV, Litun EV, Koryakin SN, Pikalov VA, Abramova MR, Ivanov SA, Zamulaeva IA. Effects of Combined Exposure to Carbon Ions and Protons on the Pool of MCF-7 Breast Cancer Stem Cells In Vitro. Bull Exp Biol Med 2023; 176:82-86. [PMID: 38091144 DOI: 10.1007/s10517-023-05971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Indexed: 12/19/2023]
Abstract
We studied the effects of single and combined action of protons and carbon ions 12C6+ on the pool of MCF-7 human breast cancer stem cells. Single irradiation with a beam of protons or carbon ions had no significant effects on the relative number of cancer stem cells (CSC). The effects of combined irradiation in a total equieffective dose of 4 Gy depended on the sequence of exposure to ionizing radiations: the relative number of CSC did not change after irradiation with carbon ions and then with protons, but increased in the case of the reverse sequence. The most favorable result, i.e. a decrease in the CSC pool, was observed in the case of sequential irradiation with carbon ions and protons and their equal contribution to total equieffective dose. In this case, the absolute number of CSC decreased by on average 2.1 times in comparison with the control (p<0.05). The revealed regularities are of interest for the further development of new methods of radiation therapy.
Collapse
Affiliation(s)
- O N Matchuk
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia.
- Joint Institute for Nuclear Research, Dubna, Russia.
| | - E I Selivanova
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - A O Yakimova
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - V O Saburov
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - A N Solov'ev
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - M V Troshina
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - E V Litun
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - S N Koryakin
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - V A Pikalov
- A. A. Logunov Institute of High Energy Physics, National Research Centre "Kurchatov Institute", Protvino, Russia
| | - M R Abramova
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
| | - S A Ivanov
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
- Patris Lumumba Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - I A Zamulaeva
- A. F. Tsyb Medical Radiological Research Center - Affiliated Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Obninsk, Russia
- Joint Institute for Nuclear Research, Dubna, Russia
| |
Collapse
|
11
|
Baltazar F, Tessonnier T, Haberer T, Debus J, Herfarth K, Tawk B, Knoll M, Abdollahi A, Liermann J, Mairani A. Carbon-ion radiotherapy (CIRT) as treatment of pancreatic cancer at HIT: initial radiation plan analysis of the prospective phase II PACK-study. Radiother Oncol 2023; 188:109872. [PMID: 37634764 DOI: 10.1016/j.radonc.2023.109872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/20/2023] [Indexed: 08/29/2023]
Abstract
PURPOSE To analyze the dose objectives and constraints applied at the prospective phase II PACK-study at Heidelberg ion therapy center (HIT) for different radiobiological models. METHODS Treatment plans of 14 patients from the PACK-study were analyzed and recomputed in terms of physical, biological dose and dose-averaged linear energy transfer (LETd). Both LEM-I (local effect model 1) and the adapted NIRS-MKM (microdosimetric kinetic model), were used for relative biological effectiveness (RBE)-weighted dose calculations (DBio|HIT and DBio|NIRS). A new constraint to the gastrointestinal (GI) tract was derived from the National Institute of Radiological Science (NIRS) clinical experience and considered for plan reoptimization (DBio|NIRS-const_48Gy and DBio|NIRS-const_50.4Gy). The Lyman-Kutcher-Burman (LKB) model of Normal Tissue Complication Probability (NTCP) for GI toxicity endpoints was computed. Furthermore, the computed LETd distribution was evaluated and correlated with Local Control (LC). RESULTS Only two patients showed a LETd98% in the GTV greater than 44 keV/μm. A HIT-dose constraint to the GI of [Formula: see text] was derived from the NIRS experience, in alternative to the standard at HIT Dmax = 45.6 GyRBEHIT. In comparison with the original DBio|HIT,DBio|NIRS-const_48GyandDBio|NIRS-const_50.4Gy resulted in an increase in the ITV's D98% of 8.7% and 11.3%. The NTCP calculation resulted in a probability for gastrointestinal bleeding of 4.5%, 12.3% and 13.0%, for DBio|NIRS, DBio|NIRS-const_48Gy and DBio|NIRS-const_50.4Gy, respectively. CONCLUSION The results indicate that the current standards applied at HIT for CIRT closely align with the Japanese experience. However, to enhance tumor coverage, a more relaxed constraint on the GI tract may be considered. As the PACK-trial progresses, further analyses of various clinical endpoints are anticipated.
Collapse
Affiliation(s)
- Filipa Baltazar
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Im Neuenheimer Feld 450 69120, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120, Heidelberg, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Im Neuenheimer Feld 450 69120, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Im Neuenheimer Feld 450 69120, Heidelberg, Germany
| | - Juergen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Im Neuenheimer Feld 450 69120, Heidelberg, Germany; Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Herfarth
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Im Neuenheimer Feld 450 69120, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400 69120, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400 69120, Heidelberg, Germany
| | - Bouchra Tawk
- Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Molecular and Translational Radiation Oncology, Im Neuenheimer Feld 450 69120, Heidelberg, Germany; Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120, Heidelberg, Germany; German Cancer Consortium (DKTK) Core Centre Heidelberg 69120, Heidelberg, Germany
| | - Maximilian Knoll
- Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Molecular and Translational Radiation Oncology, Im Neuenheimer Feld 450 69120, Heidelberg, Germany; Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120, Heidelberg, Germany; German Cancer Consortium (DKTK) Core Centre Heidelberg 69120, Heidelberg, Germany
| | - Amir Abdollahi
- Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Molecular and Translational Radiation Oncology, Im Neuenheimer Feld 450 69120, Heidelberg, Germany; Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280 69120, Heidelberg, Germany; German Cancer Consortium (DKTK) Core Centre Heidelberg 69120, Heidelberg, Germany
| | - Jakob Liermann
- Heidelberg University Hospital, Department of Radiation Oncology, Im Neuenheimer Feld 400 69120, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Im Neuenheimer Feld 400 69120, Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Im Neuenheimer Feld 450 69120, Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Im Neuenheimer Feld 450 69120, Heidelberg, Germany; Medical Physics, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy; Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
12
|
Nachankar A, Schafasand M, Carlino A, Hug E, Stock M, Góra J, Fossati P. Planning Strategy to Optimize the Dose-Averaged LET Distribution in Large Pelvic Sarcomas/Chordomas Treated with Carbon-Ion Radiotherapy. Cancers (Basel) 2023; 15:4903. [PMID: 37835598 PMCID: PMC10571585 DOI: 10.3390/cancers15194903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
To improve outcomes in large sarcomas/chordomas treated with CIRT, there has been recent interest in LET optimization. We evaluated 22 pelvic sarcoma/chordoma patients treated with CIRT [large: HD-CTV ≥ 250 cm3 (n = 9), small: HD-CTV < 250 cm3 (n = 13)], DRBE|LEM-I = 73.6 (70.4-73.6) Gy (RBE)/16 fractions, using the local effect model-I (LEM-I) optimization and modified-microdosimetric kinetic model (mMKM) recomputation. We observed that to improve high-LETd distribution in large tumors, at least 27 cm3 (low-LETd region) of HD-CTV should receive LETd of ≥33 keV/µm (p < 0.05). Hence, LETd optimization using 'distal patching' was explored in a treatment planning setting (not implemented clinically yet). Distal-patching structures were created to stop beams 1-2 cm beyond the HD-PTV-midplane. These plans were reoptimized and DRBE|LEM-I, DRBE|mMKM, and LETd were recomputed. Distal patching increased (a) LETd50% in HD-CTV (from 38 ± 3.4 keV/µm to 47 ± 8.1 keV/µm), (b) LETdmin in low-LETd regions of the HD-CTV (from 32 ± 2.3 keV/µm to 36.2 ± 3.6 keV/µm), (c) the GTV fraction receiving LETd of ≥50 keV/µm, (from <10% to >50%) and (d) the high-LETd component in the central region of the GTV, without significant compromise in DRBE distribution. However, distal patching is sensitive to setup/range uncertainties, and efforts to ascertain robustness are underway, before routine clinical implementation.
Collapse
Affiliation(s)
- Ankita Nachankar
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- ACMIT Gmbh, 2700 Wiener Neustadt, Austria
| | - Mansure Schafasand
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Department of Radiation Oncology, Medical University of Vienna, 1090 Wien, Austria
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Antonio Carlino
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Eugen Hug
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Markus Stock
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Division Medical Physics, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Joanna Góra
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
| | - Piero Fossati
- MedAustron Ion Therapy Center, 2700 Wiener Neustadt, Austria; (M.S.); (A.C.); (E.H.); (M.S.); (J.G.); (P.F.)
- Division Radiation Oncology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| |
Collapse
|
13
|
Faddegon B, Blakely EA, Burigo L, Censor Y, Dokic I, Kondo ND, Ortiz R, Méndez JR, Rucinski A, Schubert K, Wahl N, Schulte R. Ionization detail parameters and cluster dose: a mathematical model for selection of nanodosimetric quantities for use in treatment planning in charged particle radiotherapy. Phys Med Biol 2023; 68:10.1088/1361-6560/acea16. [PMID: 37489619 PMCID: PMC10565507 DOI: 10.1088/1361-6560/acea16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Objective. To propose a mathematical model for applying ionization detail (ID), the detailed spatial distribution of ionization along a particle track, to proton and ion beam radiotherapy treatment planning (RTP).Approach. Our model provides for selection of preferred ID parameters (Ip) for RTP, that associate closest to biological effects. Cluster dose is proposed to bridge the large gap between nanoscopicIpand macroscopic RTP. Selection ofIpis demonstrated using published cell survival measurements for protons through argon, comparing results for nineteenIp:Nk,k= 2, 3, …, 10, the number of ionizations in clusters ofkor more per particle, andFk,k= 1, 2, …, 10, the number of clusters ofkor more per particle. We then describe application of the model to ID-based RTP and propose a path to clinical translation.Main results. The preferredIpwereN4andF5for aerobic cells,N5andF7for hypoxic cells. Significant differences were found in cell survival for beams having the same LET or the preferredNk. Conversely, there was no significant difference forF5for aerobic cells andF7for hypoxic cells, regardless of ion beam atomic number or energy. Further, cells irradiated with the same cluster dose for theseIphad the same cell survival. Based on these preliminary results and other compelling results in nanodosimetry, it is reasonable to assert thatIpexist that are more closely associated with biological effects than current LET-based approaches and microdosimetric RBE-based models used in particle RTP. However, more biological variables such as cell line and cycle phase, as well as ion beam pulse structure and rate still need investigation.Significance. Our model provides a practical means to select preferredIpfrom radiobiological data, and to convertIpto the macroscopic cluster dose for particle RTP.
Collapse
Affiliation(s)
- Bruce Faddegon
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - Eleanor A. Blakely
- Loma Linda University School of Medicine, 11175 Campus St, Loma Linda,CA92350, United States of America
| | - Lucas Burigo
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Yair Censor
- Department of Mathematics, University of Haifa, 199 Aba Khoushy Ave. Mount Carmel, Haifa, 3498838, Israel
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Naoki Domínguez Kondo
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - Ramon Ortiz
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - José Ramos Méndez
- University of California San Francisco, Department of Radiation Oncology 1600 Divisadero Street, San Francisco, CA 94143 United States of America
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland
| | - Keith Schubert
- Baylor University, 1311 S 5th St, Waco, TX 76706, United States of America
| | - Niklas Wahl
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Reinhard Schulte
- Loma Linda University School of Medicine, 11085 Campus St, Loma Linda, CA92350, United States of America
| |
Collapse
|
14
|
Schafasand M, Resch AF, Traneus E, Glimelius L, Fossati P, Stock M, Gora J, Georg D, Carlino A. Technical note: In silico benchmarking of the linear energy transfer-based functionalities for carbon ion beams in a commercial treatment planning system. Med Phys 2023; 50:1871-1878. [PMID: 36534738 DOI: 10.1002/mp.16174] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/04/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The increasing number of studies dealing with linear energy transfer (LET)-based evaluation and optimization in the field of carbon ion radiotherapy (CIRT) indicates the rising demand for LET implementation in commercial treatment planning systems (TPS). Benchmarking studies could play a key role in detecting (and thus preventing) computation errors prior implementing such functionalities in a TPS. PURPOSE This in silico study was conducted to benchmark the following two LET-related functionalities in a commercial TPS against Monte Carlo simulations: (1) dose averaged LET (LETd ) scoring and (2) physical dose filtration based on LET for future LET-based treatment plan evaluation and optimization studies. METHODS The LETd scoring and LET-based dose filtering (in which the deposited dose can be separated into the dose below and above the user specified LET threshold) functionalities for carbon ions in the research version RayStation (RS) 9A-IonPG TPS (RaySearch Laboratories, Sweden) were benchmarked against GATE/Geant4 simulations. Pristine Bragg peaks (BPs) and cuboid targets, positioned at different depths in a homogeneous water phantom and a setup with heterogeneity were used for this study. RESULTS For all setups (homogeneous and heterogeneous), the mean absolute (and relative) LETd difference was less than 1 keV/ μ $\umu$ m (3.5%) in the plateau and target and less than 2 keV/ μ $\umu$ m (8.3%) in the fragmentation tail. The maximum local differences were 4 and 6 keV/ μ $\umu$ m, respectively. The mean absolute (and relative) physical dose differences for both low- and high-LET doses were less than 1 cGy (1.5%) in the plateau, target and tail with a maximum absolute difference of 2 cGy. CONCLUSIONS No computation error was found in the tested functionalities except for LETd in lateral direction outside the target, showing the limitation of the implemented monochrome model in the tested TPS version.
Collapse
Affiliation(s)
- Mansure Schafasand
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Franz Resch
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | | | | - Piero Fossati
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Markus Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Oncology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | - Joanna Gora
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
15
|
Schnelzauer L, Valentin S, Traykov E, Arbor N, Finck C, Vanstalle M. Short-lived radioactive 8Li and 8He ions for hadrontherapy: a simulation study. Phys Med Biol 2023; 68. [PMID: 36731132 DOI: 10.1088/1361-6560/acb88b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Purpose.Although charged particle therapy (CPT) for cancer treatment has grown these past years, the use of protons and carbon ions for therapy remains debated compared to x-ray therapy. While a biological advantage of protons is not clearly demonstrated, therapy using carbon ions is often pointed out for its high cost. Furthermore, the nuclear interactions undergone by carbons inside the patient are responsible for an additional dose delivered after the Bragg peak, which deteriorates the ballistic advantage of CPT. Therefore, a renewed interest for lighter ions with higher biological efficiency than protons was recently observed. In this context, helium and lithium ions represent a good compromise between protons and carbons, as they exhibit a higher linear energy transfer (LET) than protons in the Bragg peak and can be accelerated by cyclotrons. The possibility of accelerating radioactive8Li, decaying in 2α-particles, and8He, decaying in8Li byβ-decay, is particularly interesting.Methods. This work aims to assess the interest of the use of8Li and8He ions for therapy by Monte Carlo simulations carried out withGeant4.Results. It was calculated that the8Li and8He decay results in an increase of the LET of almost a factor 2 in the Bragg peak compared to stable7Li and4He. This results also in a higher dose deposited in the Bragg peak without an increase of the dose in the plateau region. It was also shown that both8He and8Li can have a potential interest for prompt-gamma monitoring techniques. Finally, the feasibility of accelerating facilities delivering8Li and8He was also discussed.Conclusion. In this study, we demonstrate that both8Li and8He have interesting properties for therapy. Indeed, simulations predict that8Li and8He are a good compromise between proton and12C, both in terms of LET and dose.
Collapse
Affiliation(s)
- L Schnelzauer
- Université de Strasbourg, CNRS, IPHC UMR 7871, F-67000 STRASBOURG, France
| | - S Valentin
- Université de Strasbourg, CNRS, IPHC UMR 7871, F-67000 STRASBOURG, France
| | - E Traykov
- Université de Strasbourg, CNRS, IPHC UMR 7871, F-67000 STRASBOURG, France
| | - N Arbor
- Université de Strasbourg, CNRS, IPHC UMR 7871, F-67000 STRASBOURG, France
| | - Ch Finck
- Université de Strasbourg, CNRS, IPHC UMR 7871, F-67000 STRASBOURG, France
| | - M Vanstalle
- Université de Strasbourg, CNRS, IPHC UMR 7871, F-67000 STRASBOURG, France
| |
Collapse
|
16
|
Lysakovski P, Besuglow J, Kopp B, Mein S, Tessonnier T, Ferrari A, Haberer T, Debus J, Mairani A. Development and benchmarking of the first fast Monte Carlo engine for helium ion beam dose calculation: MonteRay. Med Phys 2022; 50:2510-2524. [PMID: 36542403 DOI: 10.1002/mp.16178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Monte Carlo (MC) simulations are considered the gold-standard for accuracy in radiotherapy dose calculation; however, general purpose MC engines are computationally demanding and require long runtimes. For this reason, several groups have recently developed fast MC systems dedicated mainly to photon and proton external beam therapy, affording both speed and accuracy. PURPOSE To support research and clinical activities at the Heidelberg Ion-beam Therapy Center (HIT) with actively scanned helium ion beams, this work presents MonteRay, the first fast MC dose calculation engine for helium ion therapy. METHODS MonteRay is a CPU MC dose calculation engine written in C++, capable of simulating therapeutic proton and helium ion beams. In this work, development steps taken to include helium ion beams in MonteRay are presented. A detailed description of the newly implemented physics models for helium ions, for example, for multiple coulomb scattering and inelastic nuclear interactions, is provided. MonteRay dose computations of helium ion beams are evaluated using a comprehensive validation dataset, including measurements of spread-out Bragg peaks (SOBPs) with varying penetration depths/field sizes, measurements with an anthropomorphic phantom and FLUKA simulations of a patient plan. Improvement in computational speed is demonstrated in comparison against reference FLUKA simulations. RESULTS Dosimetric comparisons between MonteRay and measurements demonstrated good agreement. Comparing SOBPs at 5, 12.5, and 20 cm depth, mean absolute percent dose differences were 0.7%, 0.7%, and 1.4%, respectively. Comparison against measurements behind an anthropomorphic head phantom revealed mean absolute dose differences of about 1.2% (FLUKA: 1.5%) with per voxel errors ranging from -4.5% to 4.1% (FLUKA: -6% to 3%). Computed global 3%/3 mm 3D-gamma passing rates of ∼99% were achieved, exceeding those previously reported for an analytical dose engine. Comparisons against FLUKA simulations for a patient plan revealed local 2%/2 mm 3D-gamma passing rates of 98%. Compared to FLUKA in voxelized geometries, MonteRay saw run-time reductions ranging from 20× to 60×, depending on the beam's energy. CONCLUSIONS MonteRay, the first fast MC engine dedicated to helium ion therapy, has been successfully developed with a focus on both speed and accuracy. Validations against dosimetric measurements in homogeneous and heterogeneous scenarios and FLUKA MC calculations have proven the validity of the physical models implemented. Timing comparisons have shown significant speedups between 20 and 60 when compared to FLUKA, making MonteRay viable for clinical routine. MonteRay will support research and clinical practice at HIT, for example, TPS development, validation and treatment design for upcoming clinical trials for raster-scanned helium ion therapy.
Collapse
Affiliation(s)
- Peter Lysakovski
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Judith Besuglow
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.,Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Kopp
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alfredo Ferrari
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University Hospital (UKHD), Heidelberg Faculty of Medicine (MFHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Translational Radiation Oncology, German Cancer Consortium (DKTK) Core-Center Heidelberg, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Physics, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
17
|
Magro G, Fassi M, Mirandola A, Rossi E, Molinelli S, Russo S, Bazani A, Vai A, Ciocca M, Donetti M, Mairani A. Dosimetric validation of a GPU-based dose engine for a fast in silico patient-specific quality assurance program in light ion beam therapy. Med Phys 2022; 49:7802-7814. [PMID: 36196033 DOI: 10.1002/mp.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND With rapid evolutions of fast and sophisticated calculation techniques and delivery technologies, clinics are almost facing a daily patient-specific (PS) plan adaptation, which would make a conventional experimental quality assurance (QA) workflow unlikely to be routinely feasible. Therefore, in silico approaches are foreseen by means of second-check independent dose calculation systems possibly handling machine log-files. PURPOSE To validate the in-house developed GPU-dose engine, FRoG, for light ion beam therapy (protons and carbon ions) as a second-check independent calculation system and to integrate machine log-file analysis into the patient-specific quality assurance (PSQA) program. METHODS Spot sizes, depth-dose distributions, and absolute dose calibrations were configured into FRoG and a set of nine regular-shaped targets in combination with more than 170 clinical treatment fields were tested against pinpoint ionization chamber measurements. Both the treatment planning system DICOM RTplans and machine treatment log-files were used as input for the dose kernel in water, and a 3D local γ (1 mm/2%) index was used as the main evaluation metric. RESULTS Calculated configuration data matched experimental measurements with submillimetric agreement. For regular-shaped targets, the unsigned average relative difference between calculated and measured dose values was less than 2% for both protons and carbon ions. The mean γ passing rate (PR) was around 98% for both particle species. For clinical treatment beams, DICOM-based recalculations showed a γ-PR more than 99% for both particle species. The same level of agreement was preserved for protons when moving to log-file-based recalculations. A score of around 95% was registered for carbon ion beams, once excluding low-quality machine log-files. Unsigned average relative difference against acquired data was less than 2% also for real clinical beams. CONCLUSIONS FRoG was proven as an accurate and reliable tool for PSQA in scanning light ion beam therapy. The proposed method allows for an extremely efficient workflow, without compromising the quality of the plan verification procedure.
Collapse
Affiliation(s)
- Giuseppe Magro
- Clinical Department Medical Physics Unit, Italian National Center for Oncological Hadrontherapy (CNAO Foundation), Pavia, Italy
| | - Martina Fassi
- Department of Physics, University of Milan-Bicocca, Milan, Italy
| | - Alfredo Mirandola
- Clinical Department Medical Physics Unit, Italian National Center for Oncological Hadrontherapy (CNAO Foundation), Pavia, Italy
| | - Eleonora Rossi
- Clinical Department Medical Physics Unit, Italian National Center for Oncological Hadrontherapy (CNAO Foundation), Pavia, Italy
| | - Silvia Molinelli
- Clinical Department Medical Physics Unit, Italian National Center for Oncological Hadrontherapy (CNAO Foundation), Pavia, Italy
| | - Stefania Russo
- Clinical Department Medical Physics Unit, Italian National Center for Oncological Hadrontherapy (CNAO Foundation), Pavia, Italy
| | - Alessia Bazani
- Clinical Department Medical Physics Unit, Italian National Center for Oncological Hadrontherapy (CNAO Foundation), Pavia, Italy
| | - Alessandro Vai
- Clinical Department Medical Physics Unit, Italian National Center for Oncological Hadrontherapy (CNAO Foundation), Pavia, Italy
| | - Mario Ciocca
- Clinical Department Medical Physics Unit, Italian National Center for Oncological Hadrontherapy (CNAO Foundation), Pavia, Italy
| | - Marco Donetti
- Clinical Department Medical Physics Unit, Italian National Center for Oncological Hadrontherapy (CNAO Foundation), Pavia, Italy
| | - Andrea Mairani
- Clinical Department Medical Physics Unit, Italian National Center for Oncological Hadrontherapy (CNAO Foundation), Pavia, Italy.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
18
|
Koryakina EV, Potetnya VI, Troshina MV, Solov’ev AN, Saburov VO, Lychagin AA, Koryakin SN, Ivanov SA, Kaprin AD. Post-Irradiation Recovery of B14-150 Fibrosarcoma Cells after Combined Irradiation with Low and High Linear Energy Transfer. Bull Exp Biol Med 2022; 173:641-644. [DOI: 10.1007/s10517-022-05604-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/07/2022]
|
19
|
Kartini D, Sokol O, Talabnin C, Kobdaj C, Durante M, Krämer M, Fuss M. 3D high resolution clonogenic survival measurement of xrs-5 cells in low-dose region of carbon ion plans. Int J Radiat Biol 2022; 99:488-498. [PMID: 35939100 DOI: 10.1080/09553002.2022.2110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
PURPOSE In this study, we performed biological verification measurements of cell survival of a 12C ion irradiation plan employing a high-resolution 3D culture setup. This allowed, in particular, to access the cell inactivation in the low-dose regions close to the target area. MATERIALS AND METHODS We established the protocol for a 3D culture setup where xrs-5 cells were grown inside a layered matrigel structure in 384-well plates. Their radiosensitivity to conventional and 12C ion radiation was evaluated by irradiating them either with 250 kV X-rays at GSI or with monoenergetic 12C beams of 110 MeV/u at MIT, and compared with those of monolayers. A treatment plan for a rectangular target was prepared using the GSI research treatment planning system TRiP98. xrs-5 cells were seeded in the matrigel-based setup and irradiated in dose fall-off regions using active scanning 12C ion beams. In addition, film dosimetry utilizing radiochromic EBT3 film has been performed to assess the field homogeneity downstream of 384-well V-bottom plates with or without additional agarose coating of the well plate bottom. RESULTS Dose response curves following X-ray and 12C ion irradiation had linear shape and showed a significant decrease in survival fraction at even moderate doses. Survival measurements in the low-dose regions of the plan for the extended target showed good agreement to the predicted survival fraction. The irradiated film profiles yielded a flat dose distribution without apparent artifacts or inhomogeneities for well plates both with and without agarose coating, confirming the suitability of the experimental setup. CONCLUSIONS We conclude that the V-bottom 384-well plates in combination with the radiation-sensitive xrs-5 cell line constitute a suitable radiobiological verification tool which can be used especially for low doses. Furthermore, the measured survival of xrs-5 cells show a good agreement with the expected survival in the low-dose out-of-field regions, both laterally and downstream of the target.
Collapse
Affiliation(s)
- Dea Kartini
- School of Physics, Suranaree University of Technology, Nakhon Ratchasima, Thailand.,Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand.,Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Olga Sokol
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Chutima Talabnin
- School of Chemistry, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Chinorat Kobdaj
- School of Physics, Suranaree University of Technology, Nakhon Ratchasima, Thailand.,Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.,Institut für Physik Kondensierter Materie, Technische Universität Darmstadt, Darmstadt, Germany
| | - Michael Krämer
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Martina Fuss
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| |
Collapse
|
20
|
Mairani A, Mein S, Blakely E, Debus J, Durante M, Ferrari A, Fuchs H, Georg D, Grosshans DR, Guan F, Haberer T, Harrabi S, Horst F, Inaniwa T, Karger CP, Mohan R, Paganetti H, Parodi K, Sala P, Schuy C, Tessonnier T, Titt U, Weber U. Roadmap: helium ion therapy. Phys Med Biol 2022; 67. [PMID: 35395649 DOI: 10.1088/1361-6560/ac65d3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVμm-1to ∼40 keVμm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVμm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.
Collapse
Affiliation(s)
- Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Alfredo Ferrari
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann Fuchs
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - David R Grosshans
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Fada Guan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radhe Mohan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States of America.,Harvard Medical School, Boston, United States of America
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Paola Sala
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Titt
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Ulrich Weber
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| |
Collapse
|
21
|
Held T, Tessonnier T, Franke H, Regnery S, Bauer L, Weusthof K, Harrabi S, Herfarth K, Mairani A, Debus J, Adeberg S. Ways to unravel the clinical potential of carbon ions for head and neck cancer reirradiation: dosimetric comparison and local failure pattern analysis as part of the prospective randomized CARE trial. Radiat Oncol 2022; 17:121. [PMID: 35804448 PMCID: PMC9264522 DOI: 10.1186/s13014-022-02093-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Carbon ion radiotherapy (CIRT) yields biophysical advantages compared to photons but randomized studies for the reirradiation setting are pending. The aim of the current project was to evaluate potential clinical benefits and drawbacks of CIRT compared to volumetric modulated arc therapy (VMAT) in recurrent head and neck cancer. Methods Dose-volume parameters and local failure patterns of CIRT compared to VMAT were evaluate in 16 patients from the randomized CARE trial on head and neck cancer reirradiation. Results Despite an increased target dose, CIRT resulted in significantly reduced organ at risk (OAR) dose across all patients (− 8.7% Dmean). The dose-volume benefits were most pronounced in the brainstem (− 20.7% Dmax) and the optic chiasma (− 13.0% Dmax). The most frequent local failure was type E (extraneous; 50%), followed type B (peripheral; 33%) and type A (central; 17%). In one patient with type A biological and/or dosimetric failure after CIRT, mMKM dose recalculation revealed reduced target coverage. Conclusions CIRT resulted in highly improved critical OAR sparing compared to VMAT across all head and neck cancer reirradiation scenarios despite an increased prescription dose. Local failure pattern analysis revealed further potential CIRT specific clinical benefits and potential pitfalls with regard to image-guidance and biological dose-optimization. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02093-4.
Collapse
Affiliation(s)
- Thomas Held
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany. .,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany. .,National Center for Tumor Diseases (NCT), Heidelberg, Germany. .,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.
| | - Thomas Tessonnier
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany
| | - Henrik Franke
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Lukas Bauer
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Katharina Weusthof
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Klaus Herfarth
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Mairani
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Physics, National Centre of Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Ion Beam Therapy Center (HIT), Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Tanaka S, Inaniwa T, Matsuba S. Development of ripple filter composed of metal mesh for charged-particle therapy. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac762d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/06/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. In charged-particle therapy, a ripple filter (RiFi) is used for broadening the Bragg peak in the beam direction. A conventional RiFi consists of plates with a fine ridge and groove structure. The construction of the RiFi has been a time-consuming and costly task. In this study, we developed a simple RiFi made of multi-layered metal mesh (mRiFi), with which the Bragg peak is broadened due to structural randomness, similar to what occurs for the already proposed RiFi with porous material. Approach. The mRiFi was constructed by stacking commercially available metal meshes at random positions and angles. The mRiFi was inexpensive to fabricate due to its high availability and low machining accuracy. The Bragg peak width modulated by the mRiFi can be uniquely determined by the wire material, wire diameter, wire-to-wire spacing of the metal mesh, and the number of mesh sheets. We fabricated four mRiFis consisting of 10, 20, 30, and 40 layers of stainless steel meshes with a wire diameter of 0.1 mm and a wire-to-wire spacing of 0.508 mm. Main results. Using the mRiFis consisting of 10, 20, 30, and 40 mesh sheets, we succeeded in broadening the Bragg peak following the normal distribution with the respective standard deviation σ values of 0.83, 1.15, 1.41, and 1.56 mm in water in experimental planar-integrated depth dose measurements with 140.3 MeV u−1 carbon-ion beams. The effect of range broadening with the mRiFi was independent of its lateral position, and the measurement of the surface dose using radiochromic films showed no severe inhomogeneity with a homogeneity index greater than 0.3 caused by the mRiFis. Significance. The developed mRiFi can be used as a RiFi in charged-particle therapy. The mRiFi has three advantages: high supply stability of the material for manufacturing it, easy fabrication, and low cost.
Collapse
|
23
|
Mein S, Kopp B, Tessonnier T, Liermann J, Abdollahi A, Debus J, Haberer T, Mairani A. Spot-scanning hadron arc (SHArc) therapy: A proof of concept using single and multi-ion strategies with helium, carbon, oxygen and neon ions. Med Phys 2022; 49:6082-6097. [PMID: 35717613 DOI: 10.1002/mp.15800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To present particle arc therapy treatments using single and multi-ion therapy optimization strategies with helium (4 He), carbon (12 C), oxygen (16 O) and neon (20 Ne) ion beams. METHODS AND MATERIALS An optimization procedure and workflow were devised for spot-scanning hadron arc therapy (SHArc) treatment planning in the PRECISE (PaRticle thErapy using single and Combined Ion optimization StratEgies) treatment planning system (TPS). Physical and biological beam models were developed for helium, carbon, oxygen and neon ions via FLUKA MC simulation. SHArc treatments were optimized using both single ion (12 C, 16 O, or 20 Ne) and multi-ion therapy (16 O+4 He or 20 Ne+4 He) applying variable relative biological effectiveness (RBE) modeling using a modified microdosimetric kinetic model (mMKM) with (α/β)x values of 2Gy, 5Gy and 3.1Gy respectively, for glioblastoma, pancreatic adenocarcinoma, and prostate adenocarcinoma patient cases. Dose, effective dose, linear energy transfer (LET) and RBE were computed with the GPU-accelerated dose engine FRoG and dosimetric/biophysical attributes were evaluated in the context of conventional particle and photon-based therapies (e.g., volumetric modulated arc therapy [VMAT]). RESULTS All SHArc plans met the target optimization goals (3GyRBE) and demonstrated increased target conformity and substantially lower low-dose bath to surrounding normal tissues than VMAT. SHArc plans using a single ion species (12 C, 16 O, or 20 Ne) exhibited favorable LET distributions with the highest-LET components centralized in the target volume, with values ranging from ∼80-170keV/μm, ∼130-220keV/μm and ∼180-350keV/μm, for 12 C, 16 O, or 20 Ne, respectively, exceeding mean target LET of conventional particle therapy (12 C:∼60, 16 O:∼78 20 Ne:∼100 keV/μm). Multi-ion therapy with SHArc delivery (SHArcMIT ) provided a similar level of target LET enhancement as SHArc compared to conventional planning, however, with additional benefits of homogenous physical dose and RBE distributions. CONCLUSION Here, we demonstrate that arc delivery of light and heavy ion beams, using either a single ion species (12 C, 16 O, or 20 Ne) or combining two ions in a single fraction (16 O+4 He or 20 Ne+4 He), affords enhanced physical and biological distributions (e.g., LET) compared with conventional delivery with photons or particle beams. SHArc marks the first single and multi-ion arc therapy treatment optimization approach using light and heavy ions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Benedikt Kopp
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany
| | - Jakob Liermann
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Amir Abdollahi
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany and German Cancer Consortium (DKTK), Heidelberg, 69120, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, 69120, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, 69120, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, 27100, Italy
| |
Collapse
|
24
|
Biological Dose Optimization for Particle Arc Therapy using Helium and Carbon Ions. Int J Radiat Oncol Biol Phys 2022; 114:334-348. [PMID: 35490991 DOI: 10.1016/j.ijrobp.2022.04.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE To present biological dose optimization for particle arc therapy using helium and carbon ions. METHODS Treatment plan planning and optimization procedures were developed for spot-scanning hadron arc (SHArc) delivery using the RayStation TPS and a GPU-accelerated dose engine (†TPS-XXX). The SHArc optimization algorithm is applicable for charged particle beams and determines angle-dependencies for spot/energy selection with three main initiatives: i) achieve standard clinical optimization goals and constraints for target and OARs, ii) target dose robustness and iii) increasing LET in the target volume. Three patient cases previously treated at the †INSTITUTION-XXX were selected for evaluation of conventional versus arc delivery for the two clinical particle beams (helium [4He] and carbon [12C] ions): glioblastoma, prostate-adenocarcinoma and skull-base chordoma. Biological dose and dose-averaged linear energy transfer (LETd) distributions for SHArc were evaluated against conventional planning techniques (VMAT and IMPT2F) applying the modified microdosimetric kinetic model (mMKM) for considering bio-effect with (α/β)x=2Gy. Clinical viability and deliverability were assessed via evaluation of plan quality, robustness and irradiation time. RESULTS For all investigated patient cases, SHArc treatment optimizations met planning goals and constraints for target coverage and OARs, exhibiting acceptable target coverage and reduced normal tissue volumes with effective dose >10GyRBE compared to conventional 2F planning. For carbon ions, LETd was increased in the target volume from ∼40-60keV/µm to ∼80-140keV/µm for SHArc compared to conventional treatments. Favorable LETd distributions were possible with the SHArc approach, with maximum LETd in CTV/GTV and potential reductions of high-LET regions in normal tissues and OARs. Compared to VMAT, SHArc affords substantial reductions in normal tissue dose (40-70%). CONCLUSION SHArc therapy offers potential treatment benefits such as increased normal tissue sparing from higher doses >10GyRBE, enhanced target LETd, and potential reduction in high-LET components in OARs. Findings justify further development of robust SHArc treatment planning towards potential clinical translation.
Collapse
|
25
|
Kim MM, Darafsheh A, Schuemann J, Dokic I, Lundh O, Zhao T, Ramos-Méndez J, Dong L, Petersson K. Development of Ultra-High Dose-Rate (FLASH) Particle Therapy. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:252-262. [PMID: 36092270 PMCID: PMC9457346 DOI: 10.1109/trpms.2021.3091406] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Research efforts in FLASH radiotherapy have increased at an accelerated pace recently. FLASH radiotherapy involves ultra-high dose rates and has shown to reduce toxicity to normal tissue while maintaining tumor response in pre-clinical studies when compared to conventional dose rate radiotherapy. The goal of this review is to summarize the studies performed to-date with proton, electron, and heavy ion FLASH radiotherapy, with particular emphasis on the physical aspects of each study and the advantages and disadvantages of each modality. Beam delivery parameters, experimental set-up, and the dosimetry tools used are described for each FLASH modality. In addition, modeling efforts and treatment planning for FLASH radiotherapy is discussed along with potential drawbacks when translated into the clinical setting. The final section concludes with further questions that have yet to be answered before safe clinical implementation of FLASH radiotherapy.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, Heidelberg, Germany
| | - Olle Lundh
- Department of Physics, Lund University, Lund, Sweden
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kristoffer Petersson
- Department of Oncology, The Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
26
|
Mein S, Kopp B, Vela A, Dutheil P, Lesueur P, Stefan D, Debus J, Haberer T, Abdollahi A, Mairani A, Tessonnier T. How can we consider variable RBE and LET d prediction during clinical practice? A pediatric case report at the Normandy Proton Therapy Centre using an independent dose engine. Radiat Oncol 2022; 17:23. [PMID: 35120547 PMCID: PMC8815260 DOI: 10.1186/s13014-021-01960-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/01/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND To develop an auxiliary GPU-accelerated proton therapy (PT) dose and LETd engine for the IBA Proteus®ONE PT system. A pediatric low-grade glioma case study is reported using FRoG during clinical practice, highlighting potential treatment planning insights using variable RBE dose (DvRBE) and LETd as indicators for clinical decision making in PT. METHODS The physics engine for FRoG has been modified for compatibility with Proteus®ONE PT centers. Subsequently, FRoG was installed and commissioned at NPTC. Dosimetric validation was performed against measurements and the clinical TPS, RayStation (RS-MC). A head patient cohort previously treated at NPTC was collected and FRoG forward calculations were compared against RS-MC for evaluation of 3D-Γ analysis and dose volume histogram (DVH) results. Currently, treatment design at NPTC is supported with fast variable RBE and LETd calculation and is reported in a representative case for pediatric low-grade glioma. RESULTS Simple dosimetric tests against measurements of iso-energy layers and spread-out Bragg Peaks in water verified accuracy of FRoG and RS-MC. Among the patient cohort, average 3D-Γ applying 2%/2 mm, 3%/1.5 mm and 5%/1 mm were > 97%. DVH metrics for targets and OARs between FRoG and RayStation were in good agreement, with ∆D50,CTV and ∆D2,OAR both ⪅1%. The pediatric case report demonstrated implications of different beam arrangements on DvRBE and LETd distributions. From initial planning in RayStation sharing identical optimization constraints, FRoG analysis led to plan selection of the most conservative approach, i.e., minimized DvRBE,max and LETd,max in OARs, to avoid optical system toxicity effects (i.e., vision loss). CONCLUSION An auxiliary dose calculation system was successfully integrated into the clinical workflow at a Proteus®ONE IBA facility, in excellent agreement with measurements and RS-MC. FRoG may lead to further insight on DvRBE and LETd implications to help clinical decision making, better understand unexpected toxicities and establish novel clinical procedures with metrics currently absent from the standard clinical TPS.
Collapse
Affiliation(s)
- Stewart Mein
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
| | - Benedikt Kopp
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Anthony Vela
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | - Pauline Dutheil
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | - Paul Lesueur
- Radiation Oncology Department, Centre François Baclesse, Caen, France
- Radiation Oncology Department, Centre Guillaume Le Conquérant, Le Havre, France
- ISTCT UMR6030-CNRS, CEA, Université de Caen-Normandie, Equipe CERVOxy, Caen, France
| | - Dinu Stefan
- Radiation Oncology Department, Centre François Baclesse, Caen, France
| | - Jürgen Debus
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
| | - Andrea Mairani
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany
- National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | - Thomas Tessonnier
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, Heidelberg, Germany.
- Heidelberg Ion-beam Therapy Center (HIT), In Neuenheimer Feld (INF) 450, DE, 69120, Heidelberg, Germany.
- Radiation Oncology Department, Centre François Baclesse, Caen, France.
| |
Collapse
|
27
|
Yap J, De Franco A, Sheehy S. Future Developments in Charged Particle Therapy: Improving Beam Delivery for Efficiency and Efficacy. Front Oncol 2021; 11:780025. [PMID: 34956897 PMCID: PMC8697351 DOI: 10.3389/fonc.2021.780025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/16/2021] [Indexed: 01/09/2023] Open
Abstract
The physical and clinical benefits of charged particle therapy (CPT) are well recognized. However, the availability of CPT and complete exploitation of dosimetric advantages are still limited by high facility costs and technological challenges. There are extensive ongoing efforts to improve upon these, which will lead to greater accessibility, superior delivery, and therefore better treatment outcomes. Yet, the issue of cost remains a primary hurdle as utility of CPT is largely driven by the affordability, complexity and performance of current technology. Modern delivery techniques are necessary but limited by extended treatment times. Several of these aspects can be addressed by developments in the beam delivery system (BDS) which determines the overall shaping and timing capabilities enabling high quality treatments. The energy layer switching time (ELST) is a limiting constraint of the BDS and a determinant of the beam delivery time (BDT), along with the accelerator and other factors. This review evaluates the delivery process in detail, presenting the limitations and developments for the BDS and related accelerator technology, toward decreasing the BDT. As extended BDT impacts motion and has dosimetric implications for treatment, we discuss avenues to minimize the ELST and overview the clinical benefits and feasibility of a large energy acceptance BDS. These developments support the possibility of advanced modalities and faster delivery for a greater range of treatment indications which could also further reduce costs. Further work to realize methodologies such as volumetric rescanning, FLASH, arc, multi-ion and online image guided therapies are discussed. In this review we examine how increased treatment efficiency and efficacy could be achieved with improvements in beam delivery and how this could lead to faster and higher quality treatments for the future of CPT.
Collapse
Affiliation(s)
- Jacinta Yap
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| | - Andrea De Franco
- IFMIF Accelerator Development Group, Rokkasho Fusion Institute, National Institutes for Quantum Science and Technology, Aomori, Japan
| | - Suzie Sheehy
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Durante M, Debus J, Loeffler JS. Physics and biomedical challenges of cancer therapy with accelerated heavy ions. NATURE REVIEWS. PHYSICS 2021; 3:777-790. [PMID: 34870097 PMCID: PMC7612063 DOI: 10.1038/s42254-021-00368-5] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 05/05/2023]
Abstract
Radiotherapy should have low toxicity in the entrance channel (normal tissue) and be very effective in cell killing in the target region (tumour). In this regard, ions heavier than protons have both physical and radiobiological advantages over conventional X-rays. Carbon ions represent an excellent combination of physical and biological advantages. There are a dozen carbon-ion clinical centres in Europe and Asia, and more under construction or at the planning stage, including the first in the USA. Clinical results from Japan and Germany are promising, but a heated debate on the cost-effectiveness is ongoing in the clinical community, owing to the larger footprint and greater expense of heavy ion facilities compared with proton therapy centres. We review here the physical basis and the clinical data with carbon ions and the use of different ions, such as helium and oxygen. Research towards smaller and cheaper machines with more effective beam delivery is necessary to make particle therapy affordable. The potential of heavy ions has not been fully exploited in clinics and, rather than there being a single 'silver bullet', different particles and their combination can provide a breakthrough in radiotherapy treatments in specific cases.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Debus
- Department of Radiation Oncology and Heidelberg Ion Beam Therapy Center, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jay S. Loeffler
- Departments of Radiation Oncology and Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Inaniwa T, Kanematsu N, Shinoto M, Koto M, Yamada S. Adaptation of stochastic microdosimetric kinetic model to hypoxia for hypo-fractionated multi-ion therapy treatment planning. Phys Med Biol 2021; 66. [PMID: 34560678 DOI: 10.1088/1361-6560/ac29cc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/24/2021] [Indexed: 11/11/2022]
Abstract
For hypo-fractionated multi-ion therapy (HFMIT), the stochastic microdosimetric kinetic (SMK) model had been developed to estimate the biological effectiveness of radiation beams with wide linear energy transfer (LET) and dose ranges. The HFMIT will be applied to radioresistant tumors with oxygen-deficient regions. The response of cells to radiation is strongly dependent on the oxygen condition in addition to radiation type, LET and absorbed dose. This study presents an adaptation of the SMK model to account for oxygen-pressure dependent cell responses, and develops the oxygen-effect-incorporated stochastic microdosimetric kinetic (OSMK) model. In the model, following assumptions were made: the numbers of radiation-induced sublethal lesions (double-strand breaks) are reduced due to lack of oxygen, and the numbers of oxygen-mediated lesions are reduced for radiation with high LET. The model parameters were determined by fitting survival data under aerobic and anoxic conditions for human salivary gland tumor cells and V79 cells exposed to helium-, carbon-, and neon-ion beams over the LET range of 18.5-654.0 keVμm-1. The OSMK model provided good agreement with the experimental survival data of the cells with determination coefficients >0.9. In terms of oxygen enhancement ratio, the OSMK model reproduced the experimental data behavior, including slight dependence on particle type at the same LET. The OSMK model was then implemented into the in-house treatment planning software for the HFMIT to validate its applicability in clinical practice. A treatment plan with helium- and neon-ion beams was made for a pancreatic cancer case assuming an oxygen-deficient region within the tumor. The biological optimization based on the OSMK model preferentially placed the neon-ion beam to the hypoxic region, while it placed both helium- and neon-ion beams to the surrounding normoxic region. The OSMK model offered the accuracy and usability required for hypoxia-based biological optimization in HFMIT treatment planning.
Collapse
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Makoto Shinoto
- QST Hospital, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masashi Koto
- QST Hospital, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shigeru Yamada
- QST Hospital, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
30
|
Bey A, Ma J, Furutani KM, Herman MG, Johnson JE, Foote RL, Beltran CJ. Nuclear Fragmentation Imaging for Carbon-Ion Radiation Therapy Monitoring: an In Silico Study. Int J Part Ther 2021; 8:25-36. [PMID: 35530183 PMCID: PMC9009459 DOI: 10.14338/ijpt-20-00040.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose This article presents an in vivo imaging technique based on nuclear fragmentation of carbon ions in irradiated tissues for potential real-time monitoring of carbon-ion radiation therapy (CIRT) treatment delivery and quality assurance purposes in clinical settings. Materials and Methods A proof-of-concept imaging and monitoring system (IMS) was devised to implement the technique. Monte Carlo simulations were performed for a prospective pencil-beam scanning CIRT nozzle. The development IMS benchmark considered a 5×5-cm2 pixelated charged-particle detector stack positioned downstream from a target phantom and list-mode data acquisition. The abundance and production origins, that is, vertices, of the detected fragments were studied. Fragment trajectories were approximated by straight lines and a beam back-projection algorithm was built to reconstruct the vertices. The spatial distribution of the vertices was then used to determine plan relevant markers. Results The IMS technique was applied for a simulated CIRT case, a primary brain tumor. Four treatment plan monitoring markers were conclusively recovered: a depth dose distribution correlated profile, ion beam range, treatment target boundaries, and the beam spot position. Promising millimeter-scale (3-mm, ≤10% uncertainty) beam range and submillimeter (≤0.6-mm precision for shifts <3 cm) beam spot position verification accuracies were obtained for typical therapeutic energies between 150 and 290 MeV/u. Conclusions This work demonstrated a viable online monitoring technique for CIRT treatment delivery. The method's strong advantage is that it requires few signal inputs (position and timing), which can be simultaneously acquired with readily available technology. Future investigations will probe the technique's applicability to motion-sensitive organ sites and patient tissue heterogeneities. In-beam measurements with candidate detector-acquisition systems are ultimately essential to validate the IMS benchmark performance and subsequent deployment in the clinic.
Collapse
Affiliation(s)
- Anissa Bey
- Department of Radiation Oncology, Mayo Clinic, Rochester MN, USA
| | - Jiasen Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester MN, USA
| | - Keith M. Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Robert L. Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester MN, USA
| | - Chris J. Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| |
Collapse
|
31
|
Bennan ABA, Unkelbach J, Wahl N, Salome P, Bangert M. Joint Optimization of Photon-Carbon Ion Treatments for Glioblastoma. Int J Radiat Oncol Biol Phys 2021; 111:559-572. [PMID: 34058258 DOI: 10.1016/j.ijrobp.2021.05.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/09/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE Carbon ions are radiobiologically more effective than photons and are beneficial for treating radioresistant gross tumor volumes (GTV). However, owing to a reduced fractionation effect, they may be disadvantageous for treating infiltrative tumors, in which healthy tissue inside the clinical target volume (CTV) must be protected through fractionation. This work addresses the question: What is the ideal combined photon-carbon ion fluence distribution for treating infiltrative tumors given a specific fraction allocation between photons and carbon ions? METHODS AND MATERIALS We present a method to simultaneously optimize sequentially delivered intensity modulated photon (IMRT) and carbon ion (CIRT) treatments based on cumulative biological effect, incorporating both the variable relative biological effect of carbon ions and the fractionation effect within the linear quadratic model. The method is demonstrated for 6 glioblastoma patients in comparison with the current clinical standard of independently optimized CIRT-IMRT plans. RESULTS Compared with the reference plan, joint optimization strategies yield inhomogeneous photon and carbon ion dose distributions that cumulatively deliver a homogeneous biological effect distribution. In the optimal distributions, the dose to CTV is mostly delivered by photons and carbon ions are restricted to the GTV with variations depending on tumor size and location. Improvements in conformity of high-dose regions are reflected by a mean EQD2 reduction of 3.29 ± 1.22 Gy in a dose fall-off margin around the CTV. Carbon ions may deliver higher doses to the center of the GTV, and photon contributions are increased at interfaces with CTV and critical structures. This results in a mean EQD2 reduction of 8.3 ± 2.28 Gy, in which the brain stem abuts the target volumes. CONCLUSIONS We have developed a biophysical model to optimize combined photon-carbon ion treatments. For 6 glioblastoma patient cases, we show that our approach results in a more targeted application of carbon ions that (1) reduces dose in normal tissues within the target volume, which can only be protected through fractionation; and (2) boosts central target volume regions to reduce integral dose. Joint optimization of IMRT-CIRT treatments enable the exploration of a new spectrum of plans that can better address physical and radiobiological treatment planning challenges.
Collapse
Affiliation(s)
- Amit Ben Antony Bennan
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; Medical Faculty, Heidelberg University, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.
| | - Jan Unkelbach
- Department of Radiation Oncology, University Hospital Zurich, Switzerland
| | - Niklas Wahl
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Patrick Salome
- Medical Faculty, Heidelberg University, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ)
| | - Mark Bangert
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
32
|
Magro G, Mein S, Kopp B, Mastella E, Pella A, Ciocca M, Mairani A. FRoG dose computation meets Monte Carlo accuracy for proton therapy dose calculation in lung. Phys Med 2021; 86:66-74. [PMID: 34058719 DOI: 10.1016/j.ejmp.2021.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To benchmark and evaluate the clinical viability of novel analytical GPU-accelerated and CPU-based Monte Carlo (MC) dose-engines for spot-scanning intensity-modulated-proton-therapy (IMPT) towards the improvement of lung cancer treatment. METHODS Nine patient cases were collected from the CNAO clinical experience and The Cancer Imaging Archive-4D-Lung-Database for in-silico study. All plans were optimized with 2 orthogonal beams in RayStation (RS) v.8. Forward calculations were performed with FRoG, an independent dose calculation system using a fast robust approach to the pencil beam algorithm (PBA), RS-MC (CPU for v.8) and general-purpose MC (gp-MC). Dosimetric benchmarks were acquired via irradiation of a lung-like phantom and ionization chambers for both a single-field-uniform-dose (SFUD) and IMPT plans. Dose-volume-histograms, dose-difference and γ-analyses were conducted. RESULTS With respect to reference gp-MC, the average dose to the GTV was 1.8% and 2.3% larger for FRoG and the RS-MC treatment planning system (TPS). FRoG and RS-MC showed a local γ-passing rate of ~96% and ~93%. Phantom measurements confirmed FRoG's high accuracywith a deviation < 0.1%. CONCLUSIONS Dose calculation performance using the GPU-accelerated analytical PBA, MC-TPS and gp-MC code were well within clinical tolerances. FRoG predictions were in good agreement with both the full gp-MC and experimental data for proton beams optimized for thoracic dose calculations. GPU-accelerated dose-engines like FRoG may alleviate current issues related to deficiencies in current commercial analytical proton beam models. The novel approach to the PBA implemented in FRoG is suitable for either clinical TPS or as an auxiliary dose-engine to support clinical activity for lung patients.
Collapse
Affiliation(s)
- Giuseppe Magro
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy
| | - Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Kopp
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Germany
| | - Edoardo Mastella
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy
| | - Andrea Pella
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy
| | - Mario Ciocca
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy
| | - Andrea Mairani
- National Centre for Oncological Hadrontherapy (CNAO), Clinical Department, Pavia, Italy; Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
33
|
Mein S, Tessonnier T, Kopp B, Harrabi S, Abdollahi A, Debus J, Haberer T, Mairani A. Spot-Scanning Hadron Arc (SHArc) Therapy: A Study With Light and Heavy Ions. Adv Radiat Oncol 2021; 6:100661. [PMID: 33817410 PMCID: PMC8010580 DOI: 10.1016/j.adro.2021.100661] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/29/2020] [Accepted: 01/18/2021] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To evaluate the clinical potential of spot-scanning hadron arc (SHArc) therapy with a heavy-ion gantry. METHODS AND MATERIALS A series of in silico studies was conducted via treatment plan optimization in FRoG and the RayStation TPS to compare SHArc therapy against reference plans using conventional techniques with single, parallel-opposed, and 3-field configurations for 3 clinical particle beams (protons [p], helium [4He], and carbon [12C] ions). Tests were performed on water-equivalent cylindrical phantoms for simple targets and clinical-like scenarios with an organ-at-risk in proximity of the target. Effective dose and dose-averaged linear energy transfer (LETD) distributions for SHArc were evaluated against conventional planning techniques applying the modified microdosimetric kinetic model for considering bio-effect with (α/β)x = 2 Gy. A model for hypoxia-induced tumor radio-resistance was developed for particle therapy with dependence on oxygen concentration and particle species/energy (Zeff/β)2 to investigate the impact on effective dose. RESULTS SHArc plans exhibited similar target coverage with unique treatment attributes and distributions compared with conventional planning, with carbon ions demonstrating the greatest potential for tumor control and normal tissue sparing among the arc techniques. All SHArc plans exhibited a low-dose bath outside the target volume with a reduced maximum dose in normal tissues compared with single, parallel-opposed, and 3-field configuration plans. Moreover, favorable LETD distributions were made possible using the SHArc approach, with maximum LETD in the r = 5 mm tumor core (~8 keVμm-1, ~30 keVμm-1, and ~150 keVμm-1 for p, 4He, and 12C ions, respectively) and reductions of high-LET regions in normal tissues and organs-at-risk compared with static treatment beam delivery. CONCLUSION SHArc therapy offers potential treatment benefits such as increased normal tissue sparing. Without explicit consideration of oxygen concentration during treatment planning and optimization, SHArc-C may mitigate tumor hypoxia-induced loss of efficacy. Findings justify further development of robust SHArc treatment planning toward potential clinical translation.
Collapse
Affiliation(s)
- Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Benedikt Kopp
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Germany
| | - Semi Harrabi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Mairani
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
- National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| |
Collapse
|
34
|
Ebner DK, Frank SJ, Inaniwa T, Yamada S, Shirai T. The Emerging Potential of Multi-Ion Radiotherapy. Front Oncol 2021; 11:624786. [PMID: 33692957 PMCID: PMC7937868 DOI: 10.3389/fonc.2021.624786] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
Research into high linear energy transfer (LET) radiotherapy now spans over half a century, beginning with helium and deuteron treatment in 1952 and today ranging from fast neutrons to carbon-ions. Owing to pioneering work initially in the United States and thereafter in Germany and Japan, increasing focus is on the carbon-ion beam: 12 centers are in operation, with five under construction and three in planning. While the carbon-ion beam has demonstrated unique and promising suitability in laboratory and clinical trials toward the hypofractionated treatment of hypoxic and/or radioresistant cancer, substantial developmental potential remains. Perhaps most notable is the ability to paint LET in a tumor, theoretically better focusing damage delivery within the most resistant areas. However, the technique may be limited in practice by the physical properties of the beams themselves. A heavy-ion synchrotron may provide irradiation with multiple heavy-ions: carbon, helium, and oxygen are prime candidates. Each ion varies in LET distribution, and so a methodology combining the use of multiple ions into a uniform LET distribution within a tumor may allow for even greater treatment potential in radioresistant cancer.
Collapse
Affiliation(s)
- Daniel K Ebner
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Steven J Frank
- Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Taku Inaniwa
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Shigeru Yamada
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Toshiyuki Shirai
- National Institute of Radiological Science (NIRS), National Institutes of Quantum and Radiological Science and Technology (QST), Chiba, Japan
| |
Collapse
|
35
|
Lee SH, Mizushima K, Kohno R, Iwata Y, Yonai S, Shirai T, Pan VA, Bolst D, Tran LT, Rosenfeld AB, Suzuki M, Inaniwa T. Estimating the biological effects of helium, carbon, oxygen, and neon ion beams using 3D silicon microdosimeters. Phys Med Biol 2021; 66:045017. [PMID: 33361575 DOI: 10.1088/1361-6560/abd66f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, the survival fraction (SF) and relative biological effectiveness (RBE) of pancreatic cancer cells exposed to spread-out Bragg peak helium, carbon, oxygen, and neon ion beams are estimated from the measured microdosimetric spectra using a microdosimeter and the application of the microdosimetric kinetic (MK) model. To measure the microdosimetric spectra, a 3D mushroom silicon-on-insulator microdosimeter connected to low noise readout electronics (MicroPlus probe) was used. The parameters of the MK model were determined for pancreatic cancer cells such that the calculated SFs reproduced previously reported in vitro SF data. For a cuboid target of 10 × 10 × 6 cm3, treatment plans of helium, carbon, oxygen, and neon ion beams were designed using in-house treatment planning software (TPS) to achieve a 10% SF of pancreatic cancer cells throughout the target. The physical doses and microdosimetric spectra of the planned fields were measured at different depths in polymethyl methacrylate phantoms. The biological effects, such as SF, RBE, and RBE-weighted dose at different depths along the fields were predicted from the measurements. The predicted SFs at the target region were generally in good agreement with the planned SF from the TPS in most cases.
Collapse
Affiliation(s)
- Sung Hyun Lee
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, QST, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Inaniwa T, Abe Y, Suzuki M, Lee SH, Mizushima K, Nakaji T, Sakata D, Sato S, Iwata Y, Kanematsu N, Shirai T. Application of lung substitute material as ripple filter for multi-ion therapy with helium-, carbon-, oxygen-, and neon-ion beams. Phys Med Biol 2021; 66. [PMID: 33477116 DOI: 10.1088/1361-6560/abde99] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
A development project for hypo-fractionated multi-ion therapy has been initiated at the National Institute of Radiological Sciences in Japan. In the treatment, helium, carbon, oxygen, and neon ions will be used as primary beams with pencil beam scanning. A ripple filter (RiFi), consisting of a thin plastic or aluminum plate with a fine periodic ridge and groove structure, has been used to broaden the Bragg peak of heavy-ion beams in the beam direction. To sufficiently broaden the Bragg peak of helium-, carbon-, oxygen-, and neon-ion beams with suppressed lateral scattering and surface dose inhomogeneity, in this study, we tested a plate made of a lung substitute material, Gammex LN300, as the RiFi. The planar integrated dose distribution of a 183.5-MeV/u neon-ion beam was measured behind a 3-cm-thick LN300 plate in water. The Bragg peak of the pristine beam was broadened following the normal distribution with the standard deviation value of 1.29 mm, while the range of the beam was reduced by 8.8 mm by the plate. To verify the LN300 performance as the RiFi in multi-ion therapy, we measured the pencil beam data of helium-, carbon-, oxygen, and neon-ion beams penetrating the 3-cm-thick LN300 plate. The data were then modeled and used in a treatment planning system to achieve a uniform 10% survival of human undifferentiated carcinoma cells within a cuboid target by the beam for each of the different ion species. The measured survival fractions were reasonably reproduced by the planned ones for all the ion species. No surface dose inhomogeneity was observed for any ion species even when the plate was placed close to the phantom surface. The plate made of lung substitute material, Gammex LN300, is applicable as the RiFi in multi-ion therapy with helium-, carbon-, oxygen, and neon-ion beams.
Collapse
Affiliation(s)
- Taku Inaniwa
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, JAPAN
| | - Yasushi Abe
- National Institute of Radiological Sciences, Department of Accelerator and Medical Physics, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, JAPAN
| | - Masao Suzuki
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology National Institute of Radiological Sciences, Chiba, Chiba, JAPAN
| | - Sung Hyun Lee
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, JAPAN
| | - Kota Mizushima
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, JAPAN
| | - Taku Nakaji
- Quality Control Section, QST Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, JAPAN
| | - Dousatsu Sakata
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, JAPAN
| | - Shinji Sato
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, JAPAN
| | - Yoshiyuki Iwata
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, JAPAN
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, National Institutes for Quantum and Radiological Science and Technology National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, JAPAN
| | - Toshiyuki Shirai
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, JAPAN
| |
Collapse
|
37
|
Kopp B, Mein S, Tessonnier T, Besuglow J, Harrabi S, Heim E, Abdollahi A, Haberer T, Debus J, Mairani A. Rapid effective dose calculation for raster-scanning 4He ion therapy with the modified microdosimetric kinetic model (mMKM). Phys Med 2020; 81:273-284. [PMID: 33353795 DOI: 10.1016/j.ejmp.2020.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To develop and verify effective dose (DRBE) calculation in 4He ion beam therapy based on the modified microdosimetric kinetic model (mMKM) and evaluate the bio-sensitivity of mMKM-based plans to clinical parameters using a fast analytical dose engine. METHODS Mixed radiation field particle spectra (MRFS) databases have been generated with Monte-Carlo (MC) simulations for 4He-ion beams. Relative biological effectiveness (RBE) and DRBE calculation using MRFS were established within a fast analytical engine. Spread-out Bragg-Peaks (SOBPs) in water were optimized for two dose levels and two tissue types with photon linear-quadratic model parameters αph, βph, and (α/β)ph to verify MRFS-derived database implementation against computations with MC-generated mixed-field α and β databases. Bio-sensitivity of the SOBPs was investigated by varying absolute values of βph, while keeping (α/β)ph constant. Additionally, dose, dose-averaged linear energy transfer, and bio-sensitivity were investigated for two patient cases. RESULTS Using MRFS-derived databases, dose differences ≲2% in the plateau and SOBP are observed compared to computations with MC-generated databases. Bio-sensitivity studies show larger deviations when altering the absolute βph value, with maximum D50% changes of ~5%, with similar results for patient cases. Bio-sensitivity analysis indicates a greater impact on DRBE varying (α/β)ph than βph in mMKM. CONCLUSIONS The MRSF approach yielded negligible differences in the target and small differences in the plateau compared to MC-generated databases. The presented analyses provide guidance for proper implementation of RBE-weighted 4He ion dose prescription and planning with mMKM. The MRFS-DRBE calculation approach using mMKM will be implemented in a clinical treatment planning system.
Collapse
Affiliation(s)
- B Kopp
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - S Mein
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - J Besuglow
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - S Harrabi
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - E Heim
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - A Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany; German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - J Debus
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - A Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.
| |
Collapse
|
38
|
Tinganelli W, Durante M. Carbon Ion Radiobiology. Cancers (Basel) 2020; 12:E3022. [PMID: 33080914 PMCID: PMC7603235 DOI: 10.3390/cancers12103022] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy using accelerated charged particles is rapidly growing worldwide. About 85% of the cancer patients receiving particle therapy are irradiated with protons, which have physical advantages compared to X-rays but a similar biological response. In addition to the ballistic advantages, heavy ions present specific radiobiological features that can make them attractive for treating radioresistant, hypoxic tumors. An ideal heavy ion should have lower toxicity in the entrance channel (normal tissue) and be exquisitely effective in the target region (tumor). Carbon ions have been chosen because they represent the best combination in this direction. Normal tissue toxicities and second cancer risk are similar to those observed in conventional radiotherapy. In the target region, they have increased relative biological effectiveness and a reduced oxygen enhancement ratio compared to X-rays. Some radiobiological properties of densely ionizing carbon ions are so distinct from X-rays and protons that they can be considered as a different "drug" in oncology, and may elicit favorable responses such as an increased immune response and reduced angiogenesis and metastatic potential. The radiobiological properties of carbon ions should guide patient selection and treatment protocols to achieve optimal clinical results.
Collapse
Affiliation(s)
- Walter Tinganelli
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforchung, Planckstraße 1, 64291 Darmstadt, Germany;
- Institut für Festkörperphysik, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
39
|
Mein S, Klein C, Kopp B, Magro G, Harrabi S, Karger CP, Haberer T, Debus J, Abdollahi A, Dokic I, Mairani A. Assessment of RBE-Weighted Dose Models for Carbon Ion Therapy Toward Modernization of Clinical Practice at HIT: In Vitro, in Vivo, and in Patients. Int J Radiat Oncol Biol Phys 2020; 108:779-791. [PMID: 32504659 DOI: 10.1016/j.ijrobp.2020.05.041] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/02/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Present-day treatment planning in carbon ion therapy is conducted with assumptions for a limited number of tissue types and models for effective dose. Here, we comprehensively assess relative biological effectiveness (RBE) in carbon ion therapy and associated models toward the modernization of current clinical practice in effective dose calculation. METHODS Using 2 human (A549, H460) and 2 mouse (B16, Renca) tumor cell lines, clonogenic cell survival assay was performed for examination of changes in RBE along the full range of clinical-like spread-out Bragg peak (SOBP) fields. Prediction power of the local effect model (LEM1 and LEM4) and the modified microdosimetric kinetic model (mMKM) was assessed. Experimentation and analysis were carried out in the frame of a multidimensional end point study for clinically relevant ranges of physical dose (D), dose-averaged linear energy transfer (LETd), and base-line photon radio-sensitivity (α/β)x. Additionally, predictions were compared against previously reported RBE measurements in vivo and surveyed in patient cases. RESULTS RBE model prediction performance varied among the investigated perspectives, with mMKM prediction exhibiting superior agreement with measurements both in vitro and in vivo across the 3 investigated end points. LEM1 and LEM4 performed their best in the highest LET conditions but yielded overestimations and underestimations in low/midrange LET conditions, respectively, as demonstrated by comparison with measurements. Additionally, the analysis of patient treatment plans revealed substantial variability across the investigated models (±20%-30% uncertainty), largely dependent on the selected model and absolute values for input tissue parameters αx and βx. CONCLUSION RBE dependencies in vitro, in vivo, and in silico were investigated with respect to various clinically relevant end points in the context of tumor-specific tissue radio-sensitivity assignment and accurate RBE modeling. Discovered model trends and performances advocate upgrading current treatment planning schemes in carbon ion therapy and call for verification via clinical outcome analysis with large patient cohorts.
Collapse
Affiliation(s)
- Stewart Mein
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Germany
| | - Carmen Klein
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Germany
| | - Benedikt Kopp
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Germany
| | - Giuseppe Magro
- National Centre of Oncological Hadrontherapy, Medical Physics, Pavia, Italy
| | - Semi Harrabi
- Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian P Karger
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Department of Medical Physics in Radiation Oncology, German Cancer Research Center, Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany; Faculty of Physics and Astronomy, Heidelberg University, Germany; National Center for Tumor Diseases, Heidelberg, Germany; Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Amir Abdollahi
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine and Heidelberg University Hospital, Heidelberg Ion-Beam Therapy Center, Heidelberg, Germany; German Cancer Consortium Core-Center Heidelberg, German Cancer Research Center, Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology, National Center for Radiation Oncology, Heidelberg University and German Cancer Research Center, Heidelberg, Germany.
| | - Andrea Mairani
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Heidelberg, Germany; National Centre of Oncological Hadrontherapy, Medical Physics, Pavia, Italy; Heidelberg Ion-Beam Therapy Center, Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
40
|
Mizushima K, Iwata Y, Muramatsu M, Lee SH, Shirai T. Experimental study on monitoring system of clinical beam purity in multiple-ion beam operation for heavy-ion radiotherapy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:023309. [PMID: 32113412 DOI: 10.1063/1.5127537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The National Institute of Radiological Sciences has investigated multiple-ion therapy using energetic beams of helium, carbon, oxygen, and neon ions, to improve treatment outcomes of refractory cancer. For this therapy, it is necessary to ensure the helium-ion beam purity to avoid irradiation by unwanted ions. Here, we develop a measurement method for monitoring beam purity. This method can measure the charge number of the ions in a high-purity beam using an ionization chamber and Faraday cup. In addition, it can be used to detect the contamination of the clinical helium-ion beam. We perform beam experiments to evaluate our beam-purity monitoring method and predict that our method is capable of detecting contamination below 1%.
Collapse
Affiliation(s)
- K Mizushima
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Y Iwata
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - M Muramatsu
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - S H Lee
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - T Shirai
- Department of Accelerator and Medical Physics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
41
|
Inaniwa T, Lee SH, Mizushima K, Sakata D, Iwata Y, Kanematsu N, Shirai T. Nuclear-interaction correction for patient dose calculations in treatment planning of helium-, carbon-, oxygen-, and neon-ion beams. Phys Med Biol 2020; 65:025004. [PMID: 31816612 DOI: 10.1088/1361-6560/ab5fee] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In charged-particle therapy treatment planning, the patient is conventionally modeled as variable-density water, i.e. stopping effective density ρ S, and the planar integrated dose distribution measured in water (PID) is applied for patient dose calculation based on path length scaling with the ρ S. This approximation assures the range accuracy of charged-particle beams. However, it causes dose calculation errors due to water nonequivalence of body tissues in nuclear interactions originating from compositional differences. We had previously proposed and validated a PID correction method for the errors in carbon-ion radiotherapy. In the present study, we verify the PID correction method for helium-, oxygen-, and neon-ion beams. The one-to-one relationships between ρ S and the nuclear effective density ρ N of body tissues were constructed for helium-, carbon-, oxygen-, and neon-ion beams, and were used to correct the PIDs to account for the dose calculation errors in patient. The correction method was tested for non-water materials with un-scanned and scanned ion beams. In un-scanned beams penetrating the materials, the dose calculation errors of up to 5.9% were observed at the Bragg peak region, while they were reduced to ⩽0.9% by the PID correction method. In scanned beams penetrating olive oil, the dose calculation errors of up to 2.7% averaged over the spread-out Bragg peak were observed, while they were reduced to ⩽0.4% by the correction method. To investigate the influence of water nonequivalence of body tissues on tumor dose, we carried out a treatment planning study for prostate and uterine cases. The tumor over-doses of 0.9%, 1.8%, 2.0%, and 2.2% were observed in the uterine case for the helium-, carbon-, oxygen-, and neon-ion beams, respectively. These dose errors could be diminished by the PID correction method. The present results verify that the PID correction method is simple, practical, and accurate for treatment planning of these four ion species.
Collapse
Affiliation(s)
- Taku Inaniwa
- Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|