1
|
Fu J, Liu X, Zhou Y, Zhao S, Zeng L, Pan Y, Zhang J, Prise KM, Shao C, Xu Y. Development of delayed pulmonary toxicities and transcriptional changes in pre-existing interstitial lung disease mice after partial thoracic irradiation. Radiat Oncol 2025; 20:20. [PMID: 39920834 PMCID: PMC11806759 DOI: 10.1186/s13014-025-02596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 02/02/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Lung cancer patients with comorbid interstitial lung disease (LC-ILD) have an increased risk of developing severe or even fatal radiation pneumonitis after thoracic radiotherapy. However, the underlying mechanisms of its pathogenesis are still inconclusive. No approved biomarker or medicine is available to prevent pulmonary toxicities in LC-ILD patients. Appropriate management for them remains a challenge for clinicians due to treatment-related complications. METHODS To elucidate the histopathological characteristics and molecular mechanisms responsible for this severe toxicity in vivo, C57BL/6J mice were used to develop different lung injury models, including radiation-induced lung injury (RILI), bleomycin-induced pulmonary fibrosis (BIPF), and severe radiation-related lung injury (sRRLI) murine model. Biopsy examination was performed on hematoxylin and eosin (H&E), Masson's trichrome, and immunohistochemistry-stained lung tissue sections. Changes in lung function were measured. RNA extracted from mouse lung tissues was sequenced on the Illumina Novaseq platform. RESULTS A severe lung injury model after irradiation was built based on pre-existing ILD mice induced by BLM administration. Enhanced lung injury was observed in the sRRLI model, including higher mortality and pulmonary function loss within six months compared to the mono-treatment groups. Autopsy revealed that bilateral diffuse alveolar damage (DAD) with an overlap of exudative, proliferative, and fibrosing patterns was usually presented in the sRRLI model. The histological phenotypes manifested exudative predominated DAD phase in the early phase and proliferating DAD pattern in the late phase. Bioinformatic analysis showed signaling pathways relevant to immune cell migration, epithelial cell development, and extracellular structure organization were commonly activated in different models. Furthermore, the involvement of epithelial cells and the infiltration of macrophages and CD4 + lymphocytes were validated during extensive lung remodeling in the sRRLI group. CONCLUSIONS Delayed effects of significantly declined lung function and high mortality were observed in the sRRLI model. DAD with progressive inflammation and fibrosis in bilateral lungs contributed to severe or even fatal complications after partial thoracic irradiation. The hyperactivation of inflammatory responses was clarified during long-term pulmonary toxicities. More studies are needed to investigate potential strategies to prevent and rescue severe lung complications.
Collapse
Affiliation(s)
- Jiamei Fu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuchuan Zhou
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shengnan Zhao
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Liang Zeng
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Pan
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianghong Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Kevin M Prise
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yaping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China.
| |
Collapse
|
2
|
Braga-Cohen S, Lavigne J, Dos Santos M, Tarlet G, Buard V, Baijer J, Guipaud O, Paget V, Deutsch E, Benadjaoud MA, Mondini M, Milliat F, François A. Evidence of Alveolar Macrophage Metabolic Shift Following Stereotactic Body Radiation Therapy -Induced Lung Fibrosis in Mice. Int J Radiat Oncol Biol Phys 2025; 121:506-519. [PMID: 39278419 DOI: 10.1016/j.ijrobp.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/22/2024] [Accepted: 09/04/2024] [Indexed: 09/18/2024]
Abstract
PURPOSE Radiation-induced pneumopathy is the main dose-limiting factor in cases of chest radiation therapy. Macrophage infiltration is frequently observed in irradiated lung tissues and may participate in lung damage development. Radiation-induced lung fibrosis can be reproduced in rodent models using whole thorax irradiation but suffers from limits concerning the role played by unexposed lung volumes in damage development. METHODS AND MATERIALS Here, we used an accurate stereotactic body radiation therapy preclinical model irradiating 4% of the mouse lung. Tissue damage development and macrophage populations were followed by histology, flow cytometry, and single-cell RNA sequencing. Wild-type and CCR2 KO mice, in which monocyte recruitment is abrogated, were exposed to single doses of radiation, inducing progressive (60 Gy) or rapid (80 Gy) lung fibrosis. RESULTS Numerous clusters of macrophages were observed around the injured area, during progressive as well as rapid fibrosis. The results indicate that probably CCR2-independent recruitment and/or in situ proliferation may be responsible for macrophage invasion. Alveolar macrophages experience a metabolic shift from fatty acid metabolism to cholesterol biosynthesis, directing them through a possible profibrotic phenotype. Depicted data revealed that the origin and phenotype of macrophages present in the injured area may differ from what has been previously described in preclinical models exposing large lung volumes, representing a potentially interesting trail in the deciphering of radiation-induced lung damage processes. CONCLUSIONS Our study brings new possible clues to the understanding of macrophage implications in radiation-induced lung damage, representing an interesting area for exploration in future studies.
Collapse
Affiliation(s)
- Sarah Braga-Cohen
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France
| | - Jérémy Lavigne
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France
| | - Morgane Dos Santos
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRAcc, F-92260 Fontenay-aux-Roses, France
| | - Georges Tarlet
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France
| | - Valérie Buard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France
| | - Jan Baijer
- Plateforme de cytométrie, UMR ≪ Stabilité Génétique, Cellules souches et Radiations ≫, CEA-INSERM-Universités de Paris et Paris-Sud, CEA-DRF/JACOB/iRCM/UMRE008-U1274, BP6 92265 Fontenay-aux-Roses Cedex, France
| | - Olivier Guipaud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France
| | - Vincent Paget
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France
| | - Eric Deutsch
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, 94 800 Villejuif, France; Département d'Oncologie Radiothérapie, Gustave Roussy, 94 800 Villejuif, France
| | - Mohamed Amine Benadjaoud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED, F-92260 Fontenay-aux-Roses, France
| | - Michele Mondini
- INSERM U1030, Gustave Roussy, Université Paris-Saclay, 94 800 Villejuif, France
| | - Fabien Milliat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France.
| | - Agnès François
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED/LRMed, F-92260 Fontenay-aux-Roses, France.
| |
Collapse
|
3
|
Omori K, Takada A, Toyomasu Y, Tawara I, Shintoku C, Imanaka-Yoshida K, Sakuma H, Nomoto Y. Expression of Tenascin-C Is Upregulated in the Early Stages of Radiation Pneumonitis/Fibrosis in a Novel Mouse Model. Curr Issues Mol Biol 2024; 46:9674-9685. [PMID: 39329927 PMCID: PMC11430349 DOI: 10.3390/cimb46090575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
The lung is a major dose-limiting organ for radiation therapy (RT) for cancer in the thoracic region, and the clarification of radiation-induced lung damage (RILD) is important. However, there have been few reports containing a detailed comparison of radiographic images with the pathological findings of radiation pneumonitis (RP)/radiation fibrosis (RF). We recently reported the upregulated expression of tenascin-C (TNC), an inflammation-associated extracellular matrix molecule, in surgically resected lung tissue, and elevated serum levels were elevated in a RILD patient. Therefore, we have developed a novel mouse model of partial lung irradiation and studied it with special attention paid to the computed tomography (CT) images and immunohistological findings. The right lungs of mice (BALB/c) were irradiated locally at 30 Gy/1fr, and the following two groups were created. In Group 1, sequential CT was performed to confirm the time-dependent changes in RILD. In Group 2, the CT images and histopathological findings of the lung were compared. RP findings were detected histologically at 16 weeks after irradiation; they were also observed on the CT images from 20 weeks. The immunostaining of TNC was observed before the appearance of RP on the CT images. The findings suggest that TNC could be an inflammatory marker preceding lung fibrosis.
Collapse
Affiliation(s)
- Kazuki Omori
- Department of Radiology, Mie University Hospital, Tsu 514-8507, Mie, Japan; (K.O.); (Y.T.); (H.S.); (Y.N.)
| | - Akinori Takada
- Department of Radiology, Mie University Hospital, Tsu 514-8507, Mie, Japan; (K.O.); (Y.T.); (H.S.); (Y.N.)
| | - Yutaka Toyomasu
- Department of Radiology, Mie University Hospital, Tsu 514-8507, Mie, Japan; (K.O.); (Y.T.); (H.S.); (Y.N.)
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Hospital, Tsu 514-8507, Mie, Japan;
| | - Chihiro Shintoku
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (C.S.); (K.I.-Y.)
| | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (C.S.); (K.I.-Y.)
| | - Hajime Sakuma
- Department of Radiology, Mie University Hospital, Tsu 514-8507, Mie, Japan; (K.O.); (Y.T.); (H.S.); (Y.N.)
| | - Yoshihito Nomoto
- Department of Radiology, Mie University Hospital, Tsu 514-8507, Mie, Japan; (K.O.); (Y.T.); (H.S.); (Y.N.)
| |
Collapse
|
4
|
Rota Graziosi E, François S, Nasser F, Gauthier M, Oger M, Favier AL, Drouet M, Jullien N, Riccobono D. Comparison of Three Antagonists of Hedgehog Pathway to Promote Skeletal Muscle Regeneration after High Dose Irradiation. Radiat Res 2024; 201:429-439. [PMID: 38253061 DOI: 10.1667/rade-23-00140.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/01/2023] [Indexed: 01/24/2024]
Abstract
The current geopolitical context has brought the radiological nuclear risk to the forefront of concerns. High-dose localized radiation exposure leads to the development of a musculocutaneous radiation syndrome affecting the skin and subcutaneous muscles. Despite the implementation of a gold standard treatment based on an invasive surgical procedure coupled with autologous cell therapy, a muscular defect frequently persists. Targeting the modulation of the Hedgehog (Hh) signaling pathway appears to be a promising therapeutic approach. Activation of this pathway enhances cell survival and promotes proliferation after irradiation, while inhibition by Cyclopamine facilitates differentiation. In this study, we compared the effects of three antagonists of Hh, Cyclopamine (CA), Vismodegib (VDG) and Sonidegib (SDG) on differentiation. A stable cell line of murine myoblasts, C2C12, was exposed to X-ray radiation (5 Gy) and treated with CA, VDG or SDG. Analysis of proliferation, survival (apoptosis), morphology, myogenesis genes expression and proteins production were performed. According to the results, VDG does not have a significant impact on C2C12 cells. SDG increases the expression/production of differentiation markers to a similar extent as CA, while morphologically, SDG proves to be more effective than CA. To conclude, SDG can be used in the same way as CA but already has a marketing authorization with an indication against basal cell cancers, facilitating their use in vivo. This proof of concept demonstrates that SDG represents a promising alternative to CA to promotes differentiation of murine myoblasts. Future studies on isolated and cultured satellite cells and in vivo will test this proof of concept.
Collapse
Affiliation(s)
- Emmanuelle Rota Graziosi
- IRBA, French Armed Forces Biomedical Research Institute, Radiobiology unit, Brétigny-sur-Orge, France
| | - Sabine François
- IRBA, French Armed Forces Biomedical Research Institute, Radiobiology unit, Brétigny-sur-Orge, France
- INSERM, UMR1296, Radiations: Defense, Health, Environment, Lyon and Brétigny-sur-Orge, France
| | - Farah Nasser
- IRBA, French Armed Forces Biomedical Research Institute, Radiobiology unit, Brétigny-sur-Orge, France
| | - Michel Gauthier
- IRBA, French Armed Forces Biomedical Research Institute, Radiobiology unit, Brétigny-sur-Orge, France
| | - Myriam Oger
- IRBA, French Armed Forces Biomedical Research Institute, Imagery Unit, Department of Platforms and Technology Research, Brétigny-sur-Orge, France
| | - Anne-Laure Favier
- IRBA, French Armed Forces Biomedical Research Institute, Imagery Unit, Department of Platforms and Technology Research, Brétigny-sur-Orge, France
| | - Michel Drouet
- INSERM, UMR1296, Radiations: Defense, Health, Environment, Lyon and Brétigny-sur-Orge, France
- IRBA, French Armed Forces Biomedical Research Institute, Radiations Bioeffects Department, Brétigny-sur-Orge, France
| | - Nicolas Jullien
- IRBA, French Armed Forces Biomedical Research Institute, Radiobiology unit, Brétigny-sur-Orge, France
| | - Diane Riccobono
- INSERM, UMR1296, Radiations: Defense, Health, Environment, Lyon and Brétigny-sur-Orge, France
- IRBA, French Armed Forces Biomedical Research Institute, Radiations Bioeffects Department, Brétigny-sur-Orge, France
| |
Collapse
|
5
|
Chen Y, Ma L, Cheng Z, Hu Z, Xu Y, Wu J, Dai Y, Shi C. Senescent fibroblast facilitates re-epithelization and collagen deposition in radiation-induced skin injury through IL-33-mediated macrophage polarization. J Transl Med 2024; 22:176. [PMID: 38369466 PMCID: PMC10874572 DOI: 10.1186/s12967-024-04972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND The need for radiotherapy among the elderly rises with increasing life expectancy and a corresponding increase of elderly cancer patients. Radiation-induced skin injury is one of the most frequent adverse effects in radiotherapy patients, severely limiting their life quality. Re-epithelialization and collagen deposition have essential roles in the recovery of skin injuries induced by high doses of ionizing radiation. At the same time, radiation-induced senescent cells accumulate in irradiated tissues. However, the effects and mechanisms of senescent cells on re-epithelialization and collagen deposition in radiation-induced skin injury have not been fully elucidated. RESULTS Here, we identified a role for a population of senescent cells expressing p16 in promoting re-epithelialization and collagen deposition in radiation-induced skin injury. Targeted ablation of p16+ senescent cells or treatment with Senolytics resulted in the disruption of collagen structure and the retardation of epidermal coverage. By analyzing a publicly available single-cell sequencing dataset, we identified fibroblasts as a major contributor to the promotion of re-epithelialization and collagen deposition in senescent cells. Notably, our analysis of publicly available transcriptome sequencing data highlighted IL-33 as a key senescence-associated secretory phenotype produced by senescent fibroblasts. Neutralizing IL-33 significantly impedes the healing process. Finally, we found that the effect of IL-33 was partly due to the modulation of macrophage polarization. CONCLUSIONS In conclusion, our data suggested that senescent fibroblasts accumulated in radiation-induced skin injury sites participated in wound healing mainly by secreting IL-33. This secretion regulated the local immune microenvironment and macrophage polarization, thus emphasizing the importance of precise regulation of senescent cells in a phased manner.
Collapse
Affiliation(s)
- Yan Chen
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Le Ma
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhuo Cheng
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhihe Hu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yang Xu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Wu
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yali Dai
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chunmeng Shi
- Institute of Rocket Force Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Pan X, Wang C, Zhan Y, Chen J, Wang Z, Lan R, Chen J, Zhang W, Chen C, Zhang M, Huang F, Hong J. A Subset of Breg Cells, B10, Contributes to the Development of Radiation-Induced Pulmonary Fibrosis. Int J Radiat Oncol Biol Phys 2023; 117:237-251. [PMID: 37054996 DOI: 10.1016/j.ijrobp.2023.03.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 03/07/2023] [Accepted: 03/30/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE Radiation-induced pulmonary fibrosis (RIPF) is a serious side effect of radiation therapy, but the underlying mechanisms are unknown. B10 cells, as negative B regulatory cells, play important roles in regulating inflammation and autoimmunity. However, the role of B10 cells in RIPF progression is unclear. The aim of this study was to determine the role of B10 cells in aggravating RIPF and the underlying mechanism. METHODS AND MATERIALS The role of B10 cells in RIPF was studied by constructing mouse models of RIPF and depleting B10 cells with an anti-CD22 antibody. The mechanism of B10 cells in RIPF was further explored through cocultivation of B10 cells and MLE-12 or NIH3T3 cells and administration of an interleukin (IL)-10 antibody to block IL-10. RESULTS B10 cell numbers increased significantly during the early stage in the RIPF mouse models compared with the controls. In addition, depleting B10 cells with the anti-CD22 antibody attenuated the development of lung fibrosis in mice. Subsequently, we confirmed that B10 cells induced epithelial-mesenchymal transition and the transformation of myofibroblasts via activation of STAT3 signaling in vitro. After blockade of IL-10, it was verified that IL-10 secreted by B10 cells mediates the epithelial-mesenchymal transition of myofibroblasts, thereby promoting RIPF. CONCLUSIONS Our study uncovers a novel role for IL-10-secreting B10 cells that could be a new target of research for relieving RIPF.
Collapse
Affiliation(s)
- Xiaoxian Pan
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China
| | - Caihong Wang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China
| | - Yuping Zhan
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China
| | - Jinmei Chen
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Zeng Wang
- Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Ruilong Lan
- Provincial Key Laboratory of Precision Medicine for Cancer, Fuzhou 350005, China; Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Junying Chen
- Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China; Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China
| | - Weijian Zhang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Chun Chen
- School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Mingwei Zhang
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Fei Huang
- Provincial Key Laboratory of Precision Medicine for Cancer, Fuzhou 350005, China; Central Lab, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical Universisty, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian higher education institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
7
|
Sminia P, Guipaud O, Viktorsson K, Ahire V, Baatout S, Boterberg T, Cizkova J, Dostál M, Fernandez-Palomo C, Filipova A, François A, Geiger M, Hunter A, Jassim H, Edin NFJ, Jordan K, Koniarová I, Selvaraj VK, Meade AD, Milliat F, Montoro A, Politis C, Savu D, Sémont A, Tichy A, Válek V, Vogin G. Clinical Radiobiology for Radiation Oncology. RADIOBIOLOGY TEXTBOOK 2023:237-309. [DOI: 10.1007/978-3-031-18810-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
AbstractThis chapter is focused on radiobiological aspects at the molecular, cellular, and tissue level which are relevant for the clinical use of ionizing radiation (IR) in cancer therapy. For radiation oncology, it is critical to find a balance, i.e., the therapeutic window, between the probability of tumor control and the probability of side effects caused by radiation injury to the healthy tissues and organs. An overview is given about modern precision radiotherapy (RT) techniques, which allow optimal sparing of healthy tissues. Biological factors determining the width of the therapeutic window are explained. The role of the six typical radiobiological phenomena determining the response of both malignant and normal tissues in the clinic, the 6R’s, which are Reoxygenation, Redistribution, Repopulation, Repair, Radiosensitivity, and Reactivation of the immune system, is discussed. Information is provided on tumor characteristics, for example, tumor type, growth kinetics, hypoxia, aberrant molecular signaling pathways, cancer stem cells and their impact on the response to RT. The role of the tumor microenvironment and microbiota is described and the effects of radiation on the immune system including the abscopal effect phenomenon are outlined. A summary is given on tumor diagnosis, response prediction via biomarkers, genetics, and radiomics, and ways to selectively enhance the RT response in tumors. Furthermore, we describe acute and late normal tissue reactions following exposure to radiation: cellular aspects, tissue kinetics, latency periods, permanent or transient injury, and histopathology. Details are also given on the differential effect on tumor and late responding healthy tissues following fractionated and low dose rate irradiation as well as the effect of whole-body exposure.
Collapse
|
8
|
Wiedemann J, Coppes RP, van Luijk P. Radiation-induced cardiac side-effects: The lung as target for interacting damage and intervention. Front Oncol 2022; 12:931023. [PMID: 35936724 PMCID: PMC9354542 DOI: 10.3389/fonc.2022.931023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022] Open
Abstract
Radiotherapy is part of the treatment for many thoracic cancers. During this treatment heart and lung tissue can often receive considerable doses of radiation. Doses to the heart can potentially lead to cardiac effects such as pericarditis and myocardial fibrosis. Common side effects after lung irradiation are pneumonitis and pulmonary fibrosis. It has also been shown that lung irradiation has effects on cardiac function. In a rat model lung irradiation caused remodeling of the pulmonary vasculature increasing resistance of the pulmonary vascular bed, leading to enhanced pulmonary artery pressure, right ventricle hypertrophy and reduced right ventricle performance. Even more pronounced effects are observed when both, lung and heart are irradiated. The effects observed after lung irradiation show striking similarities with symptoms of pulmonary arterial hypertension. In particular, the vascular remodeling in lung tissue seems to have similar underlying features. Here, we discuss the similarities and differences of vascular remodeling observed after thoracic irradiation compared to those in pulmonary arterial hypertension patients and research models. We will also assess how this knowledge of similarities could potentially be translated into interventions which would be beneficial for patients treated for thoracic tumors, where dose to lung tissue is often unavoidable.
Collapse
Affiliation(s)
- Julia Wiedemann
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P. Coppes
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Peter van Luijk
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Peter van Luijk,
| |
Collapse
|
9
|
Morilla I, Chan P, Caffin F, Svilar L, Selbonne S, Ladaigue S, Buard V, Tarlet G, Micheau B, Paget V, François A, Souidi M, Martin JC, Vaudry D, Benadjaoud MA, Milliat F, Guipaud O. Deep models of integrated multiscale molecular data decipher the endothelial cell response to ionizing radiation. iScience 2022; 25:103685. [PMID: 35106469 PMCID: PMC8786676 DOI: 10.1016/j.isci.2021.103685] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/04/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
The vascular endothelium is a hot spot in the response to radiation therapy for both tumors and normal tissues. To improve patient outcomes, interpretable systemic hypotheses are needed to help radiobiologists and radiation oncologists propose endothelial targets that could protect normal tissues from the adverse effects of radiation therapy and/or enhance its antitumor potential. To this end, we captured the kinetics of multi-omics layers-i.e. miRNome, targeted transcriptome, proteome, and metabolome-in irradiated primary human endothelial cells cultured in vitro. We then designed a strategy of deep learning as in convolutional graph networks that facilitates unsupervised high-level feature extraction of important omics data to learn how ionizing radiation-induced endothelial dysfunction may evolve over time. Last, we present experimental data showing that some of the features identified using our approach are involved in the alteration of angiogenesis by ionizing radiation.
Collapse
Affiliation(s)
- Ian Morilla
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
- Corresponding author
| | - Philippe Chan
- Normandie Univ, UNIROUEN, PISSARO Proteomic Platform, 76821 Mont Saint-Aignan, France
| | - Fanny Caffin
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Ljubica Svilar
- Aix Marseille Univ, INSERM, INRA, C2VN, 13007 Marseille, France
- CriBioM, Criblage Biologique Marseille, Faculté de Médecine de la Timone, 13205 Marseille Cedex 01, France
| | - Sonia Selbonne
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Ségolène Ladaigue
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
- Sorbonne University, Doctoral College, 75005 Paris, France
| | - Valérie Buard
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Georges Tarlet
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Béatrice Micheau
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Vincent Paget
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Agnès François
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Maâmar Souidi
- IRSN, Radiobiology of Accidental Exposure Laboratory (LRAcc), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Jean-Charles Martin
- Aix Marseille Univ, INSERM, INRA, C2VN, 13007 Marseille, France
- CriBioM, Criblage Biologique Marseille, Faculté de Médecine de la Timone, 13205 Marseille Cedex 01, France
| | - David Vaudry
- Normandie Univ, UNIROUEN, PISSARO Proteomic Platform, 76821 Mont Saint-Aignan, France
| | - Mohamed-Amine Benadjaoud
- IRSN, Radiobiology and Regenerative Medicine Research Service (SERAMED), 92260 Fontenay-Aux-Roses, France
| | - Fabien Milliat
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
| | - Olivier Guipaud
- IRSN, Radiobiology of Medical Exposure Laboratory (LRMed), Human Health Radiation Protection Unit, 92260 Fontenay-Aux-Roses, France
- Corresponding author
| |
Collapse
|
10
|
Bertho A, Dos Santos M, Braga-Cohen S, Buard V, Paget V, Guipaud O, Tarlet G, Milliat F, François A. Preclinical Model of Stereotactic Ablative Lung Irradiation Using Arc Delivery in the Mouse: Is Fractionation Worthwhile? Front Med (Lausanne) 2022; 8:794324. [PMID: 35004768 PMCID: PMC8739220 DOI: 10.3389/fmed.2021.794324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 11/23/2022] Open
Abstract
Lung stereotactic body radiation therapy is characterized by a reduction in target volumes and the use of severely hypofractionated schedules. Preclinical modeling became possible thanks to rodent-dedicated irradiation devices allowing accurate beam collimation and focal lung exposure. Given that a great majority of publications use single dose exposures, the question we asked in this study was as follows: in incremented preclinical models, is it worth using fractionated protocols or should we continue focusing solely on volume limitation? The left lungs of C57BL/6JRj mice were exposed to ionizing radiation using arc therapy and 3 × 3 mm beam collimation. Three-fraction schedules delivered over a period of 1 week were used with 20, 28, 40, and 50 Gy doses per fraction. Lung tissue opacification, global histological damage and the numbers of type II pneumocytes and club cells were assessed 6 months post-exposure, together with the gene expression of several lung cells and inflammation markers. Only the administration of 3 × 40 Gy or 3 × 50 Gy generated focal lung fibrosis after 6 months, with tissue opacification visible by cone beam computed tomography, tissue scarring and consolidation, decreased club cell numbers and a reactive increase in the number of type II pneumocytes. A fractionation schedule using an arc-therapy-delivered three fractions/1 week regimen with 3 × 3 mm beam requires 40 Gy per fraction for lung fibrosis to develop within 6 months, a reasonable time lapse given the mouse lifespan. A comparison with previously published laboratory data suggests that, in this focal lung irradiation configuration, administering a Biological Effective Dose ≥ 1000 Gy should be recommended to obtain lung fibrosis within 6 months. The need for such a high dose per fraction challenges the appropriateness of using preclinical highly focused fractionation schedules in mice.
Collapse
Affiliation(s)
- Annaïg Bertho
- Laboratory of Radiobiology of Medical Exposures, Institute for Radioprotection and Nuclear Safety (IRSN), Research Department in Radiobiology and Regenerative Medicine, Fontenay-aux-Roses, France
| | - Morgane Dos Santos
- Laboratory of Radiobiology of Accidental Exposures, Institute for Radioprotection and Nuclear Safety (IRSN), Research Department in Radiobiology and Regenerative Medicine, Fontenay-aux-Roses, France
| | - Sarah Braga-Cohen
- Laboratory of Radiobiology of Medical Exposures, Institute for Radioprotection and Nuclear Safety (IRSN), Research Department in Radiobiology and Regenerative Medicine, Fontenay-aux-Roses, France
| | - Valérie Buard
- Laboratory of Radiobiology of Medical Exposures, Institute for Radioprotection and Nuclear Safety (IRSN), Research Department in Radiobiology and Regenerative Medicine, Fontenay-aux-Roses, France
| | - Vincent Paget
- Laboratory of Radiobiology of Medical Exposures, Institute for Radioprotection and Nuclear Safety (IRSN), Research Department in Radiobiology and Regenerative Medicine, Fontenay-aux-Roses, France
| | - Olivier Guipaud
- Laboratory of Radiobiology of Medical Exposures, Institute for Radioprotection and Nuclear Safety (IRSN), Research Department in Radiobiology and Regenerative Medicine, Fontenay-aux-Roses, France
| | - Georges Tarlet
- Laboratory of Radiobiology of Medical Exposures, Institute for Radioprotection and Nuclear Safety (IRSN), Research Department in Radiobiology and Regenerative Medicine, Fontenay-aux-Roses, France
| | - Fabien Milliat
- Laboratory of Radiobiology of Medical Exposures, Institute for Radioprotection and Nuclear Safety (IRSN), Research Department in Radiobiology and Regenerative Medicine, Fontenay-aux-Roses, France
| | - Agnès François
- Laboratory of Radiobiology of Medical Exposures, Institute for Radioprotection and Nuclear Safety (IRSN), Research Department in Radiobiology and Regenerative Medicine, Fontenay-aux-Roses, France
| |
Collapse
|
11
|
Chargari C, Rassy E, Helissey C, Achkar S, Francois S, Deutsch E. Impact of radiation therapy on healthy tissues. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 376:69-98. [PMID: 36997270 DOI: 10.1016/bs.ircmb.2022.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Radiation therapy has a fundamental role in the management of cancers. However, despite a constant improvement in radiotherapy techniques, the issue of radiation-induced side effects remains clinically relevant. Mechanisms of acute toxicity and late fibrosis are therefore important topics for translational research to improve the quality of life of patients treated with ionizing radiations. Tissue changes observed after radiotherapy are consequences of complex pathophysiology, involving macrophage activation, cytokine cascade, fibrotic changes, vascularization disorders, hypoxia, tissue destruction and subsequent chronic wound healing. Moreover, numerous data show the impact of these changes in the irradiated stroma on the oncogenic process, with interplays between tumor radiation response and pathways involved in the fibrotic process. The mechanisms of radiation-induced normal tissue inflammation are reviewed, with a focus on the impact of the inflammatory process on the onset of treatment-related toxicities and the oncogenic process. Possible targets for pharmacomodulation are also discussed.
Collapse
|
12
|
Benadjaoud MA, Soysouvanh F, Tarlet G, Paget V, Buard V, Santos de Andrade H, Morilla I, Dos Santos M, Bertho A, l'Homme B, Gruel G, François A, Mondini M, Deutsch E, Guipaud O, Milliat F. Deciphering the Dynamic Molecular Program of Radiation-Induced Endothelial Senescence. Int J Radiat Oncol Biol Phys 2021; 112:975-985. [PMID: 34808254 DOI: 10.1016/j.ijrobp.2021.11.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE Radiation-induced cellular senescence is a double-edged sword, acting as both a tumor suppression process limiting tumor proliferation, and a crucial process contributing to normal tissue injury. Endothelial cells play a role in normal tissue injury after radiation therapy. Recently, a study observed an accumulation of senescent endothelial cells (ECs) around radiation-induced lung focal lesions following stereotactic radiation injury in mice. However, the effect of radiation on EC senescence remains unclear because it depends on dose and fractionation, and because the senescent phenotype is heterogeneous and dynamic. METHODS AND MATERIALS Using a systems biology approach in vitro, we deciphered the dynamic senescence-associated transcriptional program induced by irradiation. RESULTS Flow cytometry and single-cell RNA sequencing experiments revealed the heterogeneous senescent status of irradiated ECs and allowed to deciphered the molecular program involved in this status. We identified the Interleukin-1 signaling pathway as a key player in the radiation-induced premature senescence of ECs, as well as the endothelial-to-mesenchymal transition process, which shares strong hallmarks of senescence. CONCLUSIONS Our work provides crucial information on the dynamics of the radiation-induced premature senescence process, the effect of the radiation dose, as well as the molecular program involved in the heterogeneous senescent status of ECs.
Collapse
Affiliation(s)
- Mohamed Amine Benadjaoud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses; IRSN, Department of Radiobiology and Regenerative Medicine, Fontenay-aux-Roses
| | - Frédéric Soysouvanh
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses; Sorbonne University, Doctoral College, Paris
| | - Georges Tarlet
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Vincent Paget
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Valérie Buard
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Henrique Santos de Andrade
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Ian Morilla
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Morgane Dos Santos
- IRSN, Radiobiology of Accidental Exposure Laboratory, Fontenay-aux-Roses
| | - Annaïg Bertho
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses; IRSN, Department of Radiobiology and Regenerative Medicine, Fontenay-aux-Roses
| | - Bruno l'Homme
- IRSN, Radiobiology of Accidental Exposure Laboratory, Fontenay-aux-Roses
| | - Gaëtan Gruel
- IRSN, Radiobiology of Accidental Exposure Laboratory, Fontenay-aux-Roses
| | - Agnès François
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif; French National Institute of Health and Medical Research (INSERM), Villejuif; Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre; INSERM U1030 Gustave Roussy, Villejuif
| | - Eric Deutsch
- Gustave Roussy, Université Paris-Saclay, SIRIC SOCRATE, Villejuif; French National Institute of Health and Medical Research (INSERM), Villejuif; Univ Paris Sud, Université Paris-Saclay, Le Kremlin-Bicêtre; INSERM U1030 Gustave Roussy, Villejuif; Gustave Roussy, Université Paris-Saclay, Département de Radiothérapie, Villejuif, France
| | - Olivier Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses
| | - Fabien Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), Radiobiology of Medical Exposure Laboratory, Fontenay-aux-Roses.
| |
Collapse
|
13
|
Cohen C, Le Goff O, Soysouvanh F, Vasseur F, Tanou M, Nguyen C, Amrouche L, Le Guen J, Saltel-Fulero O, Meunier T, Nguyen-Khoa T, Rabant M, Nochy D, Legendre C, Friedlander G, Childs BG, Baker DJ, Knebelmann B, Anglicheau D, Milliat F, Terzi F. Glomerular endothelial cell senescence drives age-related kidney disease through PAI-1. EMBO Mol Med 2021; 13:e14146. [PMID: 34725920 PMCID: PMC8573606 DOI: 10.15252/emmm.202114146] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
The mechanisms underlying the development of glomerular lesions during aging are largely unknown. It has been suggested that senescence might play a role, but the pathophysiological link between senescence and lesion development remains unexplained. Here, we uncovered an unexpected role for glomerular endothelial cells during aging. In fact, we discovered a detrimental cross-talk between senescent endothelial cells and podocytes, through PAI-1. In vivo, selective inactivation of PAI-1 in endothelial cells protected glomeruli from lesion development and podocyte loss in aged mice. In vitro, blocking PAI-1 in supernatants from senescent endothelial cells prevented podocyte apoptosis. Consistently, depletion of senescent cells prevented podocyte loss in old p16 INK-ATTAC transgenic mice. Importantly, these experimental findings are relevant to humans. We showed that glomerular PAI-1 expression was predictive of poor outcomes in transplanted kidneys from elderly donors. In addition, we observed that in elderly patients, urinary PAI-1 was associated with age-related chronic kidney disease. Altogether, these results uncover a novel mechanism of kidney disease and identify PAI-1 as a promising biomarker of kidney dysfunction in allografts from elderly donors.
Collapse
Affiliation(s)
- Camille Cohen
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Océane Le Goff
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Frédéric Soysouvanh
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), Laboratoire Radiobiologie des Expositions Médicale, Fontenay-aux-Roses, France
| | - Florence Vasseur
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Marine Tanou
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Clément Nguyen
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Lucile Amrouche
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Néphrologie-Transplantation, Hôpital Necker Enfants Malades, AP-HP centre, Université de Paris, Paris, France
| | - Julien Le Guen
- Service de Gériatrie, Hôpital Européen Georges Pompidou, AP-HP Centre, Université de Paris, Paris, France
| | - Oriana Saltel-Fulero
- Service de Gériatrie, Hôpital Européen Georges Pompidou, AP-HP Centre, Université de Paris, Paris, France
| | - Tanguy Meunier
- Service de Gériatrie, Hôpital Européen Georges Pompidou, AP-HP Centre, Université de Paris, Paris, France
| | - Thao Nguyen-Khoa
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Biochimie, Hôpital Necker Enfants Malades, AP-HP Centre, Université de Paris, Paris, France
| | - Marion Rabant
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service d'Anatomo-Pathologie, AP-HP, Hôpital Necker Enfants Malades, AP-HP Centre, Université de Paris, Paris, France
| | - Dominique Nochy
- Service d'Anatomo-Pathologie, Hôpital Européen George Pompidou, AP-HP Centre, Université de Paris, Paris, France
| | - Christophe Legendre
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Néphrologie-Transplantation, Hôpital Necker Enfants Malades, AP-HP centre, Université de Paris, Paris, France
| | - Gérard Friedlander
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| | - Bennett G Childs
- Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Daren J Baker
- Department of Pediatrics, Mayo Clinic College of Medicine, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Bertrand Knebelmann
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Néphrologie-Transplantation, Hôpital Necker Enfants Malades, AP-HP centre, Université de Paris, Paris, France
| | - Dany Anglicheau
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
- Service de Néphrologie-Transplantation, Hôpital Necker Enfants Malades, AP-HP centre, Université de Paris, Paris, France
| | - Fabien Milliat
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), Laboratoire Radiobiologie des Expositions Médicale, Fontenay-aux-Roses, France
| | - Fabiola Terzi
- Université de Paris, INSERM U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM), Département "Croissance et Signalisation", Paris, France
| |
Collapse
|
14
|
Epperly MW, Shields D, Fisher R, Hou W, Wang H, Hamade DF, Mukherjee A, Greenberger JS. Radiation-Induced Senescence in p16+/LUC Mouse Lung Compared to Bone Marrow Multilineage Hematopoietic Progenitor Cells. Radiat Res 2021; 196:235-249. [PMID: 34087939 PMCID: PMC8456367 DOI: 10.1667/rade-20-00286.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/12/2021] [Indexed: 11/03/2022]
Abstract
We defined the time course of ionizing radiation-induced senescence in lung compared to bone marrow of p16+/LUC mice in which the senescence-induced biomarker (p16) is linked to a luciferase reporter gene. Periodic in situ imaging revealed increased luciferase activity in the lungs of 20 Gy thoracic irradiated, but not 8 Gy total-body irradiated (TBI) mice beginning at day 75 and increasing to day 170. In serial sections of explanted lungs, senescent cells appeared in the same areas as did fibrosis in the 20 Gy thoracic irradiated, but not the 8 Gy TBI group. Lungs from 8 Gy TBI mice at one year did show increased RNA levels for p16, p21, p19 and TGF-β. Individual senescent cells in 20 Gy irradiated mouse lung included those with epithelial, endothelial, fibroblast and hematopoietic cell biomarkers. Rare senescent cells in the lungs of 8 Gy TBI mice at one year were of endothelial phenotype. Long-term bone marrow cultures (LTBMCs) were established at either day 60 or one year after 8 Gy TBI. In freshly removed marrow at both times after irradiation, there were increased senescent cells. In LTBMCs, there were increased senescent cells in both weekly harvested single cells and in colonies of multilineage hematopoietic progenitor cells producing CFU-GEMM (colony forming unit-granulocyte, erythrocyte, monocyte/macrophage, mega-karyocyte) that were formed in secondary cultures when these single cells were plated in semisolid media. LTBMCs from TBI mice produced fewer CFU-GEMM; however, the relative percentage of senescent cell-containing colonies was increased as measured by both p16-luciferase and β-galactosidase. Therefore, 20 Gy thoracic radiation, as well as 8 Gy TBI, induces senescent cells in the lungs. With bone marrow, 8 Gy TBI induced senescence in both hematopoietic cells and in colony-forming progenitors. The p16+/LUC mouse strain provides a valuable system in which to compare the kinetics of radiation-induced senescence between organs in vivo, and to evaluate the potential role of senescent cells in irradiation pulmonary fibrosis.
Collapse
Affiliation(s)
- Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Diala Fatima Hamade
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Amitava Mukherjee
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| |
Collapse
|
15
|
Thakur P, DeBo R, Dugan GO, Bourland JD, Michalson KT, Olson JD, Register TC, Kock ND, Cline JM. Clinicopathologic and Transcriptomic Analysis of Radiation-Induced Lung Injury in Nonhuman Primates. Int J Radiat Oncol Biol Phys 2021; 111:249-259. [PMID: 33848608 DOI: 10.1016/j.ijrobp.2021.03.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 01/06/2023]
Abstract
PURPOSE Radiation-induced lung injury (RILI) is a progressive condition with an early phase (radiation pneumonitis) and a late phase (lung fibrosis). RILI may occur after partial-body ionizing radiation exposures or internal radioisotope exposure, with wide individual variability in timing and extent of lung injury. This study aimed to provide new insights into the pathogenesis and progression of RILI in the nonhuman primate (NHP) rhesus macaque model. METHODS AND MATERIALS We used an integrative approach to understand RILI and its evolution at clinical and molecular levels in 17 NHPs exposed to 10 Gy of whole-thorax irradiation in comparison with 3 sham-irradiated control NHPs. Clinically, we monitored respiratory rates, computed tomography (CT) scans, plasma cytokine levels, and bronchoalveolar lavage (BAL) over 8 months and lung samples collected at necropsy for molecular and histopathologic analyses using RNA sequencing and immunohistochemistry. RESULTS Elevated respiratory rates, greater CT density, and more severe pneumonitis with increased macrophage content were associated with early mortality. Radiation-induced lung fibrosis included polarization of macrophages toward the M2-like phenotype, TGF-β signaling, expression of CDKN1A/p21 in epithelial cells, and expression of α-SMA in lung stroma. RNA sequencing analysis of lung tissue revealed SERPINA3, ATP12A, GJB2, CLDN10, TOX3, and LPA as top dysregulated transcripts in irradiated animals. In addition to transcriptomic data, we observed increased protein expression of SERPINA3, TGF-β1, CCL2, and CCL11 in BAL and plasma samples. CONCLUSIONS Our combined clinical, imaging, histologic, and transcriptomic analysis provides new insights into the early and late phases of RILI and highlights possible biomarkers and potential therapeutic targets of RILI. Activation of TGF-β and macrophage polarization appear to be key mechanisms involved in RILI.
Collapse
Affiliation(s)
- Priyanka Thakur
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Ryne DeBo
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina; Provention Bio, Red Bank, New Jersey
| | - Gregory O Dugan
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - J Daniel Bourland
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Kris T Michalson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina; Gene Therapy Program, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - John D Olson
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Thomas C Register
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - Nancy D Kock
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina
| | - J Mark Cline
- Department of Pathology, Section on Comparative Medicine, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina.
| |
Collapse
|
16
|
Cellular Senescence in the Lung: The Central Role of Senescent Epithelial Cells. Int J Mol Sci 2020; 21:ijms21093279. [PMID: 32384619 PMCID: PMC7247355 DOI: 10.3390/ijms21093279] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Cellular senescence is a key process in physiological dysfunction developing upon aging or following diverse stressors including ionizing radiation. It describes the state of a permanent cell cycle arrest, in which proliferating cells become resistant to growth-stimulating factors. Senescent cells differ from quiescent cells, which can re-enter the cell cycle and from finally differentiated cells: morphological and metabolic changes, restructuring of chromatin, changes in gene expressions and the appropriation of an inflammation-promoting phenotype, called the senescence-associated secretory phenotype (SASP), characterize cellular senescence. The biological role of senescence is complex, since both protective and harmful effects have been described for senescent cells. While initially described as a mechanism to avoid malignant transformation of damaged cells, senescence can even contribute to many age-related diseases, including cancer, tissue degeneration, and inflammatory diseases, particularly when senescent cells persist in damaged tissues. Due to overwhelming evidence about the important contribution of cellular senescence to the pathogenesis of different lung diseases, specific targeting of senescent cells or of pathology-promoting SASP factors has been suggested as a potential therapeutic approach. In this review, we summarize recent advances regarding the role of cellular (fibroblastic, endothelial, and epithelial) senescence in lung pathologies, with a focus on radiation-induced senescence. Among the different cells here, a central role of epithelial senescence is suggested.
Collapse
|
17
|
Bertho A, Dos Santos M, Buard V, Paget V, Guipaud O, Tarlet G, Milliat F, François A. Preclinical Model of Stereotactic Ablative Lung Irradiation Using Arc Delivery in the Mouse: Effect of Beam Size Changes and Dose Effect at Constant Collimation. Int J Radiat Oncol Biol Phys 2020; 107:548-562. [PMID: 32278852 DOI: 10.1016/j.ijrobp.2020.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Stereotactic body radiation therapy is a therapeutic option offered to high surgical risk patients with lung cancer. Focal lung irradiation in mice is a new preclinical model to help understand the development of lung damage in this context. Here we developed a mouse model of lung stereotactic therapy using arc delivery and monitored the development of lung damage while varying the beam size and dose delivered. METHODS AND MATERIALS C57BL/6JRj mice were exposed to 90 Gy focal irradiation on the left lung using 1-mm diameter, 3 × 3 mm2, 7 × 7 mm2, or 10 × 10 mm2 beam collimation for beam size effect and using 3 × 3 mm2 beam collimation delivering 20 to 120 Gy for dose effect. Long-term lung damage was monitored with micro-computed tomography imaging with anatomopathologic and gene expression measurements in the injured patch and the ipsilateral and contralateral lungs. RESULTS Both 1-mm diameter and 3 × 3 mm2 beam collimation allow long-term studies, but only 3-mm beam collimation generates lung fibrosis when delivering 90 Gy. Dose-effect studies with constant 3-mm beam collimation revealed a dose of 60 Gy as the minimum to obtain lung fibrosis 6 months postexposure. Lung fibrosis development was associated with club cell depletion and increased type II pneumocyte numbers. Lung injury developed with ipsilateral and contralateral consequences such as parenchymal thickening and gene expression modifications. CONCLUSIONS Arc therapy allows long-term studies and dose escalation without lethality. In our dose-delivery conditions, dose-effect studies revealed that 3 × 3 mm2 beam collimation to a minimum single dose of 60 Gy enables preclinical models for the assessment of lung injury within a 6-month period. This model of lung tissue fibrosis in a time length compatible with mouse life span may offer good prospects for future mechanistic studies.
Collapse
Affiliation(s)
- Annaïg Bertho
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France
| | - Morgane Dos Santos
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Accidentelles, Fontenay-aux-Roses, France
| | - Valérie Buard
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France
| | - Vincent Paget
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France
| | - Olivier Guipaud
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France
| | - Georges Tarlet
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France
| | - Fabien Milliat
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France
| | - Agnès François
- Institut de Radioprotection et de Sûreté Nucléaire, Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Médicales, Fontenay-aux-Roses, France.
| |
Collapse
|