1
|
Li Y, Zhou B, Liu D, Nie G, Yang F, Chen J, Cheng S, Kang Y, Liu B, Dong B, Liu M. Carbon monoxide gas molecules: Therapeutic mechanisms in radiation-induced lung injury. J Colloid Interface Sci 2025; 688:250-263. [PMID: 40010090 DOI: 10.1016/j.jcis.2025.02.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Radiation therapy (RT) remains an essential treatment modality for lung cancer, yet its effectiveness is frequently hindered by radiation-induced lung injury (RILI), a common outcome of modern therapeutic regimens. With the aim of addressing this challenge, a novel nanocomposite, Au@mSiO2@Mn(CO)5Br (ASMB), was synthesized with Au@mSiO2 as the carrier and Mn(CO)5Br as the functional component. The gold nanorods (Au rods) core generates reactive oxygen species (ROS) under X-ray irradiation, which then activates Mn(CO)5Br to release carbon monoxide (CO) locally within the lung during radiotherapy. The released CO then diffuses to surrounding tissues, inhibiting the excessive accumulation of ROS, thereby preventing damage to normal cells caused by ROS generated in a short period of time. Meanwhile, the released manganese ions (Mnn+) catalyze the conversion of hydrogen peroxide (H2O2) in the microenvironment into oxygen (O2). In vitro experiments demonstrated that the release of CO markedly attenuated radiation-induced ROS production, thereby inhibiting the activation of the NLRP3 inflammasome and reducing the levels of inflammatory cytokines and pyroptosis-related proteins. Moreover, it downregulated the expression of fibrosis-associated proteins, including TGF-β1 and α-SMA. Additionally, CO facilitated DNA damage repair, thereby mitigating radiation-induced tissue injury. In the RILI model, the ASMB NPs-treated lungs exhibited notably reduced pulmonary edema, congestion, and inflammatory cell infiltration, primarily by inhibiting NLRP3 inflammasome-dependent pyroptosis and reducing levels of inflammation and fibrosis markers. The release of O2 further mitigates local tissue hypoxia, enhancing the effectiveness of radiotherapy. Overall, ASMB NPs provide a promising alternative for the treatment of RILI and a potential therapeutic strategy to improve the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Ya'nan Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Bingshuai Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China
| | - Dajie Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Guodong Nie
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Fan Yang
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Jiajie Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Sen Cheng
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China
| | - Yahui Kang
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China; Department of Radiation Oncology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230031, China
| | - Bailong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China.
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130021, China.
| | - Min Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui 230601, China.
| |
Collapse
|
2
|
Zhang A, Luo S, Li P, Meng L, Huang L, Cheng H, Zhao C, Tu H, Gong X. Urolithin A alleviates radiation pneumonitis by activating PINK1/PRKN-mediated Mitophagy. Int Immunopharmacol 2025; 156:114671. [PMID: 40253768 DOI: 10.1016/j.intimp.2025.114671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Radiation pneumonitis (RP) is a common and severe complication of radiotherapy, whose pathogenesis involves complex inflammatory responses and cellular damage. Despite its clinical significance, effective treatments remain limited. This study investigates the role of radiation-induced PINK1/PRKN-mediated mitophagy and type I interferon responses in RP and evaluates the therapeutic potential of Urolithin A (UA) in regulating inflammation through mitophagy activation. METHODS We established RP mouse models (20 Gy thoracic irradiation) and radiation-induced BEAS-2B cell models (6 Gy). We systematically investigated mitochondrial damage, mtRNA release, RIG-I/MDA5-MAVS pathway activation, and PINK1/PRKN-mediated mitophagy changes. Moreover, the effects of UA and the mitophagy inhibitor Mdivi-1 on inflammation and lung injury were analyzed. RESULTS Radiation significantly caused mitochondrial damage in lung tissues, inducing mtRNA release and RIG-I/MDA5-MAVS-mediated type I interferon response. PINK1/PRKN-mediated mitophagy was significantly enhanced, clearing damaged mitochondria and reducing cytosolic mtRNA release, thereby suppressing inflammation. Pharmacological activation of mitophagy with UA markedly improved lung pathology, reduced inflammatory cytokine levels, and inhibited excessive activation of the RIG-I/MDA5-MAVS pathway. Conversely, the knockdown of PINK1 or PRKN weakened the protective effects of UA. Both in vitro and in vivo, UA reduced radiation-induced inflammation and improved lung tissue structure and function through mitophagy. CONCLUSIONS Radiation-induced mtRNA release activates the RIG-I/MDA5-MAVS-mediated type I interferon response, driving inflammation in RP. PINK1/PRKN-mediated mitophagy significantly alleviates inflammation by reducing cytosolic mtRNA release. As a mitophagy inducer, UA demonstrates therapeutic potential for RP, providing a new direction for the development of anti-inflammatory strategies.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shilan Luo
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lu Meng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Litang Huang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongxia Cheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chenhui Zhao
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongbin Tu
- Department of Integrated TCM & Western Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaomei Gong
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Abe J, Chau K, Mojiri A, Wang G, Oikawa M, Samanthapudi VSK, Osborn AM, Ostos-Mendoza KC, Mariscal-Reyes KN, Mathur T, Jain A, Herrmann J, Yusuf SW, Krishnan S, Deswal A, Lin SH, Kotla S, Cooke JP, Le NT. Impacts of Radiation on Metabolism and Vascular Cell Senescence. Antioxid Redox Signal 2025. [PMID: 40233257 DOI: 10.1089/ars.2024.0741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Significance: This review investigates how radiation therapy (RT) increases the risk of delayed cardiovascular disease (CVD) in cancer survivors. Understanding the mechanisms underlying radiation-induced CVD is essential for developing targeted therapies to mitigate these effects and improve long-term outcomes for patients with cancer. Recent Advances: Recent studies have primarily focused on metabolic alterations induced by irradiation in various cancer cell types. However, there remains a significant knowledge gap regarding the role of chronic metabolic alterations in normal cells, particularly vascular cells, in the progression of CVD after RT. Critical Issues: This review centers on RT-induced metabolic alterations in vascular cells and their contribution to senescence accumulation and chronic inflammation across the vasculature post-RT. We discuss key metabolic pathways, including glycolysis, the tricarboxylic acid cycle, lipid metabolism, glutamine metabolism, and redox metabolism (nicotinamide adenine dinucleotide/Nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADP+)/NADPH). We further explore the roles of regulatory proteins such as p53, adenosine monophosphate-activated protein kinase, and mammalian target of rapamycin in driving these metabolic dysregulations. The review emphasizes the impact of immune-vascular crosstalk mediated by the senescence-associated secretory phenotype, which perpetuates metabolic dysfunction, enhances chronic inflammation, drives senescence accumulation, and causes vascular damage, ultimately contributing to cardiovascular pathogenesis. Future Directions: Future research should prioritize identifying therapeutic targets within these metabolic pathways or the immune-vascular interactions influenced by RT. Correcting metabolic dysfunction and reducing chronic inflammation through targeted therapies could significantly improve cardiovascular outcomes in cancer survivors. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Junichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Khanh Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Anahita Mojiri
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Venkata S K Samanthapudi
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Abigail M Osborn
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Tammay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
| | - Abhishek Jain
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas, USA
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Steven H Lin
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - John P Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
4
|
Shu M, Zhang J, Huang H, Chen Y, Shi Y, Zeng H, Shao L. Advances in the Regulation of Hematopoietic Homeostasis by Programmed Cell Death Under Radiation Conditions. Stem Cell Rev Rep 2025:10.1007/s12015-025-10863-2. [PMID: 40056317 DOI: 10.1007/s12015-025-10863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
The application of nuclear energy and the frequent occurrence of nuclear contamination have made radiation safety a major challenge to global public health. As a radiation-sensitive target organ, bone marrow is susceptible to both acute and chronic damage effects of ionizing radiation on the hematopoietic system. Researchers have demonstrated that radiation disrupts hematopoietic homeostasis through direct damage to hematopoietic stem cells, which inhibits hematopoietic regeneration indirectly through damage to hematopoietic progenitor cells and their downstream cell populations. However, the multi-target regulatory mechanism of radiation perturbation of hematopoietic homeostasis remains to be systematically elucidated. Recent studies have revealed that, in addition to the classical apoptotic pathway, non-apoptotic programmed cell death modes (e.g. pyroptosis, necroptosis, and ferroptosis) may be involved in the regulation of radiation-induced hematopoietic injury. A systematic review of the roles of the aforementioned programmed death pathways was presented in radiation-damaged hematopoietic cells, with a view to providing a scientific basis for targeted intervention in radiation-induced myelosuppression.
Collapse
Affiliation(s)
- Manling Shu
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Jinfu Zhang
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Haocong Huang
- Department of Medicine, Jinggangshan University, Ji'an, 343000, P.R. China
| | - Yuxin Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Yubing Shi
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China
| | - Huihong Zeng
- Department of Histology and Embryology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
- Basic Medical Experiment Center, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Lijian Shao
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, 330006, P.R. China.
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P.R. China.
| |
Collapse
|
5
|
Deng S, Yang Y, He S, Chen Z, Xia X, Zhang T, Yin Q, Liu T, Wu D, Pan K, Xu Y. FlaA N/C attenuates radiation-induced lung injury by promoting NAIP/NLRC4/ASC inflammasome autophagy and inhibiting pyroptosis. J Transl Med 2025; 23:237. [PMID: 40016828 PMCID: PMC11869748 DOI: 10.1186/s12967-025-06257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/17/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is the most common complication experienced by patients with thoracic tumors after radiotherapy. Among patients receiving thoracic tumor radiotherapy, 14.6-37.2% develop RILI. RILI is characterized by an acute inflammatory response; however, the exact mechanism remains unclear and an ideal drug is still lacking. In this study, we investigated the protective effects of flagellin A with linked C- and N-terminal ends (FlaA N/C) against the development of RILI. METHODS Mice and bronchial epithelial cells were exposed to radiation (15 Gy) after FlaA N/C treatment. Lung injury, bronchial epithelial cell injury, and RILI were assessed by histological evaluation in vivo and cell viability and cell death detection in vitro. Pyroptosis was assessed by western blotting (WB), immunofluorescence (IF), and immunohistochemistry (IHC). To explore the molecular mechanisms by which FlaA N/C inhibits RILI, conditional Beclin 1 (Beclin1+/-) and NLR family CARD domain-containing protein 4 (Nlrc4)-knockout (Nlrc4-/-) mice were generated. An autophagy inhibitor was used for in vitro cell assays, and pyroptosis indicators were detected. Data were analyzed using one-way analysis of variance. RESULTS FlaA N/C attenuated radiation-induced lung tissue damage, pro-inflammatory cytokine release, and pyroptosis in vivo and cell viability, cell death, and pyroptosis in vitro. Mechanistically, FlaA N/C activated the neuronal apoptosis inhibitory protein (NAIP)/NLRC4/apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) inflammasome, which was then degraded during Beclin 1-mediated autophagy. Deletion of the FlaA N/C D0 domain reversed the inhibitory effect of FlaA N/C on radiation-induced pyroptosis in vivo and in vitro. Similarly, Nlrc4-knockout in vivo or inhibition of autophagy in vitro eliminated the protective effects of FlaA N/C against radiation-induced pyroptosis. CONCLUSIONS These results indicate that FlaA N/C attenuates RILI by promoting NAIP/NLRC4/ASC inflammasome autophagy and inhibiting pyroptosis. This study provides a potential approach for RILI intervention.
Collapse
Affiliation(s)
- Shihua Deng
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Yueyan Yang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Shuang He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Zixin Chen
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Xun Xia
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Ting Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Qing Yin
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Teng Liu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China
| | - Dongming Wu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China.
| | - Kejian Pan
- Chengdu Medical College, No. 783, Xindu Road, Chengdu, Sichuan, 610500, People's Republic of China.
| | - Ying Xu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
- Clinical Laboratory, The First Affiliated Hospital of Chengdu Medical College, No. 278, Baoguang Road, Chengdu, Sichuan, 610500, People's Republic of China.
- Sichuan Clinical Research Center for Radiation and Therapy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China.
| |
Collapse
|
6
|
Zhang M, Lan H, Jiang M, Yang M, Chen H, Peng S, Wang X, Zhang Y, Huang X, Li L, Chen C, Hong J. NLRP3 inflammasome mediates pyroptosis of alveolar macrophages to induce radiation lung injury. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136740. [PMID: 39642726 DOI: 10.1016/j.jhazmat.2024.136740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/30/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Alveolar macrophages play a crucial role in maintaining lung homeostasis. However, the mechanisms underlying alveolar macrophage pyroptosis and inflammasome activation in radiation-induced lung injury remain unclear. In this study, we employed multicolor flow cytometry and single-cell RNA sequencing to reveal the immune cell and cell death landscape in the tissue microenvironment of radiation-induced lung injury. Additionally, we utilized mass spectrometry, co-immunoprecipitation and Duolink techniques to investigate the core inflammasome responsible for mediating alveolar macrophage pyroptosis. We noticed that the percentage of alveolar macrophages, T, B and epithelial cells decreased significantly post-irradiation. Notably, the proportional changes in alveolar macrophages closely correlated with Szapiels' pneumonia score. Furthermore, alveolar macrophages emerged as the earliest cell type to initiate pyroptosis and act as pivotal regulators of cell communication. In vitro and in vivo experiments, we observed a significant increase in NLRP3 binding to the apoptosis-associated speck-like protein in irradiated alveolar macrophages. In vivo, MCC950 effectively inhibited alveolar macrophage pyroptosis and significantly reducing inflammatory cells recruitment. Subsequently, targeting AM pyroptosis ultimately inhibit the infiltration of interstitial macrophages and the activation of fibroblasts, decrease collagen deposition and alleviate the severity of radiation-induced lung fibrosis. Targeting alveolar macrophage pyroptosis and NLRP3 inflammasome activation hold substantial therapeutic potential for mitigating radiation-induced lung injury.
Collapse
Affiliation(s)
- Mingwei Zhang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Hailin Lan
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Meina Jiang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Minghuan Yang
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Hongquan Chen
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Shaoli Peng
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yarui Zhang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Xingxin Huang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Lianhuang Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China.
| | - Chun Chen
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350122, China.
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou 350212, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China.
| |
Collapse
|
7
|
Saini S, Gurung P. A comprehensive review of sensors of radiation-induced damage, radiation-induced proximal events, and cell death. Immunol Rev 2025; 329:e13409. [PMID: 39425547 PMCID: PMC11742653 DOI: 10.1111/imr.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Radiation, a universal component of Earth's environment, is categorized into non-ionizing and ionizing forms. While non-ionizing radiation is relatively harmless, ionizing radiation possesses sufficient energy to ionize atoms and disrupt DNA, leading to cell damage, mutation, cancer, and cell death. The extensive use of radionuclides and ionizing radiation in nuclear technology and medical applications has sparked global concern for their capacity to cause acute and chronic illnesses. Ionizing radiation induces DNA damage either directly through strand breaks and base change or indirectly by generating reactive oxygen species (ROS) and reactive nitrogen species (RNS) via radiolysis of water. This damage triggers a complex cellular response involving recognition of DNA damage, cell cycle arrest, DNA repair mechanisms, release of pro-inflammatory cytokines, and cell death. This review focuses on the mechanisms of radiation-induced cellular damage, recognition of DNA damage and subsequent activation of repair processes, and the critical role of the innate immune response in resolution of the injury. Emphasis is placed on pattern recognition receptors (PRRs) and related receptors that detect damage-associated molecular patterns (DAMPs) and initiate downstream signaling pathways. Radiation-induced cell death pathways are discussed in detail. Understanding these processes is crucial for developing strategies to mitigate the harmful effects of radiation and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saurabh Saini
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Iowa City Veterans Affairs (VA) Medical CenterIowa CityIowaUSA
| | - Prajwal Gurung
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Iowa City Veterans Affairs (VA) Medical CenterIowa CityIowaUSA
- Interdisciplinary Graduate Program in Human ToxicologyUniversity of IowaIowa CityIowaUSA
- Immunology Graduate ProgramUniversity of IowaIowa CityIowaUSA
- Center for Immunology and Immune Based DiseaseUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
8
|
Li H, Zhang J, Yu B, Yang T, Liu B, Li F, Jin X, Li Q. RSPO3 regulates the radioresistance of Non-Small cell lung cancer cells via NLRP3 Inflammasome-Mediated pyroptosis. Radiother Oncol 2024; 200:110528. [PMID: 39245068 DOI: 10.1016/j.radonc.2024.110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/01/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE Radioresistance is a significant challenge in the radiotherapy of non-small cell lung cancer (NSCLC). This study aimed to investigate the role of R-spondin 3 (RSPO3) in regulating NSCLC radioresistance. METHODS AND MATERIALS RNA sequencing was performed to analyze genes that are differentially expressed in radioresistant NSCLC cell lines. RSPO3 overexpression and knockdown experiments were conducted to assess its impact on radiosensitivity. The involvement of the β-catenin-NF-κB signaling pathway and the NLRP3 inflammasome in RSPO3-mediated radiosensitivity was also evaluated. In vivo experiments were conducted using a clinical-grade anti-RSPO3 antibody (OMP-131R10/rosmantuzumab) to assess its impact on radiation-induced pyroptosis and subsequent anti-tumor immunity. RESULTS RSPO3 expression was downregulated in radioresistant NSCLC cells. Overexpression of RSPO3 increased NSCLC radiosensitivity through the induction of pyroptosis, which was mediated by the β-catenin-NF-κB signaling pathway and the NLRP3 inflammasome. The anti-RSPO3 antibody effectively blocked radiation-induced pyroptosis and anti-tumor immunity in vivo. Conversely, upregulation of RSPO3 enhanced NSCLC tumor radiosensitivity. CONCLUSIONS The findings demonstrated that RSPO3 plays a crucial role in regulating NSCLC radioresistance via NLRP3 mediated pyroptosis. Targeting the RSPO3-NLRP3 inflammasome axis may offer a potential therapeutic strategy to enhance the efficacy of radiotherapy for NSCLC patients.
Collapse
Affiliation(s)
- Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Jialin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Tiantian Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Bingtao Liu
- Radiotherapy center, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, 730050, China
| | - Feifei Li
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730030, China.
| |
Collapse
|
9
|
Yao WD, Zhou JN, Tang C, Zhang JL, Chen ZY, Li Y, Gong XJ, Qu MY, Zeng Q, Jia YL, Wang HY, Fan T, Ren J, Guo LL, Xi JF, Pei XT, Han Y, Yue W. Hydrogel Microneedle Patches Loaded with Stem Cell Mitochondria-Enriched Microvesicles Boost the Chronic Wound Healing. ACS NANO 2024; 18:26733-26750. [PMID: 39238258 PMCID: PMC11447894 DOI: 10.1021/acsnano.4c06921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Rescuing or compensating mitochondrial function represents a promising therapeutic avenue for radiation-induced chronic wounds. Adult stem cell efficacies are primarily dependent on the paracrine secretion of mitochondria-containing extracellular vesicles (EVs). However, effective therapeutic strategies addressing the quantity of mitochondria and mitochondria-delivery system are lacking. Thus, in this study, we aimed to design an effective hydrogel microneedle patch (MNP) loaded with stem cell-derived mitochondria-rich EVs to gradually release and deliver mitochondria into the wound tissues and boost wound healing. We, first, used metformin to enhance mitochondrial biogenesis and thereby increasing the secretion of mitochondria-containing EVs (termed "Met-EVs") in adipose-derived stem cells. To verify the therapeutic effects of Met-EVs, we established an in vitro and an in vivo model of X-ray-induced mitochondrial dysfunction. The Met-EVs ameliorated the mitochondrial dysfunction by rescuing mitochondrial membrane potential, increasing adenosine 5'-triphosphate levels, and decreasing reactive oxygen species production by transferring active mitochondria. To sustain the release of EVs into damaged tissues, we constructed a Met-EVs@Decellularized Adipose Matrix (DAM)/Hyaluronic Acid Methacrylic Acid (HAMA)-MNP. Met-EVs@DAM/HAMA-MNP can load and gradually release Met-EVs and their contained mitochondria into wound tissues to alleviate mitochondrial dysfunction. Moreover, we found Met-EVs@DAM/HAMA-MNP can markedly promote macrophage polarization toward the M2 subtype with anti-inflammatory and regenerative functions, which can, in turn, enhance the healing process in mice with skin wounds combined radiation injuries. Collectively, we successfully fabricated a delivery system for EVs, Met-EVs@DAM/HAMA-MNP, to effectively deliver stem cell-derived mitochondria-rich EVs. The effectiveness of this system has been demonstrated, holding great potential for chronic wound treatments in clinic.
Collapse
Affiliation(s)
- Wen-De Yao
- School
of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Jun-Nian Zhou
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Chao Tang
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Ju-Lei Zhang
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Zhao-Yang Chen
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Yan Li
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Jing Gong
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Ming-Yi Qu
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Quan Zeng
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Ya-Li Jia
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Hai-Yang Wang
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Tao Fan
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Ren
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
| | - Ling-Li Guo
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
| | - Jia-Fei Xi
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Xue-Tao Pei
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| | - Yan Han
- School
of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Department
of Plastic and Reconstructive Surgery, The First Medical Centre, Chinese PLA General Hospital, 28 Fuxing Street, Beijing 100853, China
| | - Wen Yue
- Beijing
Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|
10
|
Wang P, Yang J, Dai S, Gao P, Qi Y, Zhao X, Liu J, Wang Y, Gao Y. miRNA-193a-mediated WT1 suppression triggers podocyte injury through activation of the EZH2/β-catenin/NLRP3 pathway in children with diabetic nephropathy. Exp Cell Res 2024; 442:114238. [PMID: 39251057 DOI: 10.1016/j.yexcr.2024.114238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Diabetic nephropathy (DN), an eminent etiology of renal disease in patients with diabetes, involves intricate molecular mechanisms. Recent investigations have elucidated microRNA-193a (miR-193a) as a pivotal modulator in DN, although its precise function in podocyte impairment remains obscure. The present study investigated the role of miR-193a in podocyte injury via the WT1/EZH2/β-catenin/NLRP3 pathway. This study employed a comprehensive experimental approach involving both in vitro and in vivo analyses. We utilized human podocyte cell lines and renal biopsy samples from pediatric patients with DN. The miR-193a expression levels in podocytes and glomeruli were quantified via qRT‒PCR. Western blotting and immunofluorescence were used to assess the expression of WT1, EZH2, β-catenin, and NLRP3 inflammasome components. Additionally, the study used luciferase reporter assays to confirm the interaction between miR-193a and WT1. The impact of miR-193a manipulation was observed by overexpressing WT1 and inhibiting miR-193a in podocytes, followed by analysis of downstream pathway activation and inflammatory markers. We found upregulated miR-193a in podocytes and glomeruli, which directly targeted and suppressed WT1, a crucial podocyte transcription factor. WT1 suppression, in turn, activated the EZH2/β-catenin/NLRP3 pathway, leading to inflammasome assembly and proinflammatory cytokine production. Overexpression of WT1 or inhibition of miR-193a attenuated these effects, protecting podocytes from injury. This study identified a novel mechanism by which miR-193a-mediated WT1 suppression triggers podocyte injury in DN via the EZH2/β-catenin/NLRP3 pathway. Targeting this pathway or inhibiting miR-193a may be potential therapeutic strategies for DN.
Collapse
Affiliation(s)
- Peng Wang
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Jing Yang
- Department of Infection, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Shasha Dai
- Department of Infection, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, PR China
| | - Pinli Gao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Ying Qi
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Xiaowei Zhao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Juan Liu
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Yingying Wang
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China
| | - Yang Gao
- Pediatrics Department, Nanyang Second General Hospital, Nanyang, 473000, Henan, PR China.
| |
Collapse
|
11
|
Zhang Y, Huang J, Zhang Y, Jiang F, Li S, He S, Sun J, Chen D, Tong Y, Pang Q, Wu Y. The Mitochondrial-Derived Peptide MOTS-c Alleviates Radiation Pneumonitis via an Nrf2-Dependent Mechanism. Antioxidants (Basel) 2024; 13:613. [PMID: 38790718 PMCID: PMC11117534 DOI: 10.3390/antiox13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Radiation pneumonitis (RP) is a prevalent and fatal complication of thoracic radiotherapy due to the lack of effective treatment options. RP primarily arises from mitochondrial injury in lung epithelial cells. The mitochondrial-derived peptide MOTS-c has demonstrated protective effects against various diseases by mitigating mitochondrial injury. C57BL/6 mice were exposed to 20 Gy of lung irradiation (IR) and received daily intraperitoneal injections of MOTS-c for 2 weeks. MOTS-c significantly ameliorated lung tissue damage, inflammation, and oxidative stress caused by radiation. Meanwhile, MOTS-c reversed the apoptosis and mitochondrial damage of alveolar epithelial cells in RP mice. Furthermore, MOTS-c significantly inhibited oxidative stress and mitochondrial damage in MLE-12 cells and primary mouse lung epithelial cells. Mechanistically, MOTS-c increased the nuclear factor erythroid 2-related factor (Nrf2) level and promoted its nuclear translocation. Notably, Nrf2 deficiency abolished the protective function of MOTS-c in mice with RP. In conclusion, MOTS-c alleviates RP by protecting mitochondrial function through an Nrf2-dependent mechanism, indicating that MOTS-c may be a novel potential protective agent against RP.
Collapse
Affiliation(s)
- Yanli Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Jianfeng Huang
- Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214000, China;
| | - Yaru Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Fengjuan Jiang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Shengpeng Li
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Shuai He
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Jiaojiao Sun
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Ying Tong
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
- Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214000, China;
| | - Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
- Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214000, China;
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
12
|
Wang M, Peng J, Yang M, Chen J, Shen Y, Liu L, Chen L. Elevated expression of NLRP3 promotes cigarette smoke-induced airway inflammation in chronic obstructive pulmonary disease. Arch Med Sci 2024; 20:1281-1293. [PMID: 39439673 PMCID: PMC11493075 DOI: 10.5114/aoms/176805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/11/2023] [Indexed: 10/25/2024] Open
Abstract
Introduction NOD-like receptor protein 3 (NLRP3) is implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Here, we explored the role of NLRP3 in cigarette smoke (CS)-induced airway inflammation in COPD. Material and methods NLRP3 expression level was assessed with the microarray data in GEO datasets and validated in serum by ELISA from a case-control cohort. Male C57BL/6J mice were randomly divided into: saline, CS, MCC950 (a specific NLRP3 inhibitor, 10 mg/kg) and CS + MCC950 (5 mg/kg and 10 mg/kg) groups (n = 5 per group). All mice were exposed to CS or air for 4 weeks. Then, broncho-alveolar lavage (BAL) fluid and lung tissues were collected for cell counting, ELISA, HE staining and RNA sequencing with validation by real-time qPCR. Results Compared to non-smokers, NLRP3 expression was significantly elevated in the lung tissues and sera of COPD smokers. CS remarkably induced airway inflammation in mice, characterized by an increase of inflammatory cells and proinflammatory cytokines in BAL fluid and HE inflammatory score, which were ameliorated by MCC950 treatment dose-dependently. Subsequently, 84 candidate genes were selected following RNA sequencing, and five hub genes (Mmp9, IL-1α, Cxcr2, Cxcl10, Ccr1) were then identified by PPI and MCODE analyses, which were confirmed by real-time qPCR. GO and KEGG analysis suggested that the five genes were enriched in a complicated network of inflammatory processes and signaling pathways. Conclusions NLRP3 expression is elevated in lungs and sera of COPD smokers. Inhibition of NLRP3 significantly attenuates CS-induced airway inflammation in mice via inactivation of multiple hub genes and their related inflammatory processes and signaling pathways.
Collapse
Affiliation(s)
- Min Wang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junjie Peng
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mei Yang
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun Chen
- Lab of Pulmonary Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongchun Shen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Liu
- Department of Pulmonary and Critical Care Medicine, 363 Hospital, Chengdu, Sichuan, China
| | - Lei Chen
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Chai Y, Wang Z, Li Y, Wang Y, Wan Y, Chen X, Xu Y, Ge L, Li H. Glycyrrhizin alleviates radiation-induced lung injury by regulating the NLRP3 inflammasome through endoplasmic reticulum stress. Toxicol Res (Camb) 2024; 13:tfae009. [PMID: 38283822 PMCID: PMC10811523 DOI: 10.1093/toxres/tfae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/30/2024] Open
Abstract
Objective Radiation pneumonitis (RP) is the major adverse response of radiation therapy for thoracic malignant tumors, and there is a lack of effective interventions. The aim of this study was to investigate the radioprotective effect of Glycyrrhizin (GL) on RP and its potential mechanism. Method The body weight and lung weight of mice were monitored. HE staining was used to observe lung injury, and the expression of endoplasmic reticulum (ER) stress biomarkers and the activation of NLRP3 inflammasome were determined by Western blotting and immunohistochemistry. Flow cytometry was performed to check MLE-12 apoptosis. ER stress activator, Tunicamycin (Tuni), was used to verify the potential mechanism of GL. A systemic pharmacology explored the potential targets and pathways of GL. Results In this study, the lungs of irradiated mice showed significant pneumonic changes. In vivo and in vitro assay, NLRP3 inflammasome was significantly activated, the expression of ER stress biomarkers was elevated, flow cytometry confirms increased apoptosis in irradiated MLE-12 cells. GL inhibits the activation of NLRP3 inflammasome and ER stress pathways. Furthermore, systemic pharmacology revealed that the radioprotective effect of GL may be related to the MAPK signaling pathway. Conclusion In the present study, the results indicated that GL may regulate NLRP3 inflammasome through ER stress, thus exerting irradiation-protective effects on RP, and the ER stress pathway may be a potential target for RP treatment.
Collapse
Affiliation(s)
- Yuqing Chai
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Ziming Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Yun Li
- Kindstar Global Precision Medicine Institute, Gaoxin 2nd Road, Jiangxia District, Wuhan, Hubei 43000, China
- Department of Scientific Research Project, Wuhan Kindstar Medical Laboratory Co., Ltd., Guanggu Biological City, No. 666 Gaoxin Avenue, Hongshan District, Wuhan, Hubei 43000, China
| | - Yi Wang
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Yu Wan
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Xue Chen
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Yang Xu
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Lei Ge
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| | - Hongxia Li
- Department of Oncology, The Third Affiliated Hospital of Anhui Medical University, No. 3200, Changsha Road, Baohe District, Hefei, Anhui 230000, China
| |
Collapse
|
14
|
Li H, Yang T, Zhang J, Xue K, Ma X, Yu B, Jin X. Pyroptotic cell death: an emerging therapeutic opportunity for radiotherapy. Cell Death Discov 2024; 10:32. [PMID: 38228635 DOI: 10.1038/s41420-024-01802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Pyroptotic cell death, an inflammatory form of programmed cell death (PCD), is emerging as a potential therapeutic opportunity for radiotherapy (RT). RT is commonly used for cancer treatment, but its effectiveness can be limited by tumor resistance and adverse effects on healthy tissues. Pyroptosis, characterized by cell swelling, membrane rupture, and release of pro-inflammatory cytokines, has been shown to enhance the immune response against cancer cells. By inducing pyroptotic cell death in tumor cells, RT has the potential to enhance treatment outcomes by stimulating anti-tumor immune responses and improving the overall efficacy of RT. Furthermore, the release of danger signals from pyroptotic cells can promote the recruitment and activation of immune cells, leading to a systemic immune response that may target distant metastases. Although further research is needed to fully understand the mechanisms and optimize the use of pyroptotic cell death in RT, it holds promise as a novel therapeutic strategy for improving cancer treatment outcomes. This review aims to synthesize recent research on the regulatory mechanisms underlying radiation-induced pyroptosis and to elucidate the potential significance of this process in RT. The insights gained from this analysis may inform strategies to enhance the efficacy of RT for tumors.
Collapse
Affiliation(s)
- Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Tiantian Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jialin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kai Xue
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaoli Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.
| |
Collapse
|
15
|
Guo H, Yu R, Zhang H, Wang W. Cytokine, chemokine alterations and immune cell infiltration in Radiation-induced lung injury: Implications for prevention and management. Int Immunopharmacol 2024; 126:111263. [PMID: 38000232 DOI: 10.1016/j.intimp.2023.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Radiation therapy is one of the primary treatments for thoracic malignancies, with radiation-induced lung injury (RILI) emerging as its most prevalent complication. RILI encompasses early-stage radiation pneumonitis (RP) and the subsequent development of radiation pulmonary fibrosis (RPF). During radiation treatment, not only are tumor cells targeted, but normal tissue cells, including alveolar epithelial cells and vascular endothelial cells, also sustain damage. Within the lungs, ionizing radiation boosts the intracellular levels of reactive oxygen species across various cell types. This elevation precipitates the release of cytokines and chemokines, coupled with the infiltration of inflammatory cells, culminating in the onset of RP. This pulmonary inflammatory response can persist, spanning a duration from several months to years, ultimately progressing to RPF. This review aims to explore the alterations in cytokine and chemokine release and the influx of immune cells post-ionizing radiation exposure in the lungs, offering insights for the prevention and management of RILI.
Collapse
Affiliation(s)
- Haochun Guo
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Ran Yu
- Department of Radiotherapy, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Huai'an 223400, China; Jiangsu Nursing Vocational and Technical College, Huai'an 223400, China; School of Clinical Medicine, Medical College of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Wanpeng Wang
- Department of Radiotherapy, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Huai'an 223400, China; Jiangsu Nursing Vocational and Technical College, Huai'an 223400, China; School of Clinical Medicine, Medical College of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, China.
| |
Collapse
|
16
|
Zhang M, Lan H, Peng S, Zhou W, Wang X, Jiang M, Hong J, Zhang Q. MiR-223-3p attenuates radiation-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages. Int Immunopharmacol 2023; 122:110616. [PMID: 37459784 DOI: 10.1016/j.intimp.2023.110616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/25/2023]
Abstract
Macrophage pyroptosis plays an important role in the development of radiation-induced cell and tissue damage, leading to acute lung injury. However, the underlying mechanisms of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3)-mediated macrophage pyroptosis and the regulatory factors involved in radiation-induced pyroptosis are unclear. In this study, the expression of the NLRP3 inflammasome and pyroptosis-associated factors in murine macrophage cell lines was investigated after ionizing radiation. High-throughput RNA sequencing was performed to identify and characterize miRNAs and mRNA transcripts associated with NLRP3-mediated cell death. Our results demonstrated that cleaved-caspase-1 (p10) and N-terminal domain of gasdermin-D (GSDMD-N) were upregulated, and the number of NLRP3 inflammasomes and pyroptotic cells increased in murine macrophage cell lines after irradiation (8 Gy). Comparativeprofiling of 300miRNAs revealed that 41 miRNAsexhibited significantly different expression after 8 Gy of irradiation. Granulocyte-specific microRNA-223-3p (miR-223-3p) is a negative regulator of NLRP3. In vitro experiments revealed that the expression of miR-223-3p was significantly altered by irradiation. Moreover, miR-223-3p decreased the expression of NLRP3 and proinflammatory factors, resulting in reduced pyroptosis in irradiated murine macrophages. Subsequently, in vivo experiments revealed the efficacy of miR-223-3p supplementation in ameliorating alveolar macrophage (AM) pyroptosis, attenuating the infiltration of inflammatory monocytes, and significantly alleviating the severity of acute radiation-induced lung injury (ARILI). Our findings suggest that the miR-223-3p/NLRP3/caspase-1 axis is involved in radiation-induced AM pyroptosis and ARILI.
Collapse
Affiliation(s)
- Mingwei Zhang
- Department of Oncology, Fujian Medical University Union Hospital, Fuzhou, China; Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hailin Lan
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Shaoli Peng
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Weitong Zhou
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xuezhen Wang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meina Jiang
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- Department of Radiotherapy, Cancer Center, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Qiuyu Zhang
- Institute of Immunotherapy, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
17
|
Barsoumian HB, He K, Hsu E, Bertolet G, Sezen D, Hu Y, Riad TS, Cortez MA, Welsh JW. NLRP3 agonist enhances radiation-induced immune priming and promotes abscopal responses in anti-PD1 resistant model. Cancer Immunol Immunother 2023; 72:3003-3012. [PMID: 37289257 PMCID: PMC10412467 DOI: 10.1007/s00262-023-03471-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Radiotherapy (XRT), a well-known activator of the inflammasome and immune priming, is in part capable of reversing resistance to anti-PD1 treatment. The NLRP3 inflammasome is a pattern recognition receptor which is activated by both exogenous and endogenous stimuli, leading to a downstream inflammatory response. Although NLRP3 is typically recognized for its role in exacerbating XRT-induced tissue damage, the NLRP3 inflammasome can also yield an effective antitumor response when used in proper dosing and sequencing with XRT. However, whether NLRP3 agonist boosts radiation-induced immune priming and promote abscopal responses in anti-PD1 resistant model is still unknown. Therefore, in this study, we paired intratumoral injection of an NLRP3 agonist with XRT to stimulate the immune system in both wild type (344SQ-P) and anti-PD1 resistant (344SQ-R) murine-implanted lung adenocarcinoma models. We found that the combination of XRT + NLPR3 agonist enhanced the control of implanted lung adenocarcinoma primary as well as secondary tumors in a radiological dose-dependent manner, in which 12Gyx3 fractions of stereotactic XRT was better than 5Gyx3, while 1Gyx2 did not improve the NLRP3 effect. Survival and tumor growth data also showed significant abscopal response with the triple therapy (12Gyx3 + NLRP3 agonist + α-PD1) in both 344SQ-P and 344SQ-R aggressively growing models. Multiple pro-inflammatory cytokines (IL-1b, IL-4, IL-12, IL-17, IFN-γ and GM-CSF) were elevated in the serum of mice treated with XRT + NLRP3 or triple therapy. The Nanostring results showed that NLRP3 agonist is capable of increasing antigen presentation, innate function, and T-cell priming. This study can be of particular importance to treat patients with immunologically-cold solid tumors whom are also refractory to prior checkpoint treatments.
Collapse
Affiliation(s)
- Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Kewen He
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Ethan Hsu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Genevieve Bertolet
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Duygu Sezen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
- Department of Radiation Oncology, Koç University School of Medicine, Istanbul, Turkey
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Thomas S Riad
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Maria Angelica Cortez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA.
| |
Collapse
|
18
|
Alves-Hanna FS, Crespo-Neto JA, Nogueira GM, Pereira DS, Lima AB, Ribeiro TLP, Santos VGR, Fonseca JRF, Magalhães-Gama F, Sadahiro A, Costa AG. Insights Regarding the Role of Inflammasomes in Leukemia: What Do We Know? J Immunol Res 2023; 2023:5584492. [PMID: 37577033 PMCID: PMC10421713 DOI: 10.1155/2023/5584492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Inflammation is a physiological mechanism of the immune response and has an important role in maintaining the hematopoietic cell niche in the bone marrow. During this process, the participation of molecules produced by innate immunity cells in response to a variety of pathogen-associated molecular patterns and damage-associated molecular patterns is observed. However, chronic inflammation is intrinsically associated with leukemogenesis, as it induces DNA damage in hematopoietic stem cells and contributes to the creation of the preleukemic clone. Several factors influence the malignant transformation within the hematopoietic microenvironment, with inflammasomes having a crucial role in this process, in addition to acting in the regulation of hematopoiesis and its homeostasis. Inflammasomes are intracellular multimeric complexes responsible for the maturation and secretion of the proinflammatory cytokines interleukin-1β and interleukin-18 and the cell death process via pyroptosis. Therefore, dysregulation of the activation of these complexes may be a factor in triggering several diseases, including leukemias, and this has been the subject of several studies in the area. In this review, we summarized the current knowledge on the relationship between inflammation and leukemogenesis, in particular, the role of inflammasomes in different types of leukemias, and we describe the potential therapeutic targets directed at inflammasomes in the leukemic context.
Collapse
Affiliation(s)
- Fabíola Silva Alves-Hanna
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Juniel Assis Crespo-Neto
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Glenda Menezes Nogueira
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Daniele Sá Pereira
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | - Amanda Barros Lima
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Thaís Lohana Pereira Ribeiro
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
| | | | - Joey Ramone Ferreira Fonseca
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
| | - Aya Sadahiro
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, AM, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, MG, Brazil
- Escola de Enfermagem de Manaus, Universidade Federal do Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
19
|
Chen Y, Zhang Y, Li N, Jiang Z, Li X. Role of mitochondrial stress and the NLRP3 inflammasome in lung diseases. Inflamm Res 2023; 72:829-846. [PMID: 36905430 PMCID: PMC10007669 DOI: 10.1007/s00011-023-01712-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
BACKGROUND As an organelle essential for intracellular energy supply, mitochondria are involved in intracellular metabolism and inflammation, and cell death. The interaction of mitochondria with the NLRP3 inflammasome in the development of lung diseases has been extensively studied. However, the exact mechanism by which mitochondria mediate the activation of the NLRP3 inflammasome and trigger lung disease is still unclear. METHODS The literatures related to mitochondrial stress, NLRP3 inflammasome and lung diseases were searched in PubMed. RESULTS This review aims to provide new insights into the recently discovered mitochondrial regulation of the NLRP3 inflammasome in lung diseases. It also describes the crucial roles of mitochondrial autophagy, long noncoding RNA, micro RNA, altered mitochondrial membrane potential, cell membrane receptors, and ion channels in mitochondrial stress and regulation of the NLRP3 inflammasome, in addition to the reduction of mitochondrial stress by nuclear factor erythroid 2-related factor 2 (Nrf2). The effective components of potential drugs for the treatment of lung diseases under this mechanism are also summarized. CONCLUSION This review provides a resource for the discovery of new therapeutic mechanisms and suggests ideas for the development of new therapeutic drugs, thus promoting the rapid treatment of lung diseases.
Collapse
Affiliation(s)
- Yonghu Chen
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China
| | - Yuqi Zhang
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Ning Li
- Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhe Jiang
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| | - Xuezheng Li
- Yanbian University Hospital, Yanbian University, Yanji, 133002, People's Republic of China.
| |
Collapse
|
20
|
Rao X, Zhou D, Deng H, Chen Y, Wang J, Zhou X, Jie X, Xu Y, Wu Z, Wang G, Dong X, Zhang S, Meng R, Wu C, Xing S, Fan K, Wu G, Zhou R. Activation of NLRP3 inflammasome in lung epithelial cells triggers radiation-induced lung injury. Respir Res 2023; 24:25. [PMID: 36694200 PMCID: PMC9872296 DOI: 10.1186/s12931-023-02331-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is the most common and serious complication of chest radiotherapy. However, reported radioprotective agents usually lead to radiation resistance in tumor cells. The key to solving this problem is to distinguish between the response of tumor cells and normal lung epithelial cells to radiation damage. METHODS RNA-Seq was used to recognize potential target of alleviating the progression of RILI as well as inhibiting tumor growth. The activation of NLRP3 inflammasome in lung epithelial cells was screened by qRT-PCR, western blotting, immunofluorescence, and ELISA. An in vivo model of RILI and in vitro conditioned culture model were constructed to evaluate the effect of NLRP3/interleukin-1β on fibroblasts activation. ROS, ATP, and (NADP)+/NADP(H) level in lung epithelial cells was detected to explore the mechanism of NLRP3 inflammasome activation. The lung macrophages of the mice were deleted to evaluate the role of lung epithelial cells in RILI. Moreover, primary cells were extracted to validate the results obtained from cell lines. RESULTS NLRP3 activation in epithelial cells after radiation depends on glycolysis-related reactive oxygen species accumulation. DPYSL4 is activated and acts as a negative regulator of this process. The NLRP3 inflammasome triggers interleukin-1β secretion, which directly affects fibroblast activation, proliferation, and migration, eventually leading to lung fibrosis. CONCLUSIONS Our study suggests that NLRP3 inflammasome activation in lung epithelial cells is essential for radiation-induced lung injury. These data strongly indicate that targeting NLRP3 may be effective in reducing radiation-induced lung injury in clinical settings.
Collapse
Affiliation(s)
- Xinrui Rao
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Dong Zhou
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Huilin Deng
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yunshang Chen
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Jian Wang
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiaoshu Zhou
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiaohua Jie
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Yingzhuo Xu
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Zilong Wu
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Geng Wang
- grid.33199.310000 0004 0368 7223Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Xiaorong Dong
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Sheng Zhang
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Rui Meng
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Chuangyan Wu
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Shijie Xing
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Kai Fan
- grid.33199.310000 0004 0368 7223Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Gang Wu
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| | - Rui Zhou
- grid.33199.310000 0004 0368 7223Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China
| |
Collapse
|
21
|
Xu C, Shang Z, Najafi M. Lung Pneumonitis and Fibrosis in Cancer Therapy: A Review on Cellular and Molecular Mechanisms. Curr Drug Targets 2022; 23:1505-1525. [PMID: 36082868 DOI: 10.2174/1389450123666220907144131] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
Fibrosis and pneumonitis are the most important side effects of lung tissue following cancer therapy. Radiotherapy and chemotherapy by some drugs, such as bleomycin, can induce pneumonitis and fibrosis. Targeted therapy and immunotherapy also may induce pneumonitis and fibrosis to a lesser extent compared to chemotherapy and radiotherapy. Activation of lymphocytes by immunotherapy or infiltration of inflammatory cells such as macrophages, lymphocytes, neutrophils, and mast cells following chemo/radiation therapy can induce pneumonitis. Furthermore, the polarization of macrophages toward M2 cells and the release of anti-inflammatory cytokines stimulate fibrosis. Lung fibrosis and pneumonitis may also be potentiated by some other changes such as epithelial-mesenchymal transition (EMT), oxidative stress, reduction/oxidation (redox) responses, renin-angiotensin system, and the upregulation of some inflammatory mediators such as a nuclear factor of kappa B (NF-κB), inflammasome, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS). Damages to the lung vascular system and the induction of hypoxia also can induce pulmonary injury following chemo/radiation therapy. This review explains various mechanisms of the induction of pneumonitis and lung fibrosis following cancer therapy. Furthermore, the targets and promising agents to mitigate lung fibrosis and pneumonitis will be discussed.
Collapse
Affiliation(s)
- Chaofeng Xu
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Zhongtu Shang
- Zhuji People's Hospital of Zhejiang Province, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, 311800, China
| | - Masoud Najafi
- Medical Technology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
22
|
Cheng H, Chen L, Huang M, Hou J, Chen Z, Yang X. Hunting down NLRP3 inflammasome: An executioner of radiation-induced injury. Front Immunol 2022; 13:967989. [PMID: 36353625 PMCID: PMC9637992 DOI: 10.3389/fimmu.2022.967989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the mainstream treatment modalities for several malignancies. However, radiation-induced injury to surrounding normal tissues limits its efficacy. The NLRP3 inflammasome is an essential mechanism of innate immunity that reacts to challenges from endogenous danger signals and pathological microbes. A growing body of evidence has demonstrated a key role of NLRP3 inflammasome in the pathogenesis of radiation-induced tissue injury. Despite accumulating evidence, the potential value of the NLRP3 inflammasome in the management of radiation-induced tissue injury is not adequately recognized. We conducted a literature review to characterize the relationship between NLRP3 inflammasome and radiation injury. By analyzing recent evidence, we identify NLRP3 inflammasome as one of the executioners of radiation-induced injury, since it responds to the challenges of radiation, induces cell pyroptosis and tissue dysfunction, and initiates non-resolving inflammation and fibrosis. Based on these concepts, we propose early intervention/prevention strategies targeting NLRP3 inflammasome in a radiation context, which may help resolve imperative clinical problems.
Collapse
Affiliation(s)
- Han Cheng
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingling Chen
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minchun Huang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Hou
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhifeng Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| | - Xiaojun Yang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Xiaojun Yang, ; Zhifeng Chen,
| |
Collapse
|
23
|
Ju Z, Guo P, Xiang J, Lei R, Ren G, Zhou M, Yang X, Zhou P, Huang R. Low-dose radiation exaggerates HFD-induced metabolic dysfunction by gut microbiota through PA-PYCR1 axis. Commun Biol 2022; 5:945. [PMID: 36088469 PMCID: PMC9464247 DOI: 10.1038/s42003-022-03929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 08/31/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractCo-exposure of High-fat-diet (HFD) behavior and environmental low-dose radiation (LDR) is common among majority occupational workers, but the synergism of this co-exposure in metabolic health is poorly understood. This study aimed to investigate the impact of gut microbiota and its metabolites on the regulation of HFD accompanied by LDR-associated with metabolic dysfunction and insulin resistance. Here, we reported that Parasutterella was markedly elevated in the gut microbiota of mice in co-exposure of HFD and LDR, accompanied by increased pyrrolidinecarboxylic acid (PA) level in both intestine and plasma. Transplantation of fecal microbiota from mice with co-exposure HFD and LDR with metabolic dysfunction resulted in increased disruption of metabolic dysfunction, insulin resistance and increased PYCR1 (Pyrroline-5-carboxylate reductase 1) expression. Mechanistically, intestinal barrier was damaged more serious in mice with co-exposure of HFD and LDR, leading high PA level in plasma, activating PYCR1 expression to inhibit insulin Akt/mTOR (AKT kinase-transforming protein/Serine threonine-protein kinase) signaling pathway to aggravate HFD-induced metabolic impairments. This study suggests a new avenue for interventions against western diet companied with low dose radiation exposure-driven metabolic impairments.
Collapse
|
24
|
Sallam M, Benotmane MA, Baatout S, Guns PJ, Aerts A. Radiation-induced cardiovascular disease: an overlooked role for DNA methylation? Epigenetics 2022; 17:59-80. [PMID: 33522387 PMCID: PMC8812767 DOI: 10.1080/15592294.2021.1873628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/27/2020] [Accepted: 01/04/2021] [Indexed: 11/25/2022] Open
Abstract
Radiotherapy in cancer treatment involves the use of ionizing radiation for cancer cell killing. Although radiotherapy has shown significant improvements on cancer recurrence and mortality, several radiation-induced adverse effects have been documented. Of these adverse effects, radiation-induced cardiovascular disease (CVD) is particularly prominent among patients receiving mediastinal radiotherapy, such as breast cancer and Hodgkin's lymphoma patients. A number of mechanisms of radiation-induced CVD pathogenesis have been proposed such as endothelial inflammatory activation, premature endothelial senescence, increased ROS and mitochondrial dysfunction. However, current research seems to point to a so-far unexamined and potentially novel involvement of epigenetics in radiation-induced CVD pathogenesis. Firstly, epigenetic mechanisms have been implicated in CVD pathophysiology. In addition, several studies have shown that ionizing radiation can cause epigenetic modifications, especially DNA methylation alterations. As a result, this review aims to provide a summary of the current literature linking DNA methylation to radiation-induced CVD and thereby explore DNA methylation as a possible contributor to radiation-induced CVD pathogenesis.
Collapse
Affiliation(s)
- Magy Sallam
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - Mohammed Abderrafi Benotmane
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
- Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Pieter-Jan Guns
- Laboratory of Physiopharmacology, University of Antwerp, Wilrijk, Belgium
| | - An Aerts
- Radiobiology Unit, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
25
|
Wei J, Zhao Q, Zhang Y, Shi W, Wang H, Zheng Z, Meng L, Xin Y, Jiang X. Sulforaphane-Mediated Nrf2 Activation Prevents Radiation-Induced Skin Injury through Inhibiting the Oxidative-Stress-Activated DNA Damage and NLRP3 Inflammasome. Antioxidants (Basel) 2021; 10:antiox10111850. [PMID: 34829721 PMCID: PMC8614868 DOI: 10.3390/antiox10111850] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
This article mainly observed the protective effect of sulforaphane (SFN) on radiation-induced skin injury (RISI). In addition, we will discuss the mechanism of SFN's protection on RISI. The RISI model was established by the irradiation of the left thigh under intravenous anesthesia. Thirty-two C57/BL6 mice were randomly divided into control group (CON), SFN group, irradiation (IR) group, and IR plus SFN (IR/SFN) group. At eight weeks after irradiation, the morphological changes of mouse skin tissues were detected by H&E staining. Then, the oxidative stress and inflammatory response indexes in mouse skin tissues, as well as the expression of Nrf2 and its downstream antioxidant genes, were evaluated by ELISA, real-time PCR, and Western blotting. The H&E staining showed the hyperplasia of fibrous tissue in the mouse dermis and hypodermis of the IR group. Western blotting and ELISA results showed that the inflammasome of NLRP3, caspase-1, and IL-1β, as well as oxidative stress damage indicators ROS, 4-HNE, and 3-NT, in the skin tissues of mice in the IR group were significantly higher than those in the control group (p < 0.05). However, the above pathological changes declined sharply after SFN treatment (p < 0.05). In addition, the expressions of Nrf2 and its regulated antioxidant enzymes, including CAT and HO-1, were higher in the skin tissues of SFN and IR/SFN groups, but lower in the control and IR groups (p < 0.05). SFN may be able to suppress the oxidative stress by upregulating the expression and function of Nrf2, and subsequently inhibiting the activation of NLRP3 inflammasome and DNA damage, so as to prevent and alleviate the RISI.
Collapse
Affiliation(s)
- Jinlong Wei
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Qin Zhao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Yuyu Zhang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Weiyan Shi
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Huanhuan Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA;
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
- Correspondence: (Y.X.); ; (X.J.); Tel.: +86-13504310452 (Y.X.); +86-15804302750 (X.J.)
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; (J.W.); (Q.Z.); (Y.Z.); (W.S.); (H.W.); (Z.Z.)
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
- Correspondence: (Y.X.); ; (X.J.); Tel.: +86-13504310452 (Y.X.); +86-15804302750 (X.J.)
| |
Collapse
|
26
|
Volumetric Modulated Arc Therapy Enabled Total Body Irradiation (VMAT-TBI): Six-year Clinical Experience and Treatment Outcomes. Transplant Cell Ther 2021; 28:113.e1-113.e8. [PMID: 34775145 DOI: 10.1016/j.jtct.2021.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022]
Abstract
Total body irradiation is an important part of the conditioning regimens frequently used to prepare patients for allogeneic hematopoietic stem cell transplantation (SCT). Volumetric-modulated arc therapy enabled total body irradiation (VMAT-TBI), an alternative to conventional TBI (cTBI), is a novel radiotherapy treatment technique that has been implemented and investigated in our institution. The purpose of this study is to (1) report our six-year clinical experience in terms of treatment planning strategy and delivery time and (2) evaluate the clinical outcomes and toxicities in our cohort of patients treated with VMAT-TBI. This is a retrospective single center study. Forty-four patients at our institution received VMAT-TBI and chemotherapy conditioning followed by allogeneic SCT between 2014 and 2020. Thirty-two patients (73%) received standard-dose TBI (12-13.2 Gy in 6-8 fractions twice daily), whereas 12 (27%) received low-dose TBI (2-4 Gy in one fraction). Treatment planning, delivery, and treatment outcome data including overall survival (OS), relapse-free survival (RFS), and toxicities were analyzed. The developed VMAT-TBI planning strategy consistently generated plans satisfying our dose constraints, with planning target volume coverage >90%, mean lung dose ∼50% to 75% of prescription dose, and minimal hotspots in critical organs. Most of the treatment deliveries were <100 minutes (range 33-147, mean 72). The median follow-up was 26 months. At the last follow-up, 34 of 44 (77%) of patients were alive, with 1- and 2-year OS of 90% and 79% and RFS of 88% and 71%, respectively. The most common grade 3+ toxicities observed were mucositis (31 patients [71%]) and nephrotoxicity (6 patients [13%]), both of which were deemed multifactorial in cause. Four patients (9%) in standard-dose cohort developed grade 3+ pneumonitis, with 3 cases in the setting of documented respiratory infection and only 1 (2%) deemed likely related to radiation alone. VMAT-TBI provides a safe alternative to cTBI. The dose modulation capability of VMAT-TBI may lead to new treatment strategies, such as simultaneous boost and further critical organ sparing, for better malignant cell eradication, immune suppression, and lower toxicities.
Collapse
|
27
|
Yang S, Yao Y, Dong Y, Liu J, Li Y, Yi L, Huang Y, Gao Y, Yin J, Li Q, Ye D, Gong H, Xu B, Li J, Song Q. Prediction of Radiation Pneumonitis Using Genome-Scale Flux Analysis of RNA-Seq Derived From Peripheral Blood. Front Med (Lausanne) 2021; 8:715961. [PMID: 34532331 PMCID: PMC8438228 DOI: 10.3389/fmed.2021.715961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/30/2021] [Indexed: 01/09/2023] Open
Abstract
Purpose: Radiation pneumonitis (RP) frequently occurs during a treatment course of chest radiotherapy, which significantly reduces the clinical outcome and efficacy of radiotherapy. The ability to easily predict RP before radiotherapy would allow this disease to be avoided. Methods and Materials: This study recruited 48 lung cancer patients requiring chest radiotherapy. For each participant, RNA sequencing (RNA-Seq) was performed on a peripheral blood sample before radiotherapy. The RNA-Seq data was then integrated into a genome-scale flux analysis to develop an RP scoring system for predicting the probability of occurrence of RP. Meanwhile, the clinical information and radiation dosimetric parameters of this cohort were collected for analysis of any statistical associations between these parameters and RP. A non-parametric rank sum test showed no significant difference between the predicted results from the RP score system and the clinically observed occurrence of RP in this cohort. Results: The results of the univariant analysis suggested that the tumor stage, exposure dose, and bilateral lung dose of V5 and V20 were significantly associated with the occurrence of RP. The results of the multivariant analysis suggested that the exposure doses of V5 and V20 were independent risk factors associated with RP and a level of RP ≥ 2, respectively. Thus, our results indicate that our RP scoring system could be applied to accurately predict the risk of RP before radiotherapy because the scores were highly consistent with the clinically observed occurrence of RP. Conclusion: Compared with the standard statistical methods, this genome-scale flux-based scoring system is more accurate, straightforward, and economical, and could therefore be of great significance when making clinical decisions for chest radiotherapy.
Collapse
Affiliation(s)
- Siqi Yang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, China
| | - Yi Dong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junqi Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingge Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lina Yi
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yani Huang
- Oncology Department, Zhongxiang Hospital, Renmin Hospital of Wuhan University, Zhongxiang, China
| | - Yanjun Gao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junping Yin
- Institute of Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Qingqing Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dafu Ye
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyun Gong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Li
- Institute of Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, China
| |
Collapse
|
28
|
Calabrese EJ, Kozumbo WJ, Kapoor R, Dhawan G, Lara PC, Giordano J. Nrf2 activation putatively mediates clinical benefits of low-dose radiotherapy in COVID-19 pneumonia and acute respiratory distress syndrome (ARDS): Novel mechanistic considerations. Radiother Oncol 2021; 160:125-131. [PMID: 33932453 PMCID: PMC8080499 DOI: 10.1016/j.radonc.2021.04.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/13/2022]
Abstract
Novel mechanistic insights are discussed herein that link a single, nontoxic, low-dose radiotherapy (LDRT) treatment (0.5-1.0 Gy) to (1) beneficial subcellular effects mediated by the activation of nuclear factor erythroid 2-related transcription factor (Nrf2) and to (2) favorable clinical outcomes for COVID-19 pneumonia patients displaying symptoms of acute respiratory distress syndrome (ARDS). We posit that the favorable clinical outcomes following LDRT result from potent Nrf2-mediated antioxidant responses that rebalance the oxidatively skewed redox states of immunological cells, driving them toward anti-inflammatory phenotypes. Activation of Nrf2 by ionizing radiation is highly dose dependent and conforms to the features of a biphasic (hormetic) dose-response. At the cellular and subcellular levels, hormetic doses of <1.0 Gy induce polarization shifts in the predominant population of lung macrophages, from an M1 pro-inflammatory to an M2 anti-inflammatory phenotype. Together, the Nrf2-mediated antioxidant responses and the subsequent shifts to anti-inflammatory phenotypes have the capacity to suppress cytokine storms, resolve inflammation, promote tissue repair, and prevent COVID-19-related mortality. Given these mechanistic considerations-and the historical clinical success of LDRT early in the 20th century-we opine that LDRT should be regarded as safe and effective for use at almost any stage of COVID-19 infection. In theory, however, optimal life-saving potential is thought to occur when LDRT is applied prior to the cytokine storms and before the patients are placed on mechanical oxygen ventilators. The administration of LDRT either as an intervention of last resort or too early in the disease progression may be far less effective in saving the lives of ARDS patients.
Collapse
Affiliation(s)
| | | | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, USA
| | - Gaurav Dhawan
- Sri Guru Ram Das University of Health Sciences, Amritsar, India.
| | - Pedro C Lara
- Department of Radiation Oncology, Hospital Universitario San Roque, Universidad Fernando Pessoa Canarias, Las Palmas Gran Canaria, Spain.
| | - James Giordano
- Departments of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
29
|
Corcoran SE, Halai R, Cooper MA. Pharmacological Inhibition of the Nod-Like Receptor Family Pyrin Domain Containing 3 Inflammasome with MCC950. Pharmacol Rev 2021; 73:968-1000. [PMID: 34117094 DOI: 10.1124/pharmrev.120.000171] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of the Nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome drives release of the proinflammatory cytokines interleukin (IL)-1β and IL-18 and induces pyroptosis (lytic cell death). These events drive chronic inflammation, and as such, NLRP3 has been implicated in a large number of human diseases. These range from autoimmune conditions, the simplest of which is NLRP3 gain-of-function mutations leading to an orphan disease, cryopyrin-associated period syndrome, to large disease burden indications, such as atherosclerosis, heart failure, stroke, neurodegeneration, asthma, ulcerative colitis, and arthritis. The potential clinical utility of NLRP3 inhibitors is substantiated by an expanding list of indications in which NLRP3 activation has been shown to play a detrimental role. Studies of pharmacological inhibition of NLRP3 in nonclinical models of disease using MCC950 in combination with human genetics, epigenetics, and analyses of the efficacy of biologic inhibitors of IL-1β, such as anakinra and canakinumab, can help to prioritize clinical trials of NLRP3-directed therapeutics. Although MCC950 shows excellent (nanomolar) potency and high target selectivity, its pharmacokinetic and toxicokinetic properties limited its therapeutic development in the clinic. Several improved, next-generation inhibitors are now in clinical trials. Hence the body of research in a plethora of conditions reviewed herein may inform analysis of the potential translational value of NLRP3 inhibition in diseases with significant unmet medical need. SIGNIFICANCE STATEMENT: The nod-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is one of the most widely studied and best validated biological targets in innate immunity. Activation of NLRP3 can be inhibited with MCC950, resulting in efficacy in more than 100 nonclinical models of inflammatory diseases. As several next-generation NLRP3 inhibitors are entering proof-of-concept clinical trials in 2020, a review of the pharmacology of MCC950 is timely and significant.
Collapse
Affiliation(s)
- Sarah E Corcoran
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| | - Reena Halai
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| | - Matthew A Cooper
- Trinity College Dublin, Dublin, Ireland (S.E.C.); Inflazome, D6 Grain House, Mill Court, Great Shelford, Cambridge, United Kingdom (R.H., M.A.C.); and Institute for Molecular Bioscience, University of Queensland, Queensland, Australia (M.A.C.)
| |
Collapse
|
30
|
Li N, Luo P, Li C, Hong Y, Zhang M, Chen Z. Analysis of related factors of radiation pneumonia caused by precise radiotherapy of esophageal cancer based on random forest algorithm. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:4477-4490. [PMID: 34198449 DOI: 10.3934/mbe.2021227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The precise radiotherapy of esophageal cancer may cause different degrees of radiation damage for lung tissues and cause radioactive pneumonia. However, the occurrence of radioactive pneumonia is related to many factors. To further clarify the correlation between the occurrence of radioactive pneumonia and related factors, a random forest model was used to build a risk prediction model for patients with esophageal cancer undergoing radiotherapy. In this study, we retrospectively reviewed 118 patients with esophageal cancer confirmed by pathology in our hospital. The health characteristics and related parameters of all patients were analyzed, and the predictive effect of radiation pneumonia was discussed using the random forest algorithm. After treatment, 71 patients developed radioactive pneumonia (60.17%). In univariate analyses, age, planning target volume length, Karnofsky performance score (KPS), pulmonary emphysema, with or without chemotherapy, and the ratio of planning target volume to planning gross tumor volume (PTV/PGTV) in mediastinum were significantly associated with radioactive pneumonia (P < 0.05 for each comparison). Multivariate analysis revealed that with or without pulmonary emphysema (OR = 7.491, P = 0.001), PTV/PGTV (OR = 0.205, P = 0.007), and KPS (OR = 0.251, P = 0.011) were independent predictors for radiation pneumonia. The results concluded that the analysis of radiation pneumonia-related factors based on the random forest algorithm could build a mathematical prediction model for the easily obtained data. This algorithm also could effectively analyze the risk factors of radiation pneumonia and formulate the appropriate treatment plan for esophageal cancer.
Collapse
Affiliation(s)
- Na Li
- Department of Oncology Center, Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Peng Luo
- The First Department of Oncology, Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chunyang Li
- Radiotherapy Center, Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Yanyan Hong
- Department of Oncology Center, Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Mingjun Zhang
- Department of Oncology Center, Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zhendong Chen
- Department of Oncology Center, Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| |
Collapse
|
31
|
Han C, Godfrey V, Liu Z, Han Y, Liu L, Peng H, Weichselbaum RR, Zaki H, Fu YX. The AIM2 and NLRP3 inflammasomes trigger IL-1-mediated antitumor effects during radiation. Sci Immunol 2021; 6:eabc6998. [PMID: 33963060 DOI: 10.1126/sciimmunol.abc6998] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 04/06/2021] [Indexed: 12/20/2022]
Abstract
The inflammasome promotes inflammation-associated diseases, including cancer, and contributes to the radiation-induced tissue damage. However, the role of inflammasome in radiation-induced antitumor effects is unclear. We observed that tumors transplanted in Casp1-/- mice were resistant to radiation treatment compared with tumors in wild-type (WT) mice. To map out which molecule in the inflammasome pathway contributed to this resistant, we investigated the antitumor effect of radiation in several inflammasome-deficient mice. Tumors grown in either Aim2-/- or Nlrp3-/- mice remained sensitive to radiation, like WT mice, whereas Aim2-/-Nlrp3-/- mice showed radioresistance. Mechanistically, extracellular vesicles (EVs) and EV-free supernatant derived from irradiated tumors activated both Aim2 and Nlrp3 inflammasomes in macrophages, leading to the production of interleukin-1β (IL-1β). IL-1β treatment helped overcome the radioresistance of tumors growing in Casp1-/- and Aim2-/-Nlrp3-/- mice. IL-1 signaling in dendritic cells (DCs) promoted radiation-induced antitumor immunity by enhancing the cross-priming activity of DCs. Overall, we demonstrated that radiation-induced activation of the AIM2 and NLRP3 inflammasomes coordinate to induce some of the antitumor effects of radiation by triggering IL-1 signaling in DCs, leading to their activation and cross-priming.
Collapse
Affiliation(s)
- Chuanhui Han
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Victoria Godfrey
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Zhida Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Yanfei Han
- Institute of Biophysics, Chinese Academy of Sciences. Beijing, China
| | - Longchao Liu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Hua Peng
- Institute of Biophysics, Chinese Academy of Sciences. Beijing, China
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Hasan Zaki
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Yang-Xin Fu
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
32
|
How Macrophages Become Transcriptionally Dysregulated: A Hidden Impact of Antitumor Therapy. Int J Mol Sci 2021; 22:ijms22052662. [PMID: 33800829 PMCID: PMC7961970 DOI: 10.3390/ijms22052662] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are the essential components of the tumor microenvironment. TAMs originate from blood monocytes and undergo pro- or anti-inflammatory polarization during their life span within the tumor. The balance between macrophage functional populations and the efficacy of their antitumor activities rely on the transcription factors such as STAT1, NF-κB, IRF, and others. These molecular tools are of primary importance, as they contribute to the tumor adaptations and resistance to radio- and chemotherapy and can become important biomarkers for theranostics. Herein, we describe the major transcriptional mechanisms specific for TAM, as well as how radio- and chemotherapy can impact gene transcription and functionality of macrophages, and what are the consequences of the TAM-tumor cooperation.
Collapse
|
33
|
Qu D, Guo H, Xu Y. Effects of Tranilast on Inflammasome and Macrophage Phenotype in a Mouse Model of Myocardial Infarction. J Interferon Cytokine Res 2021; 41:102-110. [PMID: 33750216 DOI: 10.1089/jir.2020.0208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Acute myocardial infarction (AMI) has been a devastating actuality and accounts for half of cardiovascular emergency department visits. Nucleotide oligomerization domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome participates in the mediation of myocardial inflammation during AMI. Therefore, this study aimed to reveal the therapeutic function of tranilast, an agent targeting NLRP3, for AMI. AMI mouse model was first established by transient myocardial ischemia. Western blot and quantitative reverse transcription polymerase chain reaction assay were performed to estimate the expression levels of related genes. Flow cytometry was used to analyze the macrophage types, and the therapeutic effects of tranilast were estimated by echocardiographic analysis and Masson's trichrome stain. We demonstrated that AMI induced the activation of NLRP3 inflammasome in the heart tissues of mice with AMI. Tranilast decreased the expression of interleukin-1β and cleaved caspase-1 in bone marrow-derived macrophages and thus re-educated M1-macrophages toward the M2-phenotype both in vitro and in vivo. Tranilast inhibited the activation in the heart tissues of AMI mice and thus improved cardiac functional recovery in the AMI mouse model. In conclusion, we revealed that tranilast ameliorated myocardial infarction by inhibiting NLRP3 inflammasome and re-educating macrophage phenotype in this study.
Collapse
Affiliation(s)
- Di Qu
- Department of Internal Medicine-Cardiovascular, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, China
| | - Huihui Guo
- Department of Internal Medicine-Cardiovascular, Shengzhou People's Hospital (the First Affiliated Hospital of Zhejiang University Shengzhou Branch), Shengzhou, Zhejiang, China
| | - Yanan Xu
- Rehabilitation Center, Beijing Xiaotangshan Hospital, Beijing, China
| |
Collapse
|
34
|
鄢 海, 邹 纯. [Mechanism and material basis of Lianhua Qingwen capsule for improving clinical cure rate of COVID-19: a study based on network pharmacology and molecular docking technology]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:20-30. [PMID: 33509749 PMCID: PMC7867482 DOI: 10.12122/j.issn.1673-4254.2021.01.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To explore the potential targets, signal pathways and biological functions that mediate the effect of Lianhua Qingwen capsule in improving clinical cure rate of COVID-19 in light of network pharmacology and molecular docking technology. METHODS TCMSP, Target, Prediction, CooLGeN, GeneCards, DAVID and other databases were searched for the active components and their target proteins from 13 herbs including Forsythia, Honeysuckle and roasted Ephedra used in Lianhua Qingwen capsule. The common target proteins, signal pathways and biological functions shared by these components and the clinical manifestations of COVID-19 (fever, cough, and fatigue) were identified to construct the network consisting of the component drugs in Lianhua Qingwen capsule, the active ingredients of, their targets of action, and the biological functions involved using Gephi software. RESULTS A total 160 active components including MOL000522, and MOL003283, MOL003365, MOL003006, MOL003014 in 13 component drugs in Lianhua Qingwen capsule produced therapeutic effects against COVID-19 through 57 target proteins including MAPK1, IL6, HSP90AA1, TNF, and CCL2, involving 35 signaling pathways including NOD-like receptor signaling pathway and Toll-like receptor signaling pathway. The results of molecular docking showed that 83 chemical components had total scores no less than 5.0 for docking with 12 target proteins (including MAPK1, IL6, and HSP90AA1) with high binding activities to form stable conformations. The binding of MOL000522, MOL004989, and MOL003330 with MAPK1; MOL001495 and MOL001494 with NLRP3; MOL004908, MOL004863 and MOL004806 with HSP90AA1; MOL001749 with TLR9; and MOL001495 with AKT1 all had total scores exceeding 9.0. CONCLUSIONS Lianhua Qingwen capsule contains multiple effective ingredients to improve clinical cure rate of COVID-19, and its therapeutic effect is mediated by multiple protein targets, signal pathways and biological functions.
Collapse
Affiliation(s)
- 海燕 鄢
- />皖南医学院药学院,安徽 芜湖 241002School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - 纯才 邹
- />皖南医学院药学院,安徽 芜湖 241002School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
35
|
Yang L, Hu M, Lu Y, Han S, Wang J. Inflammasomes and the Maintenance of Hematopoietic Homeostasis: New Perspectives and Opportunities. Molecules 2021; 26:molecules26020309. [PMID: 33435298 PMCID: PMC7827629 DOI: 10.3390/molecules26020309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Hematopoietic stem cells (HSCs) regularly produce various blood cells throughout life via their self-renewal, proliferation, and differentiation abilities. Most HSCs remain quiescent in the bone marrow (BM) and respond in a timely manner to either physiological or pathological cues, but the underlying mechanisms remain to be further elucidated. In the past few years, accumulating evidence has highlighted an intermediate role of inflammasome activation in hematopoietic maintenance, post-hematopoietic transplantation complications, and senescence. As a cytosolic protein complex, the inflammasome participates in immune responses by generating a caspase cascade and inducing cytokine secretion. This process is generally triggered by signals from purinergic receptors that integrate extracellular stimuli such as the metabolic factor ATP via P2 receptors. Furthermore, targeted modulation/inhibition of specific inflammasomes may help to maintain/restore adequate hematopoietic homeostasis. In this review, we will first summarize the possible relationships between inflammasome activation and homeostasis based on certain interesting phenomena. The cellular and molecular mechanism by which purinergic receptors integrate extracellular cues to activate inflammasomes inside HSCs will then be described. We will also discuss the therapeutic potential of targeting inflammasomes and their components in some diseases through pharmacological or genetic strategies.
Collapse
|
36
|
Gritsenko A, Green JP, Brough D, Lopez-Castejon G. Mechanisms of NLRP3 priming in inflammaging and age related diseases. Cytokine Growth Factor Rev 2020; 55:15-25. [PMID: 32883606 PMCID: PMC7571497 DOI: 10.1016/j.cytogfr.2020.08.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
The NLRP3 inflammasome is a vital part of the innate immune response, whilst its aberrant activation drives the progression of a number of non-communicable diseases. Thus, NLRP3 inflammasome assembly must be tightly controlled at several checkpoints. The priming step of NLRP3 inflammasome activation is associated with increased NLRP3 gene expression, as well as post-translational modifications that control NLRP3 levels and licence the NLRP3 protein for inflammasome assembly. Increasing life expectancy in modern society is accompanied by a growing percentage of elderly individuals. The process of aging is associated with chronic inflammation that drives and/or worsens a range of age related non-communicable conditions. The NLRP3 inflammasome is known to contribute to pathological inflammation in many settings, but the mechanisms that prime NLRP3 for activation throughout aging and related co-morbidities have not been extensively reviewed. Here we dissect the biochemical changes that occur during aging and the pathogenesis of age related diseases and analyse the mechanisms by which they prime the NLRP3 inflammasome, thus exacerbating inflammation.
Collapse
Affiliation(s)
- Anna Gritsenko
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jack P Green
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David Brough
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gloria Lopez-Castejon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
37
|
Sun H, Cai H, Fu Y, Wang Q, Ji K, Du L, Xu C, Tian L, He N, Wang J, Zhang M, Liu Y, Wang Y, Li J, Liu Q. The Protection Effect of Resveratrol Against Radiation-Induced Inflammatory Bowel Disease via NLRP-3 Inflammasome Repression in Mice. Dose Response 2020; 18:1559325820931292. [PMID: 32636719 PMCID: PMC7323307 DOI: 10.1177/1559325820931292] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
With the extensive application of radiotherapy in various cancers, its side effects in tissues adjacent to cancers are garnering much attention. Intestines are sensitive to irradiation due to its rapid proliferation, and irradiation-induced enteric inflammation is common in patients with pelvic peritoneal tumors. Sirt1, class III protein deacetylase, could lead to transcriptional repression of various inflammation-associated genes, and our previous study has proved its relationship with interleukin (IL)-1β. Here we show that resveratrol, the activator of Sirt1, could alleviate the bowel inflammation induced by irradiation and the expression of Sirt1 is consistent with the inflammation level. We further identified in vivo that Sirt1 repress the expression of IL-1β by the repression of NLR Family, Pyrin Domain Containing protein 3 (NLRP3) expression. In conclusion, this study confirms resveratrol acts against radiation-induced inflammatory bowel disease via NLRP-3 inflammasome repression in mice and supports Sirt1 as a potential biomarker and therapy target in intestinal radiation protection.
Collapse
Affiliation(s)
- Hao Sun
- Laboratory of Radiation Medicine and radiation injury effects, Tianjin Institute of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Hui Cai
- Laboratory of Radiation Medicine and radiation injury effects, Tianjin Institute of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yue Fu
- National Accreditation Service for Conformity Assessment, China
| | - Qin Wang
- Laboratory of Radiation Medicine and radiation injury effects, Tianjin Institute of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Kaihua Ji
- Laboratory of Radiation Medicine and radiation injury effects, Tianjin Institute of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Laboratory of Radiation Medicine and radiation injury effects, Tianjin Institute of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Chang Xu
- Laboratory of Radiation Medicine and radiation injury effects, Tianjin Institute of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Lifang Tian
- The People's Hospital of Renqiu City Hebei Province, China
| | - Ningning He
- Laboratory of Radiation Medicine and radiation injury effects, Tianjin Institute of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Jinhan Wang
- Laboratory of Radiation Medicine and radiation injury effects, Tianjin Institute of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Manman Zhang
- Laboratory of Radiation Medicine and radiation injury effects, Tianjin Institute of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yang Liu
- Laboratory of Radiation Medicine and radiation injury effects, Tianjin Institute of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Laboratory of Radiation Medicine and radiation injury effects, Tianjin Institute of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| | - Jia Li
- Capital Medical University Electric Power Teaching Hospital, Beijing, China
| | - Qiang Liu
- Laboratory of Radiation Medicine and radiation injury effects, Tianjin Institute of Radiology, Chinese Academy of Medical Sciences, Peking Union Medical College, Tianjin, China
| |
Collapse
|
38
|
Lara PC, Nguyen NP, Macias-Verde D, Burgos-Burgos J, Arenas M, Zamagni A, Vinh-Hung V, Baumert BG, Motta M, Myint AS, Bonet M, Popescu T, Vuong T, Appalanaido GK, Trigo L, Karlsson U, Thariat J. Whole-lung Low Dose Irradiation for SARS-Cov2 Induced Pneumonia in the Geriatric Population: An Old Effective Treatment for a New Disease? Recommendation of the International Geriatric Radiotherapy Group. Aging Dis 2020; 11:489-493. [PMID: 32489696 PMCID: PMC7220282 DOI: 10.14336/ad.2020.0506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 01/08/2023] Open
Abstract
A cytokine storm induced by SARS-Cov2 may produce pneumonitis which may be fatal for older patients with underlying lung disease. Hyper-elevation of Interleukin1 (IL-1), Tumor necrosis factor-1alfa (TNF-1 alfa), and Interleukin 6 (IL-6) produced by inflammatory macrophage M1 may damage the lung alveoli leading to severe pneumonitis, decreased oxygenation, and potential death despite artificial ventilation. Older patients may not be suitable candidates for pharmaceutical intervention targeting IL-1/6 blockade or artificial ventilation. Low dose total lung (LDTL) irradiation at a single dose of 50 cGy may stop this cytokine cascade, thus preventing, and/or reversing normal organs damage. This therapy has been proven in the past to be effective against pneumonitis of diverse etiology and could be used to prevent death of older infected patients. Thus, LDRT radiotherapy may be a cost-effective treatment for this frail patient population whom radiation -induced malignancy is not a concern because of their advanced age. This hypothesis should be tested in future prospective trials.
Collapse
Affiliation(s)
- Pedro C Lara
- Department of Radiation Oncology, Hospital Universitario San Roque, Fernando Pessoa Canarias Las Palmas University, Las Palmas, Spain.
| | - Nam P Nguyen
- Department of Radiation Oncology, Howard University, Washington D.C., USA.
| | - David Macias-Verde
- Department of Radiation Oncology, Hospital Universitario San Roque, Fernando Pessoa Canarias Las Palmas University, Las Palmas, Spain.
| | - Javier Burgos-Burgos
- Department of Radiation Oncology, Hospital Universitario San Roque, Fernando Pessoa Canarias Las Palmas University, Las Palmas, Spain.
| | - Meritxell Arenas
- Department of Radiation Oncology, Sant Joan de Reus University, University Rovira I Virgili, Tarragona, Spain.
| | - Alice Zamagni
- Radiation Oncology Center, Department of Experimental, Diagnostic and Specialty Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy.
| | - Vincent Vinh-Hung
- Department of Radiation Oncology, University Hospital of Martinique, Martinique, France.
| | - Brigitta G Baumert
- Institute of Radiation Oncology, Cantonal Hospital Graubuenden, Chur, Switzerland.
| | - Micaela Motta
- Department of Radiation Oncology, ASST Papa Giovanni XXIII, Bergamo, Italy.
| | - Arthur Sun Myint
- Department of Radiation Oncology, Clatterbridge Cancer Center, Liverpool, United Kingdom.
| | - Marta Bonet
- Department of Radiation Oncology, Arnau de Vilanova University Hospital, Lleida, Spain.
| | - Tiberiu Popescu
- Department of Radiation Oncology, Prof. Dr. Ion Chricuta Oncology Institute, Cluj-Napoca, Romania.
| | - Te Vuong
- Department Of Radiation Oncology, McGill University, Montreal, Canada.
| | | | - Lurdes Trigo
- Department of Radiation Oncology, Instituto Portuges de Oncologia Porto Francisco Gentil E.P.E, Porto, Portugal.
| | - Ulf Karlsson
- Department of Radiation Oncology, International Geriatric Group, Washington D.C., USA.
| | - Juliette Thariat
- Department of Radiation Oncology, Baclesse Cancer Center, Caen, France.
| |
Collapse
|