1
|
Setianegara J, Wang A, Gerard N, Nys J, Harold Li H, Chen RC, Gao H, Lin Y. Characterization of commercial detectors for absolute proton UHDR dosimetry on a compact clinical proton synchrocyclotron. Med Phys 2025. [PMID: 40268691 DOI: 10.1002/mp.17847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/04/2025] [Accepted: 04/05/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Modern compact proton synchrocyclotrons can achieve ultra-high dose rates ( ≥ $ \ge $ 40 Gy/s) to support ultra-high-dose-rate (UHDR) preclinical experiments utilizing pencil beam scanning (PBS) protons. Unique to synchrocyclotrons is a pulsed proton time structure as compared to the quasi-continuous nature of other proton accelerators like isochronous cyclotrons. Thus, high instantaneous proton currents in the order of several µA must be generated to achieve UHDRs. This will lead to high doses-per-pulse (DPP), which may cause significant charge recombination for ionization chambers, which must be characterized for accurate UHDR dosimetry programs. PURPOSE In this work, we investigate the suitability of various commercial radiation detectors for accurate proton UHDR dosimetry using PBS proton beams from a compact proton synchrocyclotron (IBA ProteusONE). This is achieved by cross-calibrating them with conventional dose rates, measuring UHDR recombination (Pion) and polarity correction factors (Ppol) for ionization chambers, and determining the absorbed proton UHDR dose delivered for all detectors. METHODS An IBA ProteusONE synchrocyclotron was initially tuned to achieve UHDRs with 228 MeV protons at 0° gantry angle. Various detectors, including Razor Chamber, Razor Nano Chamber, Razor Diode, and microDiamond, were cross-calibrated against a PPC05 plane-parallel ionization chamber (PPIC) that had an ADCL calibration coefficient of 59.23 cGy/nC. Then, all ionization chambers were exposed to UHDR protons with the Ppol and Pion subsequently calculated. Pion was calculated using two methods: TRS-398 methods and Niatel's model. Finally, the absolute UHDR proton doses delivered were determined for all detectors and cross-compared. RESULTS Faraday cup measurements were performed for a single spot proton UHDR beam, and the nozzle current at the isocenter was determined to be 129.5 nA during UHDR irradiations at 98.61% of the maximum theoretical dose rate. Repeated Faraday cup measurements of the UHDR beam yielded a percentage standard deviation of 0.8%, which was higher than 0.120% when similar repeated measurements were performed with conventional proton beams. Ppol was found to be relatively dose-rate independent for all ionization chambers investigated. Pion was found to be the lowest for the PPC05 ionization chamber (1.0097) compared to corresponding values of 1.0214 and 1.0294 for the Razor and Razor Nano detectors, respectively, for UHDRs. Pion values calculated using Niatel's model closely matched values from TRS-398 if the VH/VL ratio were kept at 2.5 for the PPC05 and Razor detectors and 2.0 for the Razor Nano detector. Absolute proton UHDR doses determined using cross-calibration factors were generally within ± 1% of PPC05 measurements. However, Razor Diode was found to over-respond by up to 3.79% within UHDR proton beams, rendering them unsuitable for proton UHDR dosimetry. CONCLUSION In this work, we comprehensively evaluated the suitability of various commercial detectors for absolute dosimetry with a pulsed UHDR beam structure from a proton synchrocyclotron. PPC05 had the lowest ionic recombination correction compared to Razor and Razor Nano ion chambers. Other than the diode detector, all other investigated detectors (PPC05, Razor, Razor Nano, microDiamond) were within ± 1% of one another and can be used for accurate absolute proton UHDR dosimetry.
Collapse
Affiliation(s)
- Jufri Setianegara
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aoxiang Wang
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | | | - Jarrick Nys
- Ion Beam Applications (IBA), Louvain-la-Neuve, Belgium
| | - H Harold Li
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ronald C Chen
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
2
|
DeFrancisco J, Kim S. A systematic review of electron FLASH dosimetry and beam control mechanisms utilized with modified non-clinical LINACs. J Appl Clin Med Phys 2025; 26:e70051. [PMID: 40108673 PMCID: PMC11969112 DOI: 10.1002/acm2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND FLASH has been shown to spare normal tissue toxicity while maintaining tumor control. However, existing irradiation platforms and dosimetry are not compatible. Consequently, an abundance of FLASH delivery devices and new dosimetry across all modalities has been created. Many review articles concluded that dosimetry is modality-dependent. Focusing on electrons, researchers have modified clinical LINACs to enable FLASH dose rates. Modified LINACs caused the development of unique control systems that have yet to be characterized. Improvement could be made when considering the organization of reviews. PURPOSE To systematically perform a literature survey on electron FLASH dosimetry and beam control mechanisms with modified LINACs, detail where articles originated, and organize the results. METHODS A literature survey was performed from two websites using specified keywords and sifted results to find articles that fit the criteria. The results were organized in tables and summaries effectively by matching up dosimeters with their measurement goal, referring to their specific models, outlining the irradiation conditions they were tested in, and detailing their calibration procedure. Furthermore, included was the unique topic of control mechanisms. RESULTS Twenty-eight matches were found. Various dosimeters were examined to measure absorbed dose, beam characteristics (BC), dose per pulse (DPP), and pulse counting (PC). Specific detectors and the irradiation conditions are organized and presented in a table. Each model's pros and cons are presented in another table for further consideration. A third table is provided to detail beam control methods. CONCLUSIONS Dosimetry is majorly film-based for absorbed dose and beam characteristic measurements. Many candidates for dosimeters for the use of DPP and PC have been tested, but they have yet to be tested without limitations. Beam control mechanisms primarily consist of unacceptable delivery errors. Many suggestions for improvement were given, mainly consisting of finding new dosimeters and modulating the dose DPP.
Collapse
Affiliation(s)
- Justin DeFrancisco
- Medical Physics ProgramVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Siyong Kim
- Medical Physics ProgramVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Radiation OncologySchool of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
3
|
Morris T, Rajapakse A, Lyatskaya Y, Zygmanski P, Bredfeldt J, Sajo E, Brivio D. Pulsed beam monitoring for electron FLASH. Med Phys 2025; 52:1810-1822. [PMID: 39625232 DOI: 10.1002/mp.17553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Safe implementation and translation of FLASH radiotherapy to the clinic requirehs development of beam monitoring devices capable of high temporal resolution with wide dynamic ranges. Ideal detectors should be able to monitor LINAC pulses, withstand high doses and dose rates, and provide information about the beam output, energy/range, and profile. PURPOSE Two novel detectors have been designed and tested for ultra-high dose-rate (UHDR) monitoring: a multilayer nano-structured 3-layer high-energy-current (HEC3) detector, and a segmented large area, 4-section flat (S4) detector with the goal of exploring their properties for a future combined design. METHODS A Novalis-TX LINAC was converted to produce a 10 MeV electron-FLASH beam. Pulses were monitored using both HEC3 and S4 detectors. The HEC3 detector structure consisted of three electrode layers separated by a nanoporous aerogel (Aero): Al(50 µm)-Aero(100 µm)-Ta(10 µm)-Aero(100 µm)-Al(50 µm). The S4 structure was comprised of three layers: Cu(100 nm)-air(1 mm)-Al(100 nm) with contact potential for charge collection. Both detectors are self-powered as they do not require an external voltage bias for charge collection. The beam was also characterized using a photodiode, Gafchromic EBT-XD Film, OSLDs, and an Advanced Markus Chamber. RESULTS The electron-FLASH beam displayed a Gaussian-like profile with 15 cm FWHM at isocenter. Electron-FLASH dose rates up to an average of 260 Gy/s were measured on the surface of a solid water phantom at isocenter with an instantaneous dose rate of 1.8 × 105 Gy/s and a dose per pulse of up to 1 Gy/pulse. Both HEC3 and S4 detectors could record individual pulses for repetition rates of 360 Hz with a 4 µs pulse-width. The HEC3 detector signal increased linearly with dose, MU, number of pulses, and dose rate up to 850 Gy/s with no loss of functionality at high doses or dose rates. The S4 detector showed linearity with MU and number of pulses at each of the four channels independently showing potential for spatial information and steering but lacked dose rate independence. CONCLUSIONS Two novel detectors, HEC3 and S4, successfully measured electron-FLASH pulses and hence can be considered capable of electron-FLASH beam monitoring in different capacities. HEC3 detector technology is suitable for monitoring high-dose and UHDR beams with high temporal resolution required for pulse counting. We envision the combination of the HEC3 internal structure with the S4 piece-wise design for real-time monitoring of the temporal structure, spatial profiles, energy, and dosimetric properties of UHDR beams.
Collapse
Affiliation(s)
- Toby Morris
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Arith Rajapakse
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yulia Lyatskaya
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Piotr Zygmanski
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeremy Bredfeldt
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Erno Sajo
- Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Davide Brivio
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Schönfeld AA, Hildreth J, Bourgouin A, Flatten V, Kozelka J, Simon W, Schüller A. A 2D detector array for relative dosimetry and beam steering for FLASH radiotherapy with electrons. Med Phys 2025; 52:1845-1857. [PMID: 39688375 PMCID: PMC11880641 DOI: 10.1002/mp.17573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND FLASH radiotherapy is an emerging treatment modality using ultra-high dose rate beams. Much effort has been made to develop suitable dosimeters for reference dosimetry, yet the spatial beam characteristics must also be characterized to enable computerized treatment planning, as well as quality control and service of a treatment delivery device. In conventional radiation therapy, this is commonly achieved by beam profile scans in a water phantom using a point detector. In ultra-high dose rate beams, the delivered dose needed for a set of beam profile scans may exceed the regulatory dose limit specified for a typical treatment room, or degrade components of the scanning system and scanning detector. Point detector scans also cannot quantify the pulse-to-pulse stability of a beam profile. Detector arrays can overcome these challenges, but to date, no detector arrays suitable for ultra-high dose rate beams are commercially available. PURPOSE The study presents the development and characterization of a two-dimensional detector array for measuring pulse-resolved spatial fluence distributions in real-time and temporal structure of intra-pulse dose rate of ultra-high pulsed dose rate (UHPDR) electron beams used in FLASH radiotherapy. METHODS The performance of the SunPoint 1 diode was evaluated by measuring the response of the EDGE Detector in a 20 MeV UHPDR electron beam with a dose per pulse of 0.04 Gy - 6 Gy at a pulse duration of 1 µs or 1.9 µs, and instantaneous dose rates of 0.040 - 3.2 MGy·s-1. Based on the findings regarding a suitable signal acquisition technique, a PROFILER 2 detector array made of SunPoint 1 diodes was then modified by minimizing trace resistance, applying a reverse bias, and implementing an RC component to each diode to optimize the transfer of the collected charge during a pulse. The resultant "FLASH Profiler" was then tested in the same UHPDR electron beam. RESULTS The FLASH Profiler exhibited a linear response within ± 3% deviation over the investigated dose per pulse range. The FLASH Profiler array showed good agreement with the absolute dose measured using a flashDiamond point detector and an integrating current transformer for dose-per-pulse values of up to 6 Gy. The FLASH Profiler was able to measure lateral beam profiles in real-time and on a single-pulse basis. The ability to capture and display the profiles during steering of UHPDR beams was demonstrated. The SunPoint 1 diode was able to measure the pulse duration and the intra-pulse dose rate with a time resolution of 4 ns. CONCLUSION The FLASH Profiler could be used for characterizing UHPDR electron beams and facilitating quality control and beam steering service of electron FLASH irradiators.
Collapse
Affiliation(s)
| | - Jeff Hildreth
- Research and DevelopmentSun Nuclear Corp.MelbourneFloridaUSA
| | - Alexandra Bourgouin
- Dosimetry for RadiotherapyPhysikalisch‐Technische BundesanstaltBraunschweig38116Germany
- Present address:
Metrology Research CenterNational Research Council of CanadaOttawaOntarioCanada
| | | | - Jakub Kozelka
- Research and DevelopmentSun Nuclear Corp.MelbourneFloridaUSA
| | - William Simon
- Research and DevelopmentSun Nuclear Corp.MelbourneFloridaUSA
| | - Andreas Schüller
- Dosimetry for RadiotherapyPhysikalisch‐Technische BundesanstaltBraunschweig38116Germany
| |
Collapse
|
5
|
Liu K, Holmes S, Khan AU, Hooten B, DeWerd L, Schüler E, Beddar S. Development of novel ionization chambers for reference dosimetry in electron flash radiotherapy. Med Phys 2024; 51:9275-9289. [PMID: 39311014 DOI: 10.1002/mp.17425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/10/2024] [Accepted: 09/10/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Reference dosimetry in ultra-high dose rate (UHDR) beamlines is significantly hindered by limitations in conventional ionization chamber design. In particular, conventional chambers suffer from severe charge collection efficiency (CCE) degradation in high dose per pulse (DPP) beams. PURPOSE The aim of this study was to optimize the design and performance of parallel plate ion chambers for use in UHDR dosimetry applications, and evaluate their potential as reference class chambers for calibration purposes. Three chamber designs were produced to determine the influence of the ion chamber response on electrode separation, field strength, and collection volume on the ion chamber response under UHDR and ultra-high dose per pulse (UHDPP) conditions. METHODS Three chambers were designed and produced: the A11-VAR (0.2-1.0 mm electrode gap, 20 mm diameter collector), the A11-TPP (0.3 mm electrode gap, 20 mm diameter collector), and the A30 (0.3 mm electrode gap, 5.4 mm diameter collector). The chambers underwent full characterization using an UHDR 9 MeV electron beam with individually varied beam parameters of pulse repetition frequency (PRF, 10-120 Hz), pulse width (PW, 0.5-4 µs), and pulse amplitude (0.01-9 Gy/pulse). The response of the ion chambers was evaluated as a function of the DPP, PRF, PW, dose rate, electric field strength, and electrode gap. RESULTS The chamber response was found to be dependent on DPP and PW, and these dependencies were mitigated with larger electric field strengths and smaller electrode spacing. At a constant electric field strength, we measured a larger CCE as a function of DPP for ion chambers with a smaller electrode gap in the A11-VAR. For ion chambers with identical electrode gap (A11-TPP and A30), higher electric field strengths were found to yield better CCE at higher DPP. A PW dependence was observed at low electric field strengths (500 V/mm) for DPP values ranging from 1 to 5 Gy at PWs ranging from 0.5 to 4 µs, but at electric field strengths of 1000 V/mm and higher, these effects become negligible. CONCLUSION This study confirmed that the CCE of ion chambers depends strongly on the electrode spacing and the electric field strength, and also on the DPP and the PW of the UHDR beam. A significant finding of this study is that although chamber performance does depend on PW, the effect on the CCE becomes negligible with reduced electrode spacing and increased electric field. A CCE of ≥95% was achieved for DPPs of up to 5 Gy with no observable dependence on PW using the A30 chamber, while still achieving an acceptable performance in conventional dose rate beams, opening up the possibility for this type of chamber to be used as a reference class chamber for calibration purposes of electron FLASH beamlines.
Collapse
Affiliation(s)
- Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | | | - Ahtesham Ullah Khan
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Radiation Oncology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Hooten
- Standard Imaging Inc., Middleton, Wisconsin, USA
| | - Larry DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Sam Beddar
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
6
|
Böhlen TT, Zeverino M, Germond JF, Kinj R, Schiappacasse L, Bochud F, Herrera F, Bourhis J, Moeckli R. Hybrid ultra-high and conventional dose rate treatments with electrons and photons for the clinical transfer of FLASH-RT to deep-seated targets: A treatment planning study. Radiother Oncol 2024; 201:110576. [PMID: 39395673 DOI: 10.1016/j.radonc.2024.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
PURPOSE This study explores the dosimetric feasibility and plan quality of hybrid ultra-high dose rate (UHDR) electron and conventional dose rate (CDR) photon (HUC) radiotherapy for treating deep-seated tumours with FLASH-RT. METHODS HUC treatment planning was conducted optimizing a broad UHDR electron beam (between 20-250 MeV) combined with a CDR VMAT for a glioblastoma, a pancreatic cancer, and a prostate cancer case. HUC plans were based on clinical prescription and fractionation schemes and compared against clinically delivered plans. Considering a HUC boost treatment for the glioblastoma consisting of a 15-Gy-single-fraction UHDR electron boost supplemented with VMAT, two scenarios for FLASH sparing were assessed using FLASH-modifying-factor-weighted doses. RESULTS For all three patient cases, HUC treatment plans demonstrated comparable dosimetric quality to clinical plans, with similar PTV coverage (V95% within 0.5 %), homogeneity, and critical OAR-sparing. At the same time, HUC plans delivered a substantial portion of the dose to the PTV (Dmedian of 50-69 %) and surrounding tissues at UHDR. For the HUC boost treatment of the glioblastoma, the first FLASH sparing scenario showed a moderate FLASH sparing magnitude (10 % for D2%,PTV) for the 15-Gy UHDR electron boost, while the second scenario indicated a more substantial sparing of brain tissues inside and outside the PTV (32 % for D2%,PTV, 31 % for D2%,Brain). CONCLUSIONS From a planning perspective, HUC treatments represent a feasible approach for delivering dosimetrically conformal UHDR treatments, potentially mitigating technical challenges associated with delivering conformal FLASH-RT for deep-seated tumours. While further research is needed to optimize HUC fractionation and delivery schemes for specific patient cohorts, HUC treatments offer a promising avenue for the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Michele Zeverino
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Rémy Kinj
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Luis Schiappacasse
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Fernanda Herrera
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
7
|
Alhaddad L, Osipov AN, Leonov S. FLASH Radiotherapy: Benefits, Mechanisms, and Obstacles to Its Clinical Application. Int J Mol Sci 2024; 25:12506. [PMID: 39684218 DOI: 10.3390/ijms252312506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 12/18/2024] Open
Abstract
Radiotherapy (RT) has been shown to be a cornerstone of both palliative and curative tumor care. RT has generally been reported to be sharply limited by ionizing radiation (IR)-induced toxicity, thereby constraining the control effect of RT on tumor growth. FLASH-RT is the delivery of ultra-high dose rate (UHDR) several orders of magnitude higher than what is presently used in conventional RT (CONV-RT). The FLASH-RT clinical trials have been designed to examine the UHDR deliverability, the effectiveness of tumor control, the dose tolerance of normal tissue, and the reproducibility of treatment effects across several institutions. Although it is still in its infancy, FLASH-RT has been shown to have potential to rival current RT in terms of safety. Several studies have suggested that the adoption of FLASH-RT is very limited, and the incorporation of this new technique into routine clinical RT will require the use of accurate dosimetry methods and reproducible equipment that enable the reliable and robust measurements of doses and dose rates. The purpose of this review is to highlight the advantages of this technology, the potential mechanisms underpinning the FLASH-RT effect, and the major challenges that need to be tackled in the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Lina Alhaddad
- Department of Environmental Sciences, Faculty of Science, Damascus University, Damascus P.O. Box 30621, Syria
| | - Andreyan N Osipov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
- CANDLE Synchrotron Research Institute, 31 Acharyan, Yerevan 0040, Armenia
| | - Sergey Leonov
- Moscow Center for Advanced Studies, Kulakova Str. 20, Moscow 123592, Russia
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
8
|
Guo L, Medin PM, Wang KKH. A microscopic oxygen transport model for ultra-high dose rate radiotherapy in vivo: The impact of physiological conditions on FLASH effect. Med Phys 2024; 51:8623-8637. [PMID: 39284344 DOI: 10.1002/mp.17398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND Ultra-high dose rate irradiation (≥40 Gy/s, FLASH) has been shown to reduce normal tissue toxicity, while maintaining tumor control compared to conventional dose-rate radiotherapy. The radiolytic oxygen (O2) depletion (ROD) resulting from FLASH has been proposed to explain the normal tissue protection effect; however, in vivo experiments have not confirmed that FLASH induced global tissue hypoxia. Nonetheless, the experiments reported are based on volume-averaged measurement, which have inherent limitations in detecting microscopic phenomena, including the potential preservation of stem cells niches due to local FLASH-induced O2 depletion. Computational modeling offers a complementary approach to understand the ROD caused by FLASH at the microscopic level. PURPOSE We developed a comprehensive model to describe the spatial and temporal dynamics of O2 consumption and transport in response to irradiation in vivo. The change of oxygen enhancement ratio (OER) was used to quantify and investigate the FLASH effect as a function of physiological and radiation parameters at microscopic scale. METHODS We considered time-dependent O2 supply and consumption in a 3D cylindrical geometry, incorporating blood flow linking the O2 concentration ([O2]) in the capillary to that within the tissue through the Hill equation, radial and axial diffusion of O2, metabolic and zero-order radiolytic O2 consumption, and a pulsed radiation structure. Time-evolved distributions of [O2] were obtained by numerically solving perfusion-diffusion equations. The model enables the computation of dynamic O2 distribution and the relative change of OER (δROD) under various physiological and radiation conditions in vivo. RESULTS Initial [O2] level and the subsequent changes during irradiation determined δROD distribution, which strongly depends on physiological parameters, i.e., intercapillary spacing, ultimately determining the tissue area with enhanced radioresistance. We observed that the δROD/FLASH effect is affected by and sensitive to the interplay effect among physiological and radiation parameters. It renders that the FLASH effect can be tissue environment dependent. The saturation of FLASH normal tissue protection upon dose and dose rate was shown. Beyond ∼60 Gy/s, no significant decrease in radiosensitivity within tissue region was observed. In turn, for a given dose rate, the change of radiosensitivity became saturated after a certain dose level. Pulse structures with the same dose and instantaneous dose rate but with different delivery times were shown to have distinguishable δROD thus tissue sparing, suggesting the average dose rate could be a metric assessing the FLASH effect and demonstrating the capability of our model to support experimental findings. CONCLUSION On a macroscopic scale, the modeling results align with the experimental findings in terms of dose and dose rate thresholds, and it also indicates that pulse structure can vary the FLASH effect. At the microscopic level, this model enables us to examine the spatially resolved FLASH effect based on physiological and irradiation parameters. Our model thus provides a complementary approach to experimental methods for understanding the underlying mechanism of FLASH radiotherapy. Our results show that physiological conditions can potentially determine the FLASH efficacy in tissue protection. The FLASH effect may be observed under optimal combination of physiological parameters, not limited to radiation conditions alone.
Collapse
Affiliation(s)
- Lixiang Guo
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Paul M Medin
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ken Kang-Hsin Wang
- Biomedical Imaging and Radiation Technology Laboratory (BIRTLab), Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Petusseau AF, Clark M, Bruza P, Gladstone D, Pogue BW. Intracellular Oxygen Transient Quantification in Vivo During Ultra-High Dose Rate FLASH Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:884-893. [PMID: 38703954 PMCID: PMC12012821 DOI: 10.1016/j.ijrobp.2024.04.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE Large, rapid extracellular oxygen transients (ΔpO2) have been measured in vivo during ultra-high dose rate radiation therapy; however, it has been unclear if they match intracellular oxygen levels. Here, the endogenously produced protoporphyrin IX (PpIX) delayed fluorescence signal was measured as an intracellular in-vivo oxygen sensor to quantify these transients, with direct comparison to extracellular pO2. Intracellular ΔpO2 is closer to the cellular DNA, the site of major radiobiological damage, and therefore should help elucidate radiochemical mechanisms of the FLASH effect and potentially be translated to human tissue measurement. METHODS AND MATERIALS PpIX was induced in mouse skin through intraperitoneal injection of 250 mg/kg of aminolevulinic acid. The animals were also administered a 50 µL intradermal injection of 10 µM oxyphor G4 (PdG4) for phosphorescence lifetime pO2 measurement. Paired oxygen transients were quantified in leg or flank tissues while delivering 10 MeV electrons in 3 µs pulses at 360 Hz for a total dose of 10 to 28 Gy. RESULTS Transient reductions in pO2 were quantifiable in both PpIX delayed fluorescence and oxyphor phosphorescence, corresponding to intracellular and extracellular pO2 values, respectively. Reponses were quantified for 10, 22, and 28 Gy doses, with ΔpO2 found to be proportional to the dose on average. The ΔpO2 values were dependent on initial pO2 in a logistic function. The average and standard deviations in ΔpO2 per dose were 0.56 ± 0.18 mm Hg/Gy and 0.43 ± 0.06 mm Hg/Gy for PpIX and oxyphor, respectively, for initial pO2 > 20 mm Hg. Although there was large variability in the individual animal measurements of ΔpO2, the average values demonstrated a direct and proportional correlation between intracellular and extracellular pO2 changes, following a linear 1:1 relationship. CONCLUSIONS A fundamentally new approach to measuring intracellular oxygen depletion in living tissue showed that ΔpO2 transients seen during ultra-high dose rate radiation therapy matched those quantified using extracellular oxygen measurement. This approach could be translated to humans to quantify intracellular ΔpO2. The measurement of these transients could potentially allow the estimation of intracellular reactive oxygen species production.
Collapse
Affiliation(s)
| | - Megan Clark
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | - Petr Bruza
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire
| | - David Gladstone
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire; Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Brian W Pogue
- Thayer School of Engineering at Dartmouth, Hanover, New Hampshire; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
10
|
Tobias Böhlen T, Psoroulas S, Aylward JD, Beddar S, Douralis A, Delpon G, Garibaldi C, Gasparini A, Schüler E, Stephan F, Moeckli R, Subiel A. Recording and reporting of ultra-high dose rate "FLASH" delivery for preclinical and clinical settings. Radiother Oncol 2024; 200:110507. [PMID: 39245070 DOI: 10.1016/j.radonc.2024.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Treatments at ultra-high dose rate (UHDR) have the potential to improve the therapeutic index of radiation therapy (RT) by sparing normal tissues compared to conventional dose rate irradiations. Insufficient and inconsistent reporting in physics and dosimetry of preclinical and translational studies may have contributed to a reproducibility crisis of radiobiological data in the field. Consequently, the development of a common terminology, as well as common recording, reporting, dosimetry, and metrology standards is required. In the context of UHDR irradiations, the temporal dose delivery parameters are of importance, and under-reporting of these parameters is also a concern.This work proposes a standardization of terminology, recording, and reporting to enhance comparability of both preclinical and clinical UHDR studies and and to allow retrospective analyses to aid the understanding of the conditions which give rise to the FLASH effect.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland; Klinik für Radio-Onkologie, UniversitätsSpital Zürich, Switzerland
| | - Jack D Aylward
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK; Medical Physics, School of Applied Sciences, University of the West of England, Bristol, UK
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Grégory Delpon
- Institut de Cancérologie de l'Ouest, Medical Physics Department, Saint-Herblain, France; Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, Nantes, France
| | - Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessia Gasparini
- CORE, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Medical Physics Department, Iridium Netwerk, Wilrijk, Belgium
| | - Emil Schüler
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Stephan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
11
|
Chaikh A, Édouard M, Huet C, Milliat F, Villagrasa C, Isambert A. Towards clinical application of ultra-high dose rate radiotherapy and the FLASH effect: Challenges and current status. Cancer Radiother 2024; 28:463-473. [PMID: 39304401 DOI: 10.1016/j.canrad.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 09/22/2024]
Abstract
Ultra-high dose rate external beam radiotherapy (UHDR-RT) uses dose rates of several tens to thousands of Gy/s, compared with the dose rate of the order of a few Gy/min for conventional radiotherapy techniques, currently used in clinical practice. The use of such dose rate is likely to improve the therapeutic index by obtaining a radiobiological effect, known as the "FLASH" effect. This would maintain tumor control while enhancing tissues protection. To date, this effect has been achieved using beams of electrons, photons, protons, and heavy ions. However, the conditions required to achieve this "FLASH" effect are not well defined, and raise several questions, particularly with regard to the definition of the prescription, including dose fractionation, irradiated volume and the temporal structure of the pulsed beam. In addition, the dose delivered over a very short period induces technical challenges, particularly in terms of detectors, which must be mastered to guarantee safe clinical implementation. IRSN has carried out an in-depth literature review of the UHDR-RT technique, covering various aspects relating to patient radiation protection: the radiobiological mechanisms associated with the FLASH effect, the used temporal structure of the UHDR beams, accelerators and dose control, the properties of detectors to be used with UHDR beams, planning, clinical implementation, and clinical studies already carried out or in progress.
Collapse
Affiliation(s)
| | | | | | - Fabien Milliat
- IRSN/PSE-SANTÉ-SERAMED/LRMed, Fontenay-aux-Roses, France
| | | | | |
Collapse
|
12
|
Gesualdi F, de Marzi L, Dutreix M, Favaudon V, Fouillade C, Heinrich S. A multidisciplinary view of flash irradiation. Cancer Radiother 2024; 28:453-462. [PMID: 39343695 DOI: 10.1016/j.canrad.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024]
Abstract
The delivery of ultra-high dose rates of radiation, called flash irradiation or flash-RT, has emerged as a new modality of radiotherapy shaking up the paradigm of proportionality of effect and dose whatever the method of delivery of the radiation. The hallmark of flash-RT is healthy tissue sparing from the side effects of radiation without decrease of the antitumor efficiency in animal models. In this review we will define its specificities, the molecular mechanisms underlying the flash effect and the ongoing developments to bring this new modality to patient treatment.
Collapse
Affiliation(s)
- Flavia Gesualdi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France
| | - Ludovic de Marzi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France; Institut Curie, université PSL, université Paris-Saclay, Inserm Lito U1288, centre universitaire, 91898 Orsay, France
| | - Marie Dutreix
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Vincent Favaudon
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Charles Fouillade
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Sophie Heinrich
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France.
| |
Collapse
|
13
|
Ashraf MR, Melemenidis S, Liu K, Grilj V, Jansen J, Velasquez B, Connell L, Schulz JB, Bailat C, Libed A, Manjappa R, Dutt S, Soto L, Lau B, Garza A, Larsen W, Skinner L, Yu AS, Surucu M, Graves EE, Maxim PG, Kry SF, Vozenin MC, Schüler E, Loo BW. Multi-Institutional Audit of FLASH and Conventional Dosimetry With a 3D Printed Anatomically Realistic Mouse Phantom. Int J Radiat Oncol Biol Phys 2024; 120:287-300. [PMID: 38493902 DOI: 10.1016/j.ijrobp.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE We conducted a multi-institutional dosimetric audit between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3-dimensional (3D) printed mouse phantom. METHODS AND MATERIALS A computed tomography (CT) scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene (∼1.02 g/cm3) and polylactic acid (∼1.24 g/cm3) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid (∼0.64 g/cm3). Hounsfield units (HU), densities, and print-to-print stability of the phantoms were assessed. Three institutions were each provided a phantom and each institution performed 2 replicates of irradiations at selected anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. RESULTS Compared with the reference CT scan, CT scans of the phantom demonstrated mass density differences of 0.10 g/cm3 for bone, 0.12 g/cm3 for lung, and 0.03 g/cm3 for soft tissue regions. Differences in HU between phantoms were <10 HU for soft tissue and bone, with lung showing the most variation (54 HU), but with minimal effect on dose distribution (<0.5%). Mean differences between FLASH and CONV decreased from the first to the second replicate (4.3%-1.2%), and differences from the prescribed dose decreased for both CONV (3.6%-2.5%) and FLASH (6.4%-2.7%). Total dose accuracy suggests consistent pulse dose and pulse number, although these were not specifically assessed. Positioning variability was observed, likely due to the absence of robust positioning aids or image guidance. CONCLUSIONS This study marks the first dosimetric audit for FLASH using a nonhomogeneous phantom, challenging conventional calibration practices reliant on homogeneous phantoms. The comparison protocol offers a framework for credentialing multi-institutional studies in FLASH preclinical research to enhance reproducibility of biologic findings.
Collapse
Affiliation(s)
- M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Jeannette Jansen
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Switzerland
| | - Brett Velasquez
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luke Connell
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph B Schulz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Aaron Libed
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Luis Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Aaron Garza
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - William Larsen
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Amy S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine, California
| | - Stephen F Kry
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Imaging and Radiation Oncology Core, MD Anderson Cancer Center, Houston, USA
| | - Marie-Catherine Vozenin
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Switzerland; Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland.
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
14
|
Dai T, Sloop AM, Ashraf MR, Sunnerberg JP, Clark MA, Bruza P, Pogue BW, Jarvis L, Gladstone DJ, Zhang R. Commissioning an ultra-high-dose-rate electron linac with end-to-end tests. Phys Med Biol 2024; 69:165028. [PMID: 39084661 DOI: 10.1088/1361-6560/ad69fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024]
Abstract
Objective. The FLASH effect can potentially be used to improve the therapeutic ratio of radiotherapy (RT) through delivery of Ultra-high-dose-rate (UHDR) irradiation. Research is actively being conducted to translate UHDR-RT and for this purpose the Mobetron is capable of producing electron beams at both UHDR and conventional dose rates for FLASH research and translation. This work presents commissioning of an UHDR Mobetron with end-to-end tests developed for preclinical research.Approach. UHDR electron beams were commissioned with an efficient approach utilizing a 3D-printed water tank and film to fully characterize beam characteristics and dependences on field size, pulse width (PW) and pulse repetition frequency (PRF). This commissioning data was used to implement a beam model using the GAMOS Monte Carlo toolkit for the preclinical research. Then, the workflow for preclinical FLASH irradiation was validated with end-to-end tests delivered to a 3D-printed mouse phantom with internal inhomogeneities.Main results.PDDs, profiles and output factors acquired with radiochromic films were precisely measured, with a PRF that showed little effect on the UHDR beam energy and spatial characteristics. Increasing PW reduced theDmaxand R50by 2.08 mmµs-1and 1.28 mmµs-1respectively. An end-to-end test of the preclinical research workflow showed that both profiles in head-foot and lateral directions were in good agreement with the MC calculations for the heterogeneous 3D printed mouse phantom with Gamma index above 93% for 2 mm/2% criteria, and 99% for 3 mm/3%.Significance. The UHDR Mobetron is a versatile tool for FLASH preclinical research and this comprehensive beam model and workflow was validated to meet the requirements for conducting translational FLASH research.
Collapse
Affiliation(s)
- Tianyuan Dai
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, People's Republic of China
| | - Austin M Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Muhammad R Ashraf
- Stanford Radiation Oncology, Palo Alto, CA 94304, United States of America
| | - Jacob P Sunnerberg
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Megan A Clark
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, WI 53705, United States of America
| | - Lesley Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, United States of America
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756, United States of America
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, United States of America
- Department of Radiation Medicine, New York Medical College, Valhalla, NY 10595, United States of America
| |
Collapse
|
15
|
Dai T, Sloop AM, Schönfeld A, Flatten V, Kozelka J, Hildreth J, Bill S, Sunnerberg JP, Clark MA, Jarvis L, Pogue BW, Bruza P, Gladstone DJ, Zhang R. Electron beam response corrections for an ultra-high-dose-rate capable diode dosimeter. Med Phys 2024; 51:5738-5745. [PMID: 38762909 PMCID: PMC11752437 DOI: 10.1002/mp.17121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND Ultra-high-dose-rate (UHDR) electron beams have been commonly utilized in FLASH studies and the translation of FLASH Radiotherapy (RT) to the clinic. The EDGE diode detector has potential use for UHDR dosimetry albeit with a beam energy dependency observed. PURPOSE The purpose is to present the electron beam response for an EDGE detector in dependence on beam energy, to characterize the EDGE detector's response under UHDR conditions, and to validate correction factors derived from the first detailed Monte Carlo model of the EDGE diode against measurements, particularly under UHDR conditions. METHODS Percentage depth doses (PDDs) for the UHDR Mobetron were measured with both EDGE detectors and films. A detailed Monte Carlo (MC) model of the EDGE detector has been configured according to the blueprint provided by the manufacturer under an NDA agreement. Water/silicon dose ratios of EDGE detector for a series of mono-energetic electron beams have been calculated. The dependence of the water/silicon dose ratio on depth for a FLASH relevant electron beam was also studied. An analytical approach for the correction of PDD measured with EDGE detectors was established. RESULTS Water/silicon dose ratio decreased with decreasing electron beam energy. For the Mobetron 9 MeV UHDR electron beam, the ratio decreased from 1.09 to 1.03 in the build-up region, maintained in range of 0.98-1.02 at the fall-off region and raised to a plateau in value of 1.08 at the tail. By applying the corrections, good agreement between the PDDs measured by the EDGE detector and those measured with film was achieved. CONCLUSIONS Electron beam response of an UHDR capable EDGE detector was derived from first principles utilizing a sophisticated MC model. An analytical approach was validated for the PDDs of UHDR electron beams. The results demonstrated the capability of EDGE detector in measuring PDDs of UHDR electron beams.
Collapse
Affiliation(s)
- Tianyuan Dai
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong, China
| | - Austin M. Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | | | | | | | - Simon Bill
- Sun Nuclear Corp, Melbourne, Florida, USA
| | - Jacob P. Sunnerberg
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Megan A. Clark
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Lesley Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin, USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover, Lebanon, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Radiation Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
16
|
Sloop A, Ashraf MR, Rahman M, Sunnerberg J, Dexter CA, Thompson L, Gladstone DJ, Pogue BW, Bruza P, Zhang R. Rapid Switching of a C-Series Linear Accelerator Between Conventional and Ultrahigh-Dose-Rate Research Mode With Beamline Modifications and Output Stabilization. Int J Radiat Oncol Biol Phys 2024; 119:1317-1325. [PMID: 38552990 DOI: 10.1016/j.ijrobp.2024.01.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/24/2023] [Accepted: 01/28/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE In this study, a C-series linear accelerator was configured to enable rapid and reliable conversion between the production of conventional electron beams and an ultrahigh-dose-rate (UHDR) electron beamline to the treatment room isocenter for FLASH radiation therapy. Efforts to tune the beam resulted in a consistent, stable UHDR beamline. METHODS AND MATERIALS The linear accelerator was configured to allow for efficient switching between conventional and modified electron output modes within 2 minutes. Additions to the air system allow for retraction of the x-ray target from the beamline when the 10 MV photon mode is selected. With the carousel set to an empty port, this grants access to the higher current pristine electron beam normally used to produce clinical photon fields. Monitoring signals related to the automatic frequency control system allows for tuning of the waveguide while the machine is in a hold state so a stable beam is produced from the initial pulse. A pulse counting system implemented on an field-programmable gate array-based controller platform controls the delivery to a desired number of pulses. Beam profiles were measured with Gafchromic film. Pulse-by-pulse dosimetry was measured using a custom electrometer designed around the EDGE diode. RESULTS This method reliably produces a stable UHDR electron beam. Open-field measurements of the 16-cm full-width, half-maximum gaussian beam saw average dose rates of 432 Gy/s at treatment isocenter. Pulse overshoots were limited and ramp up was eliminated. Over the last year, there have been no recorded incidents that resulted in machine downtime due to the UHDR conversions. CONCLUSIONS Stable 10 MeV UHDR beams were generated to produce an average dose rate of 432 Gy/s at the treatment room isocenter. With a reliable pulse-counting beam control system, consistent doses can be delivered for FLASH experiments with the ability to accommodate a wide range of field sizes, source-to-surface distances, and other experimental apparatus that may be relevant for future clinical translation.
Collapse
Affiliation(s)
- Austin Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - M Ramish Ashraf
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Jacob Sunnerberg
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | | | | | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Dartmouth Health, New Hampshire, Lebanon; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire.
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Department of Radiation Medicine, New York Medical College, Valhalla, New York
| |
Collapse
|
17
|
Dai T, Sloop AM, Rahman MR, Sunnerberg JP, Clark MA, Young R, Adamczyk S, Voigts-Rhetz PV, Patane C, Turk M, Jarvis L, Pogue BW, Gladstone DJ, Bruza P, Zhang R. First Monte Carlo beam model for ultra-high dose rate radiotherapy with a compact electron LINAC. Med Phys 2024; 51:5109-5118. [PMID: 38493501 PMCID: PMC11316970 DOI: 10.1002/mp.17031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND FLASH radiotherapy based on ultra-high dose rate (UHDR) is actively being studied by the radiotherapy community. Dedicated UHDR electron devices are currently a mainstay for FLASH studies. PURPOSE To present the first Monte Carlo (MC) electron beam model for the UHDR capable Mobetron (FLASH-IQ) as a dose calculation and treatment planning platform for preclinical research and FLASH-radiotherapy (RT) clinical trials. METHODS The initial beamline geometry of the Mobetron was provided by the manufacturer, with the first-principal implementation realized in the Geant4-based GAMOS MC toolkit. The geometry and electron source characteristics, such as energy spectrum and beamline parameters, were tuned to match the central-axis percentage depth dose (PDD) and lateral profiles for the pristine beam measured during machine commissioning. The thickness of the small foil in secondary scatter affected the beam model dominantly and was fine tuned to achieve the best agreement with commissioning data. Validation of the MC beam modeling was performed by comparing the calculated PDDs and profiles with EBT-XD radiochromic film measurements for various combinations of applicators and inserts. RESULTS The nominal 9 MeV electron FLASH beams were best represented by a Gaussian energy spectrum with mean energy of 9.9 MeV and variance (σ) of 0.2 MeV. Good agreement between the MC beam model and commissioning data were demonstrated with maximal discrepancy < 3% for PDDs and profiles. Hundred percent gamma pass rate was achieved for all PDDs and profiles with the criteria of 2 mm/3%. With the criteria of 2 mm/2%, maximum, minimum and mean gamma pass rates were (100.0%, 93.8%, 98.7%) for PDDs and (100.0%, 96.7%, 99.4%) for profiles, respectively. CONCLUSIONS A validated MC beam model for the UHDR capable Mobetron is presented for the first time. The MC model can be utilized for direct dose calculation or to generate beam modeling input required for treatment planning systems for FLASH-RT planning. The beam model presented in this work should facilitate translational and clinical FLASH-RT for trials conducted on the Mobetron FLASH-IQ platform.
Collapse
Affiliation(s)
- Tianyuan Dai
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan Shandong 250000, China
| | - Austin M. Sloop
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | | | | | - Megan A. Clark
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Ralph Young
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | | | | | - Chris Patane
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | - Michael Turk
- IntraOp Medical Corporation, Sunnyvale CA 94085, USA
| | - Lesley Jarvis
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison WI 53705 USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USA
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Department of Radiation Medicine, New York Medical College, Valhalla, NY 10595 USA
| |
Collapse
|
18
|
Cengel KA, Kim MM, Diffenderfer ES, Busch TM. FLASH Radiotherapy: What Can FLASH's Ultra High Dose Rate Offer to the Treatment of Patients With Sarcoma? Semin Radiat Oncol 2024; 34:218-228. [PMID: 38508786 DOI: 10.1016/j.semradonc.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
FLASH is an emerging treatment paradigm in radiotherapy (RT) that utilizes ultra-high dose rates (UHDR; >40 Gy)/s) of radiation delivery. Developing advances in technology support the delivery of UHDR using electron and proton systems, as well as some ion beam units (eg, carbon ions), while methods to achieve UHDR with photons are under investigation. The major advantage of FLASH RT is its ability to increase the therapeutic index for RT by shifting the dose response curve for normal tissue toxicity to higher doses. Numerous preclinical studies have been conducted to date on FLASH RT for murine sarcomas, alongside the investigation of its effects on relevant normal tissues of skin, muscle, and bone. The tumor control achieved by FLASH RT of sarcoma models is indistinguishable from that attained by treatment with standard RT to the same total dose. FLASH's high dose rates are able to mitigate the severity or incidence of RT side effects on normal tissues as evaluated by endpoints ranging from functional sparing to histological damage. Large animal studies and clinical trials of canine patients show evidence of skin sparing by FLASH vs. standard RT, but also caution against delivery of high single doses with FLASH that exceed those safely applied with standard RT. Also, a human clinical trial has shown that FLASH RT can be delivered safely to bone metastasis. Thus, data to date support continued investigations of clinical translation of FLASH RT for the treatment of patients with sarcoma. Toward this purpose, hypofractionated irradiation schemes are being investigated for FLASH effects on sarcoma and relevant normal tissues.
Collapse
Affiliation(s)
- Keith A Cengel
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania..
| | - Michele M Kim
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric S Diffenderfer
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Konradsson E, Ericsson Szecsenyi R, Wahlqvist P, Thoft A, Blad B, Bäck SÅ, Ceberg C, Petersson K. Reconfiguring a Plane-Parallel Transmission Ionization Chamber to Extend the Operating Range into the Ultra-High Dose-per-pulse Regime. Radiat Res 2024; 201:252-260. [PMID: 38308528 DOI: 10.1667/rade-23-00177.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
This study aims to investigate the feasibility of enhancing the charge collection efficiency (CCE) of a transmission chamber by reconfiguring its design and operation. The goal was to extend the range of dose-per-pulse (DPP) values with no or minimal recombination effects up to the ultra-high dose rate (UHDR) regime. The response of two transmission chambers, with electrode distance of 1 mm and 0.6 mm, respectively, was investigated as a function of applied voltage. The chambers were mounted one-by-one in the electron applicator of a 10 MeV FLASH-modified clinical linear accelerator. The chamber signals were measured as a function of nominal DPP, which was determined at the depth of dose maximum using EBT-XD film in solid water and ranged from 0.6 mGy per pulse to 0.9 Gy per pulse, for both the standard voltage of 320 V and the highest possible safe voltage of 1,200 V. The CCE was calculated and fitted with an empirical logistic function that incorporated the electrode distance and the chamber voltage. The CCE decreased with increased DPP. The CCE at the highest achievable DPP was 24% (36%) at 320 V and 51% (82%) at 1,200 V, for chambers with 1 mm (0.6 mm) electrode distance. For the combination of 1,200 V- and 0.6-mm electrode distance, the CCE was ∼100% for average dose rate up to 70 Gy/s at the depth of dose maximum in the phantom at a source-to-surface distance of 100 cm. Our findings indicate that minor modifications to a plane-parallel transmission chamber can substantially enhance the CCE and extending the chamber's operating range to the UHDR regime. This supports the potential of using transmission chamber-based monitoring solutions for UHDR beams, which could facilitate the delivery of UHDR treatments using an approach similar to conventional clinical delivery.
Collapse
Affiliation(s)
- Elise Konradsson
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Pontus Wahlqvist
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Andreas Thoft
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Börje Blad
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Sven Åj Bäck
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristoffer Petersson
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Liu K, Velasquez B, Schüler E. Technical note: High-dose and ultra-high dose rate (UHDR) evaluation of Al 2 O 3 :C optically stimulated luminescent dosimeter nanoDots and powdered LiF:Mg,Ti thermoluminescent dosimeters for radiation therapy applications. Med Phys 2024; 51:2311-2319. [PMID: 37991111 PMCID: PMC10939935 DOI: 10.1002/mp.16832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/11/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Dosimetry in ultra-high dose rate (UHDR) electron beamlines poses a significant challenge owing to the limited usability of standard dosimeters in high dose and high dose-per-pulse (DPP) applications. PURPOSE In this study, Al2 O3 :C nanoDot optically stimulated luminescent dosimeters (OSLDs), single-use powder-based LiF:Mg,Ti thermoluminescent dosimeters (TLDs), and Gafchromic EBT3 film were evaluated at extended dose ranges (up to 40 Gy) in conventional dose rate (CONV) and UHDR beamlines to determine their usability for calibration and dose verification in the setting of FLASH radiation therapy. METHODS OSLDs and TLDs were evaluated against established dose-rate-independent Gafchromic EBT3 film with regard to the potential influence of mean dose rate, instantaneous dose rate, and DPP on signal response. The dosimeters were irradiated at CONV or UHDR conditions on a 9-MeV electron beam. Under UHDR conditions, different settings of pulse repetition frequency (PRF), pulse width (PW), and pulse amplitude were used to characterize the individual dosimeters' response in order to isolate their potential dependencies on dose, dose rate, and DPP. RESULTS The OSLDs, TLDs, and Gafchromic EBT3 film were found to be suitable at a dose range of up to 40 Gy without any indication of saturation in signal. The response of OSLDs and TLDs in UHDR conditions were found to be independent of mean dose rate (up to 1440 Gy/s), instantaneous dose rate (up to 2 MGy/s), and DPP (up to 7 Gy), with uncertainties on par with nominal values established in CONV beamlines (± 4%). In cross-comparing the response of OSLDs, TLDs and Gafchromic film at dose rates of 0.18-245 Gy/s, the coefficient of variation or relative standard deviation in the measured dose between the three dosimeters (inter-dosimeter comparison) was found to be within 2%. CONCLUSIONS We demonstrated the dynamic range of OSLDs, TLDs, and Gafchromic film to be suitable up to 40 Gy, and we developed a protocol that can be used to accurately translate the measured signal in each respective dosimeter to dose. OSLDs and powdered TLDs were shown to be viable for dosimetric measurement in UHDR beamlines, providing dose measurements with accuracies on par with Gafchromic EBT3 film and their concurrent use demonstrating a means for redundant dosimetry in UHDR conditions.
Collapse
Affiliation(s)
- Kevin Liu
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Brett Velasquez
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Emil Schüler
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
21
|
Cetnar AJ, Jain S, Gupta N, Chakravarti A. Technical note: Commissioning of a linear accelerator producing ultra-high dose rate electrons. Med Phys 2024; 51:1415-1420. [PMID: 38159300 DOI: 10.1002/mp.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Ultra-high dose rate radiation (UHDR) is being explored by researchers in promise of advancing radiation therapy treatments. PURPOSE This work presents the commissioning of Varian's Flash Extension for research (FLEX) conversion of a Clinac to deliver UHDR electrons. METHODS A Varian Clinac iX with the FLEX conversion was commissioned for non-clinical research use with 16 MeV UHDR (16H) energy. This involved addition of new hardware, optimizing the electron gun voltages, radiofrequency (RF) power, and steering coils in order to maximize the accelerated electron beam current, sending the beam through custom scattering foils to produce the UHDR with 16H beam. Profiles and percent depth dose (PDD) measurements for 16H were obtained using radiochromic film in a custom vertical film holder and were compared to 16 MeV conventional electrons (16C). Dose rate and dose per pulse (DPP) were calculated from measured dose in film. Linearity and stability were assessed using an Advanced Markus ionization chamber. RESULTS Energies for 16H and 16C had similar beam quality based on PDD measurements. Measurements at the head of the machine (61.3 cm SSD) with jaws set to 10×10 cm2 showed the FWHM of the profile as 7.2 cm, with 3.4 Gy as the maximum DPP and instantaneous dose rate of 8.1E5 Gy/s. Measurements at 100 cm SSD with 10 cm standard cone showed the full width at half max (FWHM) of the profile as 10.5 cm, 1.08 Gy as the maximum DPP and instantaneous dose rate of 2.E5 Gy/s. Machine output with number of pulses was linear (R = 1) from 1 to 99 delivered pulses. Output stability was measured within ±1% within the same session and within ±2% for daily variations. CONCLUSIONS The FLEX conversion of the Clinac is able to generate UHDR electron beams which are reproducible with beam properties similar to clinically used electrons at 16 MeV. Having a platform which can quickly transition between UHDR and conventional modes (<1 min) can be advantageous for future research applications.
Collapse
Affiliation(s)
- Ashley J Cetnar
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sagarika Jain
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Nilendu Gupta
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
22
|
Byrne KE, Poirier Y, Xu J, Gerry A, Foley MJ, Jackson IL, Sawant A, Jiang K. Technical note: A small animal irradiation platform for investigating the dependence of the FLASH effect on electron beam parameters. Med Phys 2024; 51:1421-1432. [PMID: 38207016 DOI: 10.1002/mp.16909] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/30/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The recent rediscovery of the FLASH effect, a normal tissue sparing phenomenon observed in ultra-high dose rate (UHDR) irradiations, has instigated a surge of research endeavors aiming to close the gap between experimental observation and clinical treatment. However, the dependences of the FLASH effect and its underpinning mechanisms on beam parameters are not well known, and large-scale in vivo studies using murine models of human cancer are needed for these investigations. PURPOSE To commission a high-throughput, variable dose rate platform providing uniform electron fields (≥15 cm diameter) at conventional (CONV) and UHDRs for in vivo investigations of the FLASH effect and its dependences on pulsed electron beam parameters. METHODS A murine whole-thoracic lung irradiation (WTLI) platform was constructed using a 1.3 cm thick Cerrobend collimator forming a 15 × 1.6 cm2 slit. Control of dose and dose rate were realized by adjusting the number of monitor units and couch vertical position, respectively. Achievable doses and dose rates were investigated using Gafchromic EBT-XD film at 1 cm depth in solid water and lung-density phantoms. Percent depth dose (PDD) and dose profiles at CONV and various UHDRs were also measured at depths from 0 to 2 cm. A radiation survey was performed to assess radioactivation of the Cerrobend collimator by the UHDR electron beam in comparison to a precision-machined copper alternative. RESULTS This platform allows for the simultaneous thoracic irradiation of at least three mice. A linear relationship between dose and number of monitor units at a given UHDR was established to guide the selection of dose, and an inverse-square relationship between dose rate and source distance was established to guide the selection of dose rate between 20 and 120 Gy·s-1 . At depths of 0.5 to 1.5 cm, the depth range relevant to murine lung irradiation, measured PDDs varied within ±1.5%. Similar lateral dose profiles were observed at CONV and UHDRs with the dose penumbrae widening from 0.3 mm at 0 cm depth to 5.1 mm at 2.0 cm. The presence of lung-density plastic slabs had minimal effect on dose distributions as compared to measurements made with only solid water slabs. Instantaneous dose rate measurements of the activated copper collimator were up to two orders of magnitude higher than that of the Cerrobend collimator. CONCLUSIONS A high-throughput, variable dose rate platform has been developed and commissioned for murine WTLI electron FLASH radiotherapy. The wide field of our UHDR-enabled linac allows for the simultaneous WTLI of at least three mice, and for the average dose rate to be modified by changing the source distance, without affecting dose distribution. The platform exhibits uniform, and comparable dose distributions at CONV and UHDRs up to 120 Gy·s-1 , owing to matched and flattened 16 MeV CONV and UHDR electron beams. Considering radioactivation and exposure to staff, Cerrobend collimators are recommended above copper alternatives for electron FLASH research. This platform enables high-throughput animal irradiation, which is preferred for experiments using a large number of animals, which are required to effectively determine UHDR treatment efficacies.
Collapse
Affiliation(s)
- Kevin E Byrne
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physics, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Junliang Xu
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrew Gerry
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mark J Foley
- Department of Physics, School of Natural Sciences, University of Galway, Galway, Ireland
| | - Isabel Lauren Jackson
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kai Jiang
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Oh K, Gallagher KJ, Hyun M, Schott D, Wisnoskie S, Lei Y, Hendley S, Wong J, Wang S, Graff B, Jenkins C, Rutar F, Ahmed M, McNeur J, Taylor J, Schmidt M, Senadheera L, Smith W, Umstadter D, Lele SM, Dai R, Jianghu (James) D, Yan Y, Su‐min Z. Initial experience with an electron FLASH research extension (FLEX) for the Clinac system. J Appl Clin Med Phys 2024; 25:e14159. [PMID: 37735808 PMCID: PMC10860433 DOI: 10.1002/acm2.14159] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023] Open
Abstract
PURPOSE Radiotherapy delivered at ultra-high-dose-rates (≥40 Gy/s), that is, FLASH, has the potential to effectively widen the therapeutic window and considerably improve the care of cancer patients. The underlying mechanism of the FLASH effect is not well understood, and commercial systems capable of delivering such dose rates are scarce. The purpose of this study was to perform the initial acceptance and commissioning tests of an electron FLASH research product for preclinical studies. METHODS A linear accelerator (Clinac 23EX) was modified to include a non-clinical FLASH research extension (the Clinac-FLEX system) by Varian, a Siemens Healthineers company (Palo Alto, CA) capable of delivering a 16 MeV electron beam with FLASH and conventional dose rates. The acceptance, commissioning, and dosimetric characterization of the FLEX system was performed using radiochromic film, optically stimulated luminescent dosimeters, and a plane-parallel ionization chamber. A radiation survey was conducted for which the shielding of the pre-existing vault was deemed sufficient. RESULTS The Clinac-FLEX system is capable of delivering a 16 MeV electron FLASH beam of approximately 1 Gy/pulse at isocenter and reached a maximum dose rate >3.8 Gy/pulse near the upper accessory mount on the linac gantry. The percent depth dose curves of the 16 MeV FLASH and conventional modes for the 10 × 10 cm2 applicator agreed within 0.5 mm at a range of 50% of the maximum dose. Their respective profiles agreed well in terms of flatness but deviated for field sizes >10 × 10 cm2 . The output stability of the FLASH system exhibited a dose deviation of <1%. Preliminary cell studies showed that the FLASH dose rate (180 Gy/s) had much less impact on the cell morphology of 76N breast normal cells compared to the non-FLASH dose rate (18 Gy/s), which induced large-size cells. CONCLUSION Our studies characterized the non-clinical Clinac-FLEX system as a viable solution to conduct FLASH research that could substantially increase access to ultra-high-dose-rate capabilities for scientists.
Collapse
Affiliation(s)
- Kyuhak Oh
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Megan Hyun
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Diane Schott
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Yu Lei
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Jeffrey Wong
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shuo Wang
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Brendan Graff
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Frank Rutar
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Md Ahmed
- Varian Medical SystemsPalo AltoCaliforniaUSA
| | | | | | | | | | - Wendy Smith
- Varian Medical SystemsPalo AltoCaliforniaUSA
| | | | | | - Ran Dai
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Ying Yan
- University of Nebraska Medical CenterOmahaNebraskaUSA
| | - Zhou Su‐min
- University of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
24
|
Konradsson E, Wahlqvist P, Thoft A, Blad B, Bäck S, Ceberg C, Petersson K. Beam control system and output fine-tuning for safe and precise delivery of FLASH radiotherapy at a clinical linear accelerator. Front Oncol 2024; 14:1342488. [PMID: 38304871 PMCID: PMC10830783 DOI: 10.3389/fonc.2024.1342488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction We have previously adapted a clinical linear accelerator (Elekta Precise, Elekta AB) for ultra-high dose rate (UHDR) electron delivery. To enhance reliability in future clinical FLASH radiotherapy trials, the aim of this study was to introduce and evaluate an upgraded beam control system and beam tuning process for safe and precise UHDR delivery. Materials and Methods The beam control system is designed to interrupt the beam based on 1) a preset number of monitor units (MUs) measured by a monitor detector, 2) a preset number of pulses measured by a pulse-counting diode, or 3) a preset delivery time. For UHDR delivery, an optocoupler facilitates external control of the accelerator's thyratron trigger pulses. A beam tuning process was established to maximize the output. We assessed the stability of the delivery, and the independent interruption capabilities of the three systems (monitor detector, pulse counter, and timer). Additionally, we explored a novel approach to enhance dosimetric precision in the delivery by synchronizing the trigger pulse with the charging cycle of the pulse forming network (PFN). Results Improved beam tuning of gun current and magnetron frequency resulted in average dose rates at the dose maximum at isocenter distance of >160 Gy/s or >200 Gy/s, with or without an external monitor chamber in the beam path, respectively. The delivery showed a good repeatability (standard deviation (SD) in total film dose of 2.2%) and reproducibility (SD in film dose of 2.6%). The estimated variation in DPP resulted in an SD of 1.7%. The output in the initial pulse depended on the PFN delay time. Over the course of 50 measurements employing PFN synchronization, the absolute percentage error between the delivered number of MUs calculated by the monitor detector and the preset MUs was 0.8 ± 0.6% (mean ± SD). Conclusion We present an upgraded beam control system and beam tuning process for safe and stable UHDR electron delivery of hundreds of Gy/s at isocenter distance at a clinical linac. The system can interrupt the beam based on monitor units and utilize PFN synchronization for improved dosimetric precision in the dose delivery, representing an important advancement toward reliable clinical FLASH trials.
Collapse
Affiliation(s)
- Elise Konradsson
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Pontus Wahlqvist
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Andreas Thoft
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Börje Blad
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Sven Bäck
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Crister Ceberg
- Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kristoffer Petersson
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Thomas W, Sunnerberg J, Reed M, Gladstone DJ, Zhang R, Harms J, Swartz HM, Pogue BW. Proton and Electron Ultrahigh-Dose-Rate Isodose Irradiations Produce Differences in Reactive Oxygen Species Yields. Int J Radiat Oncol Biol Phys 2024; 118:262-267. [PMID: 37558097 PMCID: PMC10843497 DOI: 10.1016/j.ijrobp.2023.07.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/10/2023] [Accepted: 07/29/2023] [Indexed: 08/11/2023]
Abstract
Purpose: Investigations into ultra-high dose rate (UHDR) radiotherapy have dramatically risen because of the observed normal tissue sparing FLASH effect without sacrificing tumor control. The purpose of this study was to provide a direct beamline comparison of protons and electrons to determine where UHDR to conventional dose rates (CDR) changes affect the resultant radiochemistry. Methods and Materials: We used well characterized assays of reactive oxygen species (ROS) and oxygen consumption to assess the radiolysis in protein solutions. Three optical reporters related to ROS (CellROX Deep Red, reflects highly reactive radicals; Amplex Red reflects H2O2; and Oxyphor reflects partial pressure loss (ΔpO2)). A Varian ProBeam proton cyclotron and a converted Varian Trilogy electron linac were used for irradiation at both their CDR and UHDR capable level, to assess the assay change per unit dose. Results: For both protons and electrons an expected reduction in ROS was noted going from CDR to UHDR, and results interpreted as a reduction in the ratio of UHDR/CDR yield. The CellROX assay showed no difference between beamlines, each showing ~80% reduction in ROS from CDR to UHDR. The Amplex assay showed the largest inter-beamline difference, with ~5% loss using protons vs ~69% loss with electrons, in protein solution. The Oxyphor assay of ΔpO2 showed a small difference in CDR to UHDR with a 23% loss with protons and 43% loss with electrons. Conclusion: Interpretation of ROS assays and oxygen consumption is notoriously challenging. These assays might be interpreted by their most activating species’ lifetime. The assay for highly reactive OH●, appeared independent of beamline, whereas the assays for the longer lived H2O2 species and ΔpO2 assay showed differences between beamlines via the UHDR/CDR ratio. This work can be used for FLASH hypothesis testing by comparing these assays to isodose biological FLASH effects in vivo.
Collapse
Affiliation(s)
- William Thomas
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jacob Sunnerberg
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Matthew Reed
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Joseph Harms
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Harold M Swartz
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Brian W Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin; Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
| |
Collapse
|
26
|
Kim KT, Choi Y, Cho GS, Jang WI, Yang KM, Lee SS, Bahng J. Evaluation of the water-equivalent characteristics of the SP34 plastic phantom for film dosimetry in a clinical linear accelerator. PLoS One 2023; 18:e0293191. [PMID: 37871021 PMCID: PMC10593237 DOI: 10.1371/journal.pone.0293191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
In this study, some confusing points about electron film dosimetry using white polystyrene suggested by international protocols were verified using a clinical linear accelerator (LINAC). According to international protocol recommendations, ionometric measurements and film dosimetry were performed on an SP34 slab phantom at various electron energies. Scaling factor analysis using ionometric measurements yielded a depth scaling factor of 0.923 and a fluence scaling factor of 1.019 at an electron beam energy of <10 MeV (i.e., R50 < 4.0 g/cm2). It was confirmed that the water-equivalent characteristics were similar because they have values similar to white polystyrene (i.e., depth scaling factor of 0.922 and fluence scaling factor of 1.019) presented in international protocols. Furthermore, percentage depth dose (PDD) curve analysis using film dosimetry showed that when the density thickness of the SP34 slab phantom was assumed to be water-equivalent, it was found to be most similar to the PDD curve measured using an ionization chamber in water as a reference medium. Therefore, we proved that the international protocol recommendation that no correction for measured depth dose is required means that no scaling factor correction for the plastic phantom is necessary. This study confirmed two confusing points that could occur while determining beam characteristics using electron film dosimetry, and it is expected to be used as basic data for future research on clinical LINACs.
Collapse
Affiliation(s)
- Kyo-Tae Kim
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
- Research and Development team, Radexel Inc., Seoul, Korea
| | - Yona Choi
- Department of Accelerator Science, Korea University Sejong Campus, Sejong, Korea
| | - Gyu-Seok Cho
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Won-Il Jang
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Kwang-Mo Yang
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Soon-Sung Lee
- Research Team of Radiological Physics & Engineering, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Jungbae Bahng
- Research and Development team, Radexel Inc., Seoul, Korea
- Department of Radiation Oncology, Kangwon National University hospital, Chun-cheon, Korea
| |
Collapse
|
27
|
No HJ, Wu YF, Dworkin ML, Manjappa R, Skinner L, Ashraf MR, Lau B, Melemenidis S, Viswanathan V, Yu ASJ, Surucu M, Schüler E, Graves EE, Maxim PG, Loo BW. Clinical Linear Accelerator-Based Electron FLASH: Pathway for Practical Translation to FLASH Clinical Trials. Int J Radiat Oncol Biol Phys 2023; 117:482-492. [PMID: 37105403 DOI: 10.1016/j.ijrobp.2023.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
PURPOSE Ultrahigh-dose-rate (UHDR) radiation therapy (RT) has produced the FLASH effect in preclinical models: reduced toxicity with comparable tumor control compared with conventional-dose-rate RT. Early clinical trials focused on UHDR RT feasibility using specialized devices. We explore the technical feasibility of practical electron UHDR RT on a standard clinical linear accelerator (LINAC). METHODS AND MATERIALS We tuned the program board of a decommissioned electron energy for UHDR electron delivery on a clinical LINAC without hardware modification. Pulse delivery was controlled using the respiratory gating interface. A short source-to-surface distance (SSD) electron setup with a standard scattering foil was configured and tested on an anthropomorphic phantom using circular blocks with 3- to 20-cm field sizes. Dosimetry was evaluated using radiochromic film and an ion chamber profiler. RESULTS UHDR open-field mean dose rates at 100, 80, 70, and 59 cm SSD were 36.82, 59.52, 82.01, and 112.83 Gy/s, respectively. At 80 cm SSD, mean dose rate was ∼60 Gy/s for all collimated field sizes, with an R80 depth of 6.1 cm corresponding to an energy of 17.5 MeV. Heterogeneity was <5.0% with asymmetry of 2.2% to 6.2%. The short SSD setup was feasible under realistic treatment conditions simulating broad clinical indications on an anthropomorphic phantom. CONCLUSIONS Short SSD and tuning for high electron beam current on a standard clinical LINAC can deliver flat, homogenous UHDR electrons over a broad, clinically relevant range of field sizes and depths with practical working distances in a configuration easily reversible to standard clinical use.
Collapse
Affiliation(s)
- Hyunsoo Joshua No
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Yufan Fred Wu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Michael Louis Dworkin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Vignesh Viswanathan
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Amy Shu-Jung Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edward Elliot Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Peter Gregor Maxim
- Department of Radiation Oncology, University of California, Irvine, Orange, California
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
28
|
Dal Bello R, von der Grün J, Fabiano S, Rudolf T, Saltybaeva N, Stark LS, Ahmed M, Bathula M, Kucuker Dogan S, McNeur J, Guckenberger M, Tanadini-Lang S. Enabling ultra-high dose rate electron beams at a clinical linear accelerator for isocentric treatments. Radiother Oncol 2023; 187:109822. [PMID: 37516362 DOI: 10.1016/j.radonc.2023.109822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/20/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND AND PURPOSE Radiotherapy delivery with ultra-high dose rates (UHDR) has consistently produced normal tissue sparing while maintaining efficacy for tumour control in preclinical studies, known as the FLASH effect. Modified clinical electron linacs have been used for pre-clinical studies at reduced source-surface distance (SSD) and novel intra-operative devices are becoming available. In this context, we modified a clinical linac to deliver 16 MeV UHDR electron beams with an isocentric setup. MATERIALS AND METHODS The first Varian TrueBeam (SN 1001) was clinically operative between 2009-2022, it was then decommissioned and converted into a research platform. The 18 MeV electron beam was converted into the experimental 16 MeV UHDR. Modifications were performed by Varian and included a software patch, thinner scattering foil and beam tuning. The dose rate, beam characteristics and reproducibility were measured with electron applicators at SSD = 100 cm. RESULTS The dose per pulse at isocenter was up to 1.28 Gy/pulse, corresponding to average and instantaneous dose rates up to 256 Gy/s and 3⋅105 Gy/s, respectively. Beam characteristics were equivalent between 16 MeV UHDR and conventional for field sizes up to 10x10cm2 and an overall beam reproducibility within ± 2.5% was measured. CONCLUSIONS We report on the first technical conversion of a Varian TrueBeam to produce 16 MeV UHDR electron beams. This research platform will allow isocenter experiments and deliveries with conventional setups up to field sizes of 10x10 cm2 within a hospital environment, reducing the gap between preclinical and clinical electron FLASH investigations.
Collapse
Affiliation(s)
- Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Jens von der Grün
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Silvia Fabiano
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Thomas Rudolf
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Natalia Saltybaeva
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Luisa S Stark
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Md Ahmed
- Varian Medical Systems a Siemens Healthineers Company, Palo Alto, CA, USA
| | - Manohar Bathula
- Varian Medical Systems a Siemens Healthineers Company, Palo Alto, CA, USA
| | | | - Joshua McNeur
- Varian Medical Systems a Siemens Healthineers Company, Palo Alto, CA, USA
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Rahman M, Kozelka J, Hildreth J, Schönfeld A, Sloop AM, Ashraf MR, Bruza P, Gladstone DJ, Pogue BW, Simon WE, Zhang R. Characterization of a diode dosimeter for UHDR FLASH radiotherapy. Med Phys 2023; 50:5875-5883. [PMID: 37249058 PMCID: PMC11748214 DOI: 10.1002/mp.16474] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Ultra-high dose rate (UHDR) FLASH beams typically deliver dose at rates of >40 Gy/sec. Characterization of these beams with respect to dose, mean dose rate, and dose per pulse requires dosimeters which exhibit high temporal resolution and fast readout capabilities. PURPOSE A diode EDGE Detector with a newly designed electrometer has been characterized for use in an UHDR electron beam and demonstrated appropriateness for UHDR FLASH radiotherapy dosimetry. METHODS Dose linearity, mean dose rate, and dose per pulse dependencies of the EDGE Detector were quantified and compared with dosimeters including a W1 scintillator detector, radiochromic film, and ionization chamber that were irradiated with a 10 MeV UHDR beam. The dose, dose rate, and dose per pulse were controlled via an in-house developed scintillation-based feedback mechanism, repetition rate of the linear accelerator, and source-to-surface distance, respectively. Depth-dose profiles and temporal profiles at individual pulse resolution were compared to the film and scintillation measurements, respectively. The radiation-induced change in response sensitivity was quantified via irradiation of ∼5kGy. RESULTS The EDGE Detector agreed with film measurements in the measured range with varying dose (up to 70 Gy), dose rate (nearly 200 Gy/s), and dose per pulse (up to 0.63 Gy/pulse) on average to within 2%, 5%, and 1%, respectively. The detector also agreed with W1 scintillation detector on average to within 2% for dose per pulse (up to 0.78 Gy/pulse). The EDGE Detector signal was proportional to ion chamber (IC) measured dose, and mean dose rate in the bremsstrahlung tail to within 0.4% and 0.2% respectively. The EDGE Detector measured percent depth dose (PDD) agreed with film to within 3% and per pulse output agreed with W1 scintillator to within -6% to +5%. The radiation-induced response decrease was 0.4% per kGy. CONCLUSIONS The EDGE Detector demonstrated dose linearity, mean dose rate independence, and dose per pulse independence for UHDR electron beams. It can quantify the beam spatially, and temporally at sub millisecond resolution. It's robustness and individual pulse detectability of treatment deliveries can potentially lead to its implementation for in vivo FLASH dosimetry, and dose monitoring.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- UT Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | - Austin M. Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - M. Ramish Ashraf
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Stanford University, Stanford, California, USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Department of Radiation Medicine, Westchester Medical Center, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
30
|
Duval KEA, Aulwes E, Zhang R, Rahman M, Ashraf MR, Sloop A, Sunnerberg J, Williams BB, Cao X, Bruza P, Kheirollah A, Tavakkoli A, Jarvis LA, Schaner PE, Swartz HM, Gladstone DJ, Pogue BW, Hoopes PJ. Comparison of Tumor Control and Skin Damage in a Mouse Model after Ultra-High Dose Rate Irradiation and Conventional Irradiation. Radiat Res 2023; 200:223-231. [PMID: 37590482 PMCID: PMC10551764 DOI: 10.1667/rade-23-00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/07/2023] [Indexed: 08/19/2023]
Abstract
Recent studies suggest ultra-high dose rate radiation treatment (UHDR-RT) reduces normal tissue damage compared to conventional radiation treatment (CONV-RT) at the same dose. In this study, we compared first, the kinetics and degree of skin damage in wild-type C57BL/6 mice, and second, tumor treatment efficacy in GL261 and B16F10 dermal tumor models, at the same UHDR-RT and CONV-RT doses. Flank skin of wild-type mice received UHDR-RT or CONV-RT at 25 Gy and 30 Gy. Normal skin damage was tracked by clinical observation to determine the time to moist desquamation, an endpoint which was verified by histopathology. Tumors were inoculated on the right flank of the mice, then received UHDR-RT or CONV-RT at 1 × 11 Gy, 1 × 15, 1 × 25, 3 × 6 and 3 × 8 Gy, and time to tumor tripling volume was determined. Tumors also received 1 × 11, 1 × 15, 3 × 6 and 3 × 8 Gy doses for assessment of CD8+/CD4+ tumor infiltrate and genetic expression 96 h postirradiation. All irradiations of the mouse tumor or flank skin were performed with megavoltage electron beams (10 MeV, 270 Gy/s for UHDR-RT and 9 MeV, 0.12 Gy/s for CONV-RT) delivered via a clinical linear accelerator. Tumor control was statistically equal for similar doses of UHDR-RT and CONV-RT in B16F10 and GL261 murine tumors. There were variable qualitative differences in genetic expression of immune and cell damage-associated pathways between UHDR and CONV irradiated B16F10 tumors. Compared to CONV-RT, UHDR-RT resulted in an increased latent period to skin desquamation after a single 25 Gy dose (7 days longer). Time to moist skin desquamation did not significantly differ between UHDR-RT and CONV-RT after a 30 Gy dose. The histomorphological characteristics of skin damage were similar for UHDR-RT and CONV-RT. These studies demonstrated similar tumor control responses for equivalent single and fractionated radiation doses, with variable difference in expression of tumor progression and immune related gene pathways. There was a modest UHDR-RT skin sparing effect after a 1 × 25 Gy dose but not after a 1 × 30 Gy dose.
Collapse
Affiliation(s)
- Kayla E. A. Duval
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Ethan Aulwes
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Rongxiao Zhang
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - M. Ramish Ashraf
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Austin Sloop
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Jacob Sunnerberg
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Benjamin B. Williams
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Xu Cao
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | | | - Armin Tavakkoli
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - Lesley A. Jarvis
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Philip E. Schaner
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Harold M. Swartz
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | - David J. Gladstone
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Brian W. Pogue
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - P. Jack Hoopes
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
31
|
Sunnerberg JP, Zhang R, Gladstone DJ, Swartz HM, Gui J, Pogue BW. Mean dose rate in ultra-high dose rate electron irradiation is a significant predictor for O 2consumption and H 2O 2yield. Phys Med Biol 2023; 68:165014. [PMID: 37463588 PMCID: PMC10405361 DOI: 10.1088/1361-6560/ace877] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
Objective. The objective of this study was to investigate the impact of mean and instantaneous dose rates on the production of reactive oxygen species (ROS) during ultra-high dose rate (UHDR) radiotherapy. The study aimed to determine whether either dose rate type plays a role in driving the FLASH effect, a phenomenon where UHDR radiotherapy reduces damage to normal tissues while maintaining tumor control.Approach. Assays of hydrogen peroxide (H2O2) production and oxygen consumption (ΔpO2) were conducted using UHDR electron irradiation. Aqueous solutions of 4% albumin were utilized as the experimental medium. The study compared the effects of varying mean dose rates and instantaneous dose rates on ROS yields. Instantaneous dose rate was varied by changing the source-to-surface distance (SSD), resulting in instantaneous dose rates ranging from 102to 106Gy s-1. Mean dose rate was manipulated by altering the pulse frequency of the linear accelerator (linac) and by changing the SSD, ranging from 0.14 to 1500 Gy s-1.Main results. The study found that both ΔH2O2and ΔpO2decreased as the mean dose rate increased. Multivariate analysis indicated that instantaneous dose rates also contributed to this effect. The variation in ΔpO2was dependent on the initial oxygen concentration in the solution. Based on the analysis of dose rate variation, the study estimated that 7.51 moles of H2O2were produced for every mole of O2consumed.Significance. The results highlight the significance of mean dose rate as a predictor of ROS production during UHDR radiotherapy. As the mean dose rate increased, there was a decrease in oxygen consumption and in H2O2production. These findings have implications for understanding the FLASH effect and its potential optimization. The study sheds light on the role of dose rate parameters and their impact on radiochemical outcomes, contributing to the advancement of UHDR radiotherapy techniques.
Collapse
Affiliation(s)
- Jacob P Sunnerberg
- Thayer School of Engineering at Dartmouth College, Hanover, NH, United States of America
| | - Rongxiao Zhang
- Thayer School of Engineering at Dartmouth College, Hanover, NH, United States of America
- Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| | - David J Gladstone
- Thayer School of Engineering at Dartmouth College, Hanover, NH, United States of America
- Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States of America
| | - Harold M Swartz
- Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Jiang Gui
- Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Brian W Pogue
- Thayer School of Engineering at Dartmouth College, Hanover, NH, United States of America
- University of Wisconsin—Madison, Madison, WI, United States of America
| |
Collapse
|
32
|
Zou W, Zhang R, Schüler E, Taylor PA, Mascia AE, Diffenderfer ES, Zhao T, Ayan AS, Sharma M, Yu SJ, Lu W, Bosch WR, Tsien C, Surucu M, Pollard-Larkin JM, Schuemann J, Moros EG, Bazalova-Carter M, Gladstone DJ, Li H, Simone CB, Petersson K, Kry SF, Maity A, Loo BW, Dong L, Maxim PG, Xiao Y, Buchsbaum JC. Framework for Quality Assurance of Ultrahigh Dose Rate Clinical Trials Investigating FLASH Effects and Current Technology Gaps. Int J Radiat Oncol Biol Phys 2023; 116:1202-1217. [PMID: 37121362 PMCID: PMC10526970 DOI: 10.1016/j.ijrobp.2023.04.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 04/17/2023] [Indexed: 05/02/2023]
Abstract
FLASH radiation therapy (FLASH-RT), delivered with ultrahigh dose rate (UHDR), may allow patients to be treated with less normal tissue toxicity for a given tumor dose compared with currently used conventional dose rate. Clinical trials are being carried out and are needed to test whether this improved therapeutic ratio can be achieved clinically. During the clinical trials, quality assurance and credentialing of equipment and participating sites, particularly pertaining to UHDR-specific aspects, will be crucial for the validity of the outcomes of such trials. This report represents an initial framework proposed by the NRG Oncology Center for Innovation in Radiation Oncology FLASH working group on quality assurance of potential UHDR clinical trials and reviews current technology gaps to overcome. An important but separate consideration is the appropriate design of trials to most effectively answer clinical and scientific questions about FLASH. This paper begins with an overview of UHDR RT delivery methods. UHDR beam delivery parameters are then covered, with a focus on electron and proton modalities. The definition and control of safe UHDR beam delivery and current and needed dosimetry technologies are reviewed and discussed. System and site credentialing for large, multi-institution trials are reviewed. Quality assurance is then discussed, and new requirements are presented for treatment system standard analysis, patient positioning, and treatment planning. The tables and figures in this paper are meant to serve as reference points as we move toward FLASH-RT clinical trial performance. Some major questions regarding FLASH-RT are discussed, and next steps in this field are proposed. FLASH-RT has potential but is associated with significant risks and complexities. We need to redefine optimization to focus not only on the dose but also on the dose rate in a manner that is robust and understandable and that can be prescribed, validated, and confirmed in real time. Robust patient safety systems and access to treatment data will be critical as FLASH-RT moves into the clinical trials.
Collapse
Affiliation(s)
- Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rongxiao Zhang
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Emil Schüler
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paige A Taylor
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Ahmet S Ayan
- Department of Radiation Oncology, Ohio State University, Columbus, OH, USA
| | - Manju Sharma
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Shu-Jung Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Weiguo Lu
- Department of Radiation Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, MO, USA
| | - Christina Tsien
- Department of Radiation Oncology, McGill University Health Center, Montreal, QC, Canada
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julianne M Pollard-Larkin
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eduardo G Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | - David J Gladstone
- Department of Radiation Oncology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Heng Li
- Department of Radiation Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, NY, USA
| | - Kristoffer Petersson
- Department of Radiation Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Stephen F Kry
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amit Maity
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter G Maxim
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey C Buchsbaum
- Radiation Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
33
|
Schulte R, Johnstone C, Boucher S, Esarey E, Geddes CGR, Kravchenko M, Kutsaev S, Loo BW, Méot F, Mustapha B, Nakamura K, Nanni EA, Obst-Huebl L, Sampayan SE, Schroeder CB, Sheng K, Snijders AM, Snively E, Tantawi SG, Van Tilborg J. Transformative Technology for FLASH Radiation Therapy. APPLIED SCIENCES (BASEL, SWITZERLAND) 2023; 13:5021. [PMID: 38240007 PMCID: PMC10795821 DOI: 10.3390/app13085021] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
The general concept of radiation therapy used in conventional cancer treatment is to increase the therapeutic index by creating a physical dose differential between tumors and normal tissues through precision dose targeting, image guidance, and radiation beams that deliver a radiation dose with high conformality, e.g., protons and ions. However, the treatment and cure are still limited by normal tissue radiation toxicity, with the corresponding side effects. A fundamentally different paradigm for increasing the therapeutic index of radiation therapy has emerged recently, supported by preclinical research, and based on the FLASH radiation effect. FLASH radiation therapy (FLASH-RT) is an ultra-high-dose-rate delivery of a therapeutic radiation dose within a fraction of a second. Experimental studies have shown that normal tissues seem to be universally spared at these high dose rates, whereas tumors are not. While dose delivery conditions to achieve a FLASH effect are not yet fully characterized, it is currently estimated that doses delivered in less than 200 ms produce normal-tissue-sparing effects, yet effectively kill tumor cells. Despite a great opportunity, there are many technical challenges for the accelerator community to create the required dose rates with novel compact accelerators to ensure the safe delivery of FLASH radiation beams.
Collapse
Affiliation(s)
- Reinhard Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92350, USA
| | - Carol Johnstone
- Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
| | - Salime Boucher
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Eric Esarey
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | - Sergey Kutsaev
- RadiaBeam Technologies, LLC, Santa Monica, CA 90404, USA
| | - Billy W. Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - François Méot
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | - Kei Nakamura
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Emilio A. Nanni
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | | - Stephen E. Sampayan
- Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
- Opcondys, Inc., Manteca, CA 95336, USA
| | | | - Ke Sheng
- Department of Radiation Oncology, University of California, San Francisco, CA 94115, USA
| | | | - Emma Snively
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sami G. Tantawi
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | | |
Collapse
|
34
|
Rahman M, Zhang R, Gladstone DJ, Williams BB, Chen E, Dexter CA, Thompson L, Bruza P, Pogue BW. Failure Mode and Effects Analysis for Experimental Use of FLASH on a Clinical Accelerator. Pract Radiat Oncol 2023; 13:153-165. [PMID: 36375771 PMCID: PMC10373055 DOI: 10.1016/j.prro.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/21/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE The use of a linear accelerator (LINAC) in ultrahigh-dose-rate (UHDR) mode can provide a conduit for wider access to UHDR FLASH effects, sparing normal tissue, but care needs to be taken in the use of such systems to ensure errors are minimized. The failure mode and effects analysis was carried out in a team that has been involved in converting a LINAC between clinical use and UHDR experimental mode for more than 1 year after the proposed methods of TG100. METHODS AND MATERIALS A team of 9 professionals with extensive experience were polled to outline the process map and workflow for analysis, and developed fault trees for potential errors, as well as failure modes that would result. The team scored the categories of severity magnitude, occurrence likelihood, and detectability potential in a scale of 1 to 10, so that a risk priority number (RPN = severity×occurrence×detectability) could be assessed for each. RESULTS A total of 46 potential failure modes were identified, including 5 with an RPN >100. These failure modes involved (1) patient set up, (2) gating mechanisms in delivery, and (3) detector in the beam stop mechanism. The identified methods to mitigate errors included the (1) use of a checklist post conversion, (2) use of robust radiation detectors, (3) automation of quality assurance and beam consistency checks, and (4) implementation of surface guidance during beam delivery. CONCLUSIONS The failure mode and effects analysis process was considered critically important in this setting of a new use of a LINAC, and the expert team developed a higher level of confidence in the ability to safely move UHDR LINAC use toward expanded research access.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; University of Texas Southwestern Medical Center, Dallas, Texas.
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Benjamin B Williams
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Erli Chen
- Cheshire Medical Center, Keene, New Hampshire
| | - Chad A Dexter
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Lawrence Thompson
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire; Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
35
|
Espinosa-Rodriguez A, Villa-Abaunza A, Díaz N, Pérez-Díaz M, Sánchez-Parcerisa D, Udías J, Ibáñez P. Design of an X-ray irradiator based on a standard imaging X-ray tube with FLASH dose-rate capabilities for preclinical research. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2023.110760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Garty G, Obaid R, Deoli N, Royba E, Tan Y, Harken AD, Brenner DJ. Ultra-high dose rate FLASH irradiator at the radiological research accelerator facility. Sci Rep 2022; 12:22149. [PMID: 36550150 PMCID: PMC9780319 DOI: 10.1038/s41598-022-19211-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
The Radiological Research Accelerator Facility has modified a decommissioned Varian Clinac to deliver ultra-high dose rates: operating in 9 MeV electron mode (FLASH mode), samples can be irradiated at a Source-Surface Distance (SSD) of 20 cm at average dose rates of up to 600 Gy/s (3.3 Gy per 0.13 µs pulse, 180 pulses per second). In this mode multiple pulses are required for most irradiations. By modulating pulse repetition rate and irradiating at SSD = 171 cm, dose rates below 1 Gy/min can be achieved, allowing comparison of FLASH and conventional irradiations with the same beam. Operating in 6 MV photon mode, with the conversion target removed (SuperFLASH mode), samples are irradiated at higher dose rates (0.2-150 Gy per 5 µs pulse, 360 pulses per second) and most irradiations can be performed with a single very high dose rate pulse. In both modes we have seen the expected inverse relation between dose rate and irradiated area, with the highest dose rates obtained for beams with a FWHM of about 2 cm and ± 10% uniformity over 1 cm diameter. As an example of operation of the ultra-high dose rate FLASH irradiator, we present dose rate dependence of dicentric chromosome yields.
Collapse
Affiliation(s)
- Guy Garty
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA.
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA.
| | - Razib Obaid
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Naresh Deoli
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA
| | - Ekaterina Royba
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| | - Yuewen Tan
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA
| | - Andrew D Harken
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Box 21, Irvington, NY, 10533, USA
| | - David J Brenner
- Center for Radiological Research, Columbia University, New York, NY, 10032, USA
| |
Collapse
|
37
|
Vozenin MC, Bourhis J, Durante M. Towards clinical translation of FLASH radiotherapy. Nat Rev Clin Oncol 2022; 19:791-803. [DOI: 10.1038/s41571-022-00697-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2022] [Indexed: 11/09/2022]
|
38
|
Rahman M, Trigilio A, Franciosini G, Moeckli R, Zhang R, Böhlen TT. FLASH radiotherapy treatment planning and models for electron beams. Radiother Oncol 2022; 175:210-221. [PMID: 35964763 DOI: 10.1016/j.radonc.2022.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/18/2022]
Abstract
The FLASH effect designates normal tissue sparing at ultra-high dose rate (UHDR, >40 Gy/s) compared to conventional dose rate (∼0.1 Gy/s) irradiation while maintaining tumour control and has the potential to improve the therapeutic ratio of radiotherapy (RT). UHDR high-energy electron (HEE, 4-20 MeV) beams are currently a mainstay for investigating the clinical potential of FLASH RT for superficial tumours. In the future very-high energy electron (VHEE, 50-250 MeV) UHDR beams may be used to treat deep-seated tumours. UHDR HEE treatment planning focused at its initial stage on accurate dosimetric modelling of converted and dedicated UHDR electron RT devices for the clinical transfer of FLASH RT. VHEE treatment planning demonstrated promising dosimetric performance compared to clinical photon RT techniques in silico and was used to evaluate and optimise the design of novel VHEE RT devices. Multiple metrics and models have been proposed for a quantitative description of the FLASH effect in treatment planning, but an improved experimental characterization and understanding of the FLASH effect is needed to allow for an accurate and validated modelling of the effect in treatment planning. The importance of treatment planning for electron FLASH RT will augment as the field moves forward to treat more complex clinical indications and target sites. In this review, TPS developments in HEE and VHEE are presented considering beam models, characteristics, and future FLASH applications.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Antonio Trigilio
- Physics Department, "La Sapienza" University of Rome, Rome, Italy; INFN National Institute of Nuclear Physics, Rome Section, Rome, Italy
| | - Gaia Franciosini
- Physics Department, "La Sapienza" University of Rome, Rome, Italy; INFN National Institute of Nuclear Physics, Rome Section, Rome, Italy
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
39
|
Wei S, Lin H, Isabelle Choi J, Shi C, Simone CB, Kang M. Advanced pencil beam scanning Bragg peak FLASH-RT delivery technique can enhance lung cancer planning treatment outcomes compared to conventional multiple-energy proton PBS techniques. Radiother Oncol 2022; 175:238-247. [PMID: 35961583 DOI: 10.1016/j.radonc.2022.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the dosimetric characteristics between an advanced proton pencil beam scanning (PBS) Bragg peak FLASH technique and conventional PBS planning technique in lung tumors. To evaluate the "FLASHness" of single-field in a multiple-field delivery scheme for a hypofractionation regimen and move a step forward to clinical application. METHODS Single-energy PBS Bragg peak FLASH treatment plans were optimized based on a novel Bragg peak tracking technique to enable Bragg peaks to stop at the distal edge of the target. Inverse treatment planning using multiple-field optimization (MFO) can achieve sufficient FLASH dose rate and intensity-modulated proton therapy (IMPT)-equivalent dosimetric quality. The dose rate of organs-at-risk (OARs) and the target were calculated under FLASH machine parameters. A group of 10 consecutive lung SBRT patients was optimized to 34 Gy/fraction using a standard treatment of PBS technique with multiple energy layers as references to the Bragg peak plans. The dosimetric quality was compared between Bragg peak FLASH and conventional plans based on RTOG0915 dose metrics. FLASH dose rate ratios (V40Gy/s) were calculated as a metric of the FLASH-sparing effect. RESULTS For higher dose thresholds, the Bragg peak plans achieved greater V40Gy/s FLASH coverage for all major OARs. The V40Gy/s was close to 100% for all OARs when the dose thresholds were > 5 Gy for full plan and single beam evaluations. The less "FLASHness" region was associated with a low dose distribution, mainly occurring in the PBS field penumbra region. The conventional IMPT treatment plans yielded slightly superior target dose uniformity with a D2%(%) of 108.02% versus that of Bragg peak 300 MU plans of 111.81% (p < 0.01) and that of Bragg peak 1200 MU plans of 115.95% (p < 0.01). No significant difference in dose metrics was found between Bragg peak and IMPT treatment plans for the spinal cord, esophagus, heart, or lung-GTV (all p > 0.05). CONCLUSION Hypofractionated lung Bragg peak plans can maintain comparable plan quality to conventional PBS while achieving sufficient FLASH dose rate coverage for major OARs for each field under the multiple-field delivery scheme. The novel Bragg peak FLASH technique has the potential to enhance lung cancer planning treatment outcomes compared to standard PBS treatment techniques.
Collapse
Affiliation(s)
- Shouyi Wei
- New York Proton Center, New York, NY 10035, USA
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA.
| | | | - Chengyu Shi
- City of Hope, Orange County, Irvine, CA 92618, USA
| | | | - Minglei Kang
- New York Proton Center, New York, NY 10035, USA.
| |
Collapse
|
40
|
El Naqa I, Pogue BW, Zhang R, Oraiqat I, Parodi K. Image guidance for FLASH radiotherapy. Med Phys 2022; 49:4109-4122. [PMID: 35396707 PMCID: PMC9844128 DOI: 10.1002/mp.15662] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 01/19/2023] Open
Abstract
FLASH radiotherapy (FLASH-RT) is an emerging ultra-high dose (>40 Gy/s) delivery that promises to improve the therapeutic potential by limiting toxicities compared to conventional RT while maintaining similar tumor eradication efficacy. Image guidance is an essential component of modern RT that should be harnessed to meet the special emerging needs of FLASH-RT and its associated high risks in planning and delivering of such ultra-high doses in short period of times. Hence, this contribution will elaborate on the imaging requirements and possible solutions in the entire chain of FLASH-RT treatment, from the planning, through the setup and delivery with online in vivo imaging and dosimetry, up to the assessment of biological mechanisms and treatment response. In patient setup and delivery, higher temporal sampling than in conventional RT should ensure that the short treatment is delivered precisely to the targeted region. Additionally, conventional imaging tools such as cone-beam computed tomography will continue to play an important role in improving patient setup prior to delivery, while techniques based on magnetic resonance imaging or positron emission tomography may be extremely valuable for either linear accelerator (Linac) or particle FLASH therapy, to monitor and track anatomical changes during delivery. In either planning or assessing outcomes, quantitative functional imaging could supplement conventional imaging for more accurate utilization of the biological window of the FLASH effect, selecting for or verifying things such as tissue oxygen and existing or transient hypoxia on the relevant timescales of FLASH-RT delivery. Perhaps most importantly at this time, these tools might help improve the understanding of the biological mechanisms of FLASH-RT response in tumor and normal tissues. The high dose deposition of FLASH provides an opportunity to utilize pulse-to-pulse imaging tools such as Cherenkov or radiation acoustic emission imaging. These could provide individual pulse mapping or assessing the 3D dose delivery superficially or at tissue depth, respectively. In summary, the most promising components of modern RT should be used for safer application of FLASH-RT, and new promising developments could be advanced to cope with its novel demands but also exploit new opportunities in connection with the unique nature of pulsed delivery at unprecedented dose rates, opening a new era of biological image guidance and ultrafast, pulse-based in vivo dosimetry.
Collapse
Affiliation(s)
- Issam El Naqa
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA
| | - Rongxiao Zhang
- Giesel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Ibrahim Oraiqat
- Department of Machine Learning, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Katia Parodi
- Department of Medical Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching 85748, Germany
| |
Collapse
|
41
|
Poirier Y, Xu J, Mossahebi S, Therriault‐Proulx F, Sawant A. Technical note: Characterization and practical applications of a novel plastic scintillator for on‐line dosimetry for ultra‐high dose rate (FLASH). Med Phys 2022; 49:4682-4692. [DOI: 10.1002/mp.15671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yannick Poirier
- University of Maryland School of Medicine Baltimore MD 21201
- McGill University Montreal QC H3A 2T5 Canada
| | - Junliang Xu
- University of Maryland School of Medicine Baltimore MD 21201
| | - Sina Mossahebi
- University of Maryland School of Medicine Baltimore MD 21201
| | | | - Amit Sawant
- University of Maryland School of Medicine Baltimore MD 21201
| |
Collapse
|
42
|
Ashraf MR, Rahman M, Cao X, Duval K, Williams BB, Hoopes PJ, Gladstone DJ, Pogue BW, Zhang R, Bruza P. Individual pulse monitoring and dose control system for pre-clinical implementation of FLASH-RT. Phys Med Biol 2022; 67:10.1088/1361-6560/ac5f6f. [PMID: 35313290 PMCID: PMC10305796 DOI: 10.1088/1361-6560/ac5f6f] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/21/2022] [Indexed: 11/11/2022]
Abstract
Objective.Existing ultra-high dose rate (UHDR) electron sources lack dose rate independent dosimeters and a calibrated dose control system for accurate delivery. In this study, we aim to develop a custom single-pulse dose monitoring and a real-time dose-based control system for a FLASH enabled clinical linear accelerator (Linac).Approach.A commercially available point scintillator detector was coupled to a gated integrating amplifier and a real-time controller for dose monitoring and feedback control loop. The controller was programmed to integrate dose for each radiation pulse and stop the radiation beam when the prescribed dose was delivered. Additionally, the scintillator was mounted in a solid water phantom and placed underneath mice skin forin vivodose monitoring. The scintillator was characterized in terms of its radiation stability, mean dose-rate (Ḋm), and dose per pulse (Dp) dependence.Main results.TheDpexhibited a consistent ramp-up period across ∼4-5 pulse. The plastic scintillator was shown to be linear withḊm(40-380 Gy s-1) andDp(0.3-1.3 Gy Pulse-1) to within +/- 3%. However, the plastic scintillator was subject to significant radiation damage (16%/kGy) for the initial 1 kGy and would need to be calibrated frequently. Pulse-counting control was accurately implemented with one-to-one correspondence between the intended and the actual delivered pulses. The dose-based control was sufficient to gate on any pulse of the Linac.In vivodosimetry monitoring with a 1 cm circular cut-out revealed that during the ramp-up period, the averageDpwas ∼0.045 ± 0.004 Gy Pulse-1, whereas after the ramp-up it stabilized at 0.65 ± 0.01 Gy Pulse-1.Significance.The tools presented in this study can be used to determine the beam parameter space pertinent to the FLASH effect. Additionally, this study is the first instance of real-time dose-based control for a modified Linac at ultra-high dose rates, which provides insight into the tool required for future clinical translation of FLASH-RT.
Collapse
Affiliation(s)
- M. Ramish Ashraf
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| | - Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| | - Xu Cao
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| | - Kayla Duval
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
| | - Benjamin B. Williams
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - P. Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover NH 03755 USA
| | - David J. Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover NH 03755 USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
- Department of Medicine, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| |
Collapse
|
43
|
Farr J, Grilj V, Malka V, Sudharsan S, Schippers M. Ultra‐High dose rate radiation production and delivery systems intended for FLASH. Med Phys 2022; 49:4875-4911. [PMID: 35403262 PMCID: PMC9544515 DOI: 10.1002/mp.15659] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022] Open
Abstract
Higher dose rates, a trend for radiotherapy machines, can be beneficial in shortening treatment times for radiosurgery and mitigating the effects of motion. Recently, even higher doses (e.g., 100 times greater) have become targeted because of their potential to generate the FLASH effect (FE). We refer to these physical dose rates as ultra‐high (UHDR). The complete relationship between UHDR and the FE is unknown. But UHDR systems are needed to explore the relationship further and to deliver clinical UHDR treatments, where indicated. Despite the challenging set of unknowns, the authors seek to make reasonable assumptions to probe how existing and developing technology can address the UHDR conditions needed to provide beam generation capable of producing the FE in preclinical and clinical applications. As a preface, this paper discusses the known and unknown relationships between UHDR and the FE. Based on these, different accelerator and ionizing radiation types are then discussed regarding the relevant UHDR needs. The details of UHDR beam production are discussed for existing and potential future systems such as linacs, cyclotrons, synchrotrons, synchrocyclotrons, and laser accelerators. In addition, various UHDR delivery mechanisms are discussed, along with required developments in beam diagnostics and dose control systems.
Collapse
Affiliation(s)
- Jonathan Farr
- Applications of Detectors and Accelerators to Medicine Meyrin 1217 Switzerland
| | - Veljko Grilj
- Lausanne University Hospital Lausanne 1011 Switzerland
| | - Victor Malka
- Weizmann Institute of Science Rehovot 7610001 Israel
| | | | | |
Collapse
|
44
|
Romano F, Bailat C, Jorge PG, Lerch MLF, Darafsheh A. Ultra‐high dose rate dosimetry: challenges and opportunities for FLASH radiation therapy. Med Phys 2022; 49:4912-4932. [PMID: 35404484 PMCID: PMC9544810 DOI: 10.1002/mp.15649] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/03/2022] [Accepted: 02/20/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Francesco Romano
- Istituto Nazionale di Fisica Nucleare Sezione di Catania Catania Italy
| | - Claude Bailat
- Institute of Radiation Physics Lausanne University Hospital Lausanne University Switzerland
| | - Patrik Gonçalves Jorge
- Institute of Radiation Physics Lausanne University Hospital Lausanne University Switzerland
- Department of Radiation Oncology Lausanne University Hospital Lausanne Switzerland
- Radio‐Oncology Laboratory DO/CHUV Lausanne University Hospital Lausanne Switzerland
| | | | - Arash Darafsheh
- Department of Radiation Oncology Washington University School of Medicine St. Louis MO 63110 USA
| |
Collapse
|
45
|
Kim MM, Darafsheh A, Schuemann J, Dokic I, Lundh O, Zhao T, Ramos-Méndez J, Dong L, Petersson K. Development of Ultra-High Dose-Rate (FLASH) Particle Therapy. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022; 6:252-262. [PMID: 36092270 PMCID: PMC9457346 DOI: 10.1109/trpms.2021.3091406] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Research efforts in FLASH radiotherapy have increased at an accelerated pace recently. FLASH radiotherapy involves ultra-high dose rates and has shown to reduce toxicity to normal tissue while maintaining tumor response in pre-clinical studies when compared to conventional dose rate radiotherapy. The goal of this review is to summarize the studies performed to-date with proton, electron, and heavy ion FLASH radiotherapy, with particular emphasis on the physical aspects of each study and the advantages and disadvantages of each modality. Beam delivery parameters, experimental set-up, and the dosimetry tools used are described for each FLASH modality. In addition, modeling efforts and treatment planning for FLASH radiotherapy is discussed along with potential drawbacks when translated into the clinical setting. The final section concludes with further questions that have yet to be answered before safe clinical implementation of FLASH radiotherapy.
Collapse
Affiliation(s)
- Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arash Darafsheh
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jan Schuemann
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ivana Dokic
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Department of Radiation Oncology, Heidelberg Faculty of Medicine (MFHD) and Heidelberg University Hospital (UKHD), Heidelberg Ion-Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 222, Heidelberg, Germany
| | - Olle Lundh
- Department of Physics, Lund University, Lund, Sweden
| | - Tianyu Zhao
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Lei Dong
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kristoffer Petersson
- Department of Oncology, The Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
- Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
46
|
Schüler E, Acharya M, Montay-Gruel P, Loo BW, Vozenin MC, Maxim PG. Ultra-high dose rate electron beams and the FLASH effect: From preclinical evidence to a new radiotherapy paradigm. Med Phys 2022; 49:2082-2095. [PMID: 34997969 PMCID: PMC9032195 DOI: 10.1002/mp.15442] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/14/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
In their seminal paper from 2014, Fauvadon et al. coined the term FLASH irradiation to describe ultra-high-dose rate irradiation with dose rates greater than 40 Gy/s, which results in delivery times of fractions of a second. The experiments presented in that paper were performed with a high-dose-per-pulse 4.5 MeV electron beam, and the results served as the basis for the modern-day field of FLASH radiation therapy (RT). In this article, we review the studies that have been published after those early experiments, demonstrating the robust effects of FLASH RT on normal tissue sparing in preclinical models. We also outline the various irradiation parameters that have been used. Although the robustness of the biological response has been established, the mechanisms behind the FLASH effect are currently under investigation in a number of laboratories. However, differences in the magnitude of the FLASH effect between experiments in different labs have been reported. Reasons for these differences even within the same animal model are currently unknown, but likely has to do with the marked differences in irradiation parameter settings used. Here, we show that these parameters are often not reported, which complicates large multistudy comparisons. For this reason, we propose a new standard for beam parameter reporting and discuss a systematic path to the clinical translation of FLASH RT.
Collapse
Affiliation(s)
- Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
- Graduate School of Biomedical Sciences, The University of Texas, Houston, TX 77030 USA
| | - Munjal Acharya
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - Billy W. Loo
- Department of Radiation Oncology and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology/DO/Radio-Oncology/CHUV, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Peter G. Maxim
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
47
|
Schwarz M, Traneus E, Safai S, Kolano A, van de Water S. Treatment planning for Flash radiotherapy: general aspects and applications to proton beams. Med Phys 2022; 49:2861-2874. [PMID: 35213040 DOI: 10.1002/mp.15579] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
The increased radioresistence of healthy tissues when irradiated at very high dose rates (known as the Flash effect) is a radiobiological mechanism that is currently investigated in order to increase the therapeutic ratio of radiotherapy treatments. To maximize the benefits of the clinical application of Flash, a patient-specific balance between different properties of the dose distribution should be found, i.e. Flash needs to be one of the variables considered in treatment planning. We investigated the Flash potential of three proton therapy planning and beam delivery techniques, each on a different anatomical region. Based on a set of beam delivery parameters, on hypotheses on the dose and dose rate thresholds needed for the Flash effect to occur, and on two definitions of Flash dose rate, we generated exemplary illustrations of the capabilities of current proton therapy equipment to generate Flash dose distributions. All techniques investigated could both produce dose distributions comparable with a conventional proton plan and reach the Flash regime, to an extent that was strongly dependent on the dose per fraction and the Flash dose threshold. The beam current, Flash dose rate threshold and dose rate definition typically had a more moderate effect on the amount of Flash dose in normal tissue. A systematic estimation of the impact of Flash on different patient anatomies and treatment protocols is possible only if Flash-specific treatment planning features become readily available. Planning evaluation tools such as a voxel-based dose delivery time structure, and the inclusion in the optimization cost function of parameters directly associated with Flash (e.g. beam current, spot delivery sequence and scanning speed), are needed to generate treatment plans that are taking full advantage of the potential benefits of the Flash effect. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marco Schwarz
- Proton therapy Department, Trento Hospital and TIFPA-INFN, Trento, Italy
| | - Erik Traneus
- RaySearch Laboratories AB, Stockholm SE-103 65, Sweden
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Anna Kolano
- Advanced Oncotherapy plc, London, England - Application of Detectors and Accelerators to Medicine(ADAM), Geneva, Switzerland
| | - Steven van de Water
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
48
|
Garty G, Harken A, Brenner D. Traceable dosimetry for MeV ion beams. JOURNAL OF INSTRUMENTATION : AN IOP AND SISSA JOURNAL 2022; 17:T02002. [PMID: 35497570 PMCID: PMC9052763 DOI: 10.1088/1748-0221/17/02/t02002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Standard dosimetry protocols exist for highly penetrating photon and particle beams used in the clinic and in research. However, these protocols cannot be directly applied to shallow penetration MeV-range ion beams. The Radiological Research Accelerator Facility has been using such beams for almost 50 years to irradiate cell monolayers, using self-developed dosimetry, based on tissue equivalent ionization chambers. To better align with the internationally accepted standards, we describe implementation of a commercial, NIST-traceable, air-filled ionization chamber for measurement of absorbed dose to water from low energy ions, using radiation quality correction factors calculated using TRS-398 recommendations. The reported dose does not depend on the ionization density in the range of 10-150 keV/μm.
Collapse
Affiliation(s)
- G. Garty
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Irvington, NY 10533, U.S.A
| | - A.D. Harken
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Irvington, NY 10533, U.S.A
| | - D.J. Brenner
- Radiological Research Accelerator Facility, Columbia University, 136 S. Broadway, Irvington, NY 10533, U.S.A
| |
Collapse
|
49
|
Rahman M, Ashraf MR, Gladstone DJ, Bruza P, Jarvis LA, Schaner PE, Cao X, Pogue BW, Hoopes PJ, Zhang R. Treatment Planning System for Electron FLASH Radiotherapy: Open-source for Clinical Implementation. Int J Radiat Oncol Biol Phys 2021; 112:1023-1032. [PMID: 34762969 PMCID: PMC10386889 DOI: 10.1016/j.ijrobp.2021.10.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 08/31/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE A Monte Carlo (MC) beam model and its implementation in a clinical treatment planning system (TPS, Varian Eclipse) are presented for a modified ultra-high dose-rate electron FLASH radiotherapy LINAC (eFLASH-RT) utilizing clinical accessories and geometry. METHODS The gantry head without scattering foils or targets, representative of the LINAC modifications, was modelled in Geant4-based GAMOS MC toolkit. The energy spectrum (σE) and beam source emittance cone angle (θcone) were varied to match the calculated open field central-axis percent depth dose (PDD) and lateral profiles with Gafchromic film measurements. The beam model and its Eclipse configuration were validated with measured profiles of the open field and nominal fields for clinical applicators. A MC forward dose calculation was conducted for a mouse whole brain treatment and an eFLASH-RT plan was compared to a conventional (Conv-RT) electron plan in Eclipse for a human patient with metastatic renal cell carcinoma. RESULTS The eFLASH beam model agreed best with measurements at σE=0.5 MeV and θcone=3.9±0.2 degrees. The model and its Eclipse configuration were validated to clinically acceptable accuracy (the absolute average error was within 1.5% for in-water lateral, 3% for in-air lateral, and 2% for PDD's). The forward calculation showed adequate dose delivery to the entire mouse brain, while sparing the organ-at-risk (lung). The human patient case demonstrated the planning capability with routine accessories to achieve an acceptable plan (90% of the tumor volume receiving 95% and 90% of the prescribed dose for eFLASH and conventional, respectively). CONCLUSION To the best of our knowledge, this is the first functional beam model commissioned in a clinical TPS for eFLASH-RT, enabling planning and evaluation with minimal deviation from Conv-RT workflow. It facilitates the clinical translation as eFLASH-RT and Conv-RT plan quality were comparable for a human patient involving complex geometries and tissue heterogeneity. The methods can be expanded to model other eFLASH irradiators with different beam characteristics.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US.
| | - M Ramish Ashraf
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| | - Lesley A Jarvis
- Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Philip E Schaner
- Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| | - Xu Cao
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA; Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover NH 03755 USA
| | - P Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA; Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover NH 03755 USA
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover NH 03755, US; Department of Medicine, Radiation Oncology, Geisel School of Medicine, Dartmouth College Hanover NH 03755 USA; Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH 03756 USA
| |
Collapse
|
50
|
Diffenderfer ES, Sørensen BS, Mazal A, Carlson DJ. The current status of preclinical proton FLASH radiation and future directions. Med Phys 2021; 49:2039-2054. [PMID: 34644403 DOI: 10.1002/mp.15276] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/05/2022] Open
Abstract
We review the current status of proton FLASH experimental systems, including preclinical physical and biological results. Technological limitations on preclinical investigation of FLASH biological mechanisms and determination of clinically relevant parameters are discussed. A review of the biological data reveals no reproduced proton FLASH effect in vitro and a significant in vivo FLASH sparing effect of normal tissue toxicity observed with multiple proton FLASH irradiation systems. Importantly, multiple studies suggest little or no difference in tumor growth delay for proton FLASH when compared to conventional dose rate proton radiation. A discussion follows on future areas of development with a focus on the determination of the optimal parameters for maximizing the therapeutic ratio between tumor and normal tissue response and ultimately clinical translation of proton FLASH radiation.
Collapse
Affiliation(s)
- Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brita S Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark.,Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Alejandro Mazal
- Department of Medical Physics, Centro de Protonterapia Quironsalud, Madrid, Spain
| | - David J Carlson
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|