1
|
Xu X, Cheng Y, Yang Z, Yin Y, Qian Y, Yang H, Zhu S, Tian H, Zhuang Y, Zhu S, Yang P, Qin S, Shen W. Wogonin potentiates the irradiation effect on hepatocellular carcinoma by activating the Hippo-Yes-associated protein/transcriptional co-activator with PDZ-binding motif pathway. Int Immunopharmacol 2025; 157:114740. [PMID: 40318272 DOI: 10.1016/j.intimp.2025.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
OBJECTIVE To investigate whether wogonin increases the radiosensitivity of hepatocellular carcinoma (HCC) cells by activating Hippo-Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling. METHODS HCC cells were treated with irradiation and wogonin; their proliferation and apoptosis were evaluated. Xenograft models were established to assess the radio-synergistic effects of wogonin; we evaluated whether wogonin influences the efficacy of radiotherapy in HCC cells by activating Hippo-YAP/TAZ signaling. RESULTS Fifty micromolar wogonin enhanced the radiosensitivity of HCC cells; 4-Gy X-rays promoted apoptosis in HCC cells. Wogonin pretreatment significantly increased radiosensitivity. In xenograft models, tumor weight and volume in the 100 mg/kg wogonin plus irradiation group were significantly reduced; pYAP and pTAZ levels were downregulated in HCC cells treated with radiotherapy. Following treatment with 4-Gy X-rays and 100 μM wogonin, the relative pYAP/total YAP and pTAZ/total TAZ ratios increased. We identified the possible target genes of YAP/TAZ: AXL, CCN1, and CCN2. WB results revealed the upregulation of AXL, CCN1, and CCN2 in the irradiation group. However, in the group receiving irradiation and wogonin, the protein expression levels of AXL, CCN1, and CCN2 were downregulated. XMU-MP-1 inhibited pYAP and pTAZ expression in the combination treatment group, thereby promoting AXL, CCN1, and CCN2 expression. The proliferative ability of HCC cells in the wogonin plus irradiation group was partially recovered following treatment with XMU-MP-1. Apoptosis in HCC cells was reversed after pretreatment with 2 μM XMU-MP-1 in the wogonin plus irradiation group. CONCLUSION Wogonin may modulate Hippo-YAP/TAZ signaling and enhance the radiosensitivity of HCCs.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Radiotherapy, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China; Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Yan Cheng
- School of Computer Science and Engineering, Taizhou Institute of Science & Technology, Taizhou 225300, Jiangsu, China
| | - Zeyu Yang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215006, Jiangsu, China
| | - Yong Yin
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Yonghong Qian
- Department of Radiotherapy, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Haiyu Yang
- Department of Clinical Laboratory, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Shusheng Zhu
- Department of Thoracic Surgery, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Hu Tian
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Yanshuang Zhuang
- Department of Science and Technology, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Shimin Zhu
- Department of Radiotherapy, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Pingjin Yang
- Department of Clinical Laboratory, Taizhou Affiliated Hospital of Nanjing University of Chinese Medicine, Taizhou 225300, Jiangsu, China
| | - Songbing Qin
- Department of Radiotherapy, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| | - Weigan Shen
- Department of Cell Biology, Yangzhou University Medical College, Yangzhou 225100, Jiangsu, China.
| |
Collapse
|
2
|
Yang J, Chen R. Radiosensitization Strategies for Hepatocellular Carcinoma: Mechanisms, Therapeutic Advances, and Clinical Perspectives. Crit Rev Oncol Hematol 2025:104773. [PMID: 40412577 DOI: 10.1016/j.critrevonc.2025.104773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2025] [Revised: 05/17/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, with treatment efficacy limited by late-stage diagnosis, frequent recurrence, and therapeutic resistance. Radiotherapy is a key local treatment for HCC; however, its efficacy is frequently limited by intrinsic tumor radioresistance. This review discusses strategies to improve the therapeutic response of HCC to radiotherapy. Targeting DNA repair mechanisms can block tumor cells from recovering after radiation-induced damage, whereas modulating cell cycle arrest and programmed cell death pathways (e.g., apoptosis, autophagy) diminishes their survival capacity. Furthermore, remodeling the tumor microenvironment-through hypoxia alleviation, metabolic reprogramming, oxidative stress regulation, and immune activation-may potentiate radiotherapy efficacy. Technological advances, such as stereotactic body radiotherapy and nanomaterial-based approaches, have also improved the precision and effectiveness of radiotherapy. Clinically, combining radiotherapy with systemic therapies (e.g., immune checkpoint inhibitors and antiangiogenic agents) has demonstrated preliminary promise in enhancing treatment outcomes. However, translating preclinical findings into clinical practice remains challenging due to tumor heterogeneity, normal tissue toxicity, and the lack of predictive biomarkers for treatment selection. Future research should focus on integrating molecular profiling with multimodal therapies to enable personalized radiosensitization and bridge the gap between mechanistic insights and clinical outcomes.
Collapse
Affiliation(s)
- Jiahui Yang
- Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Rong Chen
- Department of Radiation Oncology, Affiliated ZhongDa Hospital, Southeast University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
3
|
Guo Q, Yang W, Robinson G, Chaludiya K, Abdulkadir AN, Roy FG, Shivakumar D, Ahmad AN, Abdulkadir SA, Kirschner AN. Unlocking the Radiosensitizing Potential of MYC Inhibition in Neuroendocrine Malignancies. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00431-6. [PMID: 40354951 DOI: 10.1016/j.ijrobp.2025.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 04/04/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025]
Abstract
The MYC family of transcription factors-comprising c-MYC, N-MYC, and L-MYC-plays a pivotal role in oncogenesis, driving cancer progression and resistance to therapy. While MYC proteins have long been considered challenging drug targets due to their intricate structures, recent advances have led to the development of promising inhibitors. This review explores the role of MYC overexpression in promoting radiation therapy resistance in aggressive neuroendocrine malignancies through multiple mechanisms, including increased tumor cell invasion, enhanced DNA damage repair and oxidative stress management, prosurvival autophagy, survival of circulating tumor cells, angiogenesis, awakening from dormancy, and modulation of chronic inflammation and host immunity. Paradoxically, MYC overexpression can also enhance radiosensitivity in certain cancer cells by driving proapoptotic pathways, such as reactive oxygen species-induced DNA damage that overwhelms cellular repair mechanisms, ultimately leading to cell death. Additionally, we provide a comprehensive summary of direct MYC inhibitors, detailing their current stage of preclinical and clinical development as novel anticancer therapeutics. This review highlights the role of MYC in cancer metastasis and radiation therapy resistance while examining the potential of MYC inhibitors as radiosensitizers in adult and pediatric neuroendocrine malignancies, including small cell lung cancer, large cell neuroendocrine lung cancer, Merkel cell carcinoma, neuroendocrine-differentiated prostate cancer, neuroblastoma, central nervous system embryonal tumors, and medulloblastoma.
Collapse
Affiliation(s)
- Qianyu Guo
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida; Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida; Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida; Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William Yang
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Guy Robinson
- Department of Internal Medicine, Mayo Clinic, Jacksonville, Florida; Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Keyur Chaludiya
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Divya Shivakumar
- Kamineni Academy of Medical Science and Research Centre, Hyderabad, Telangana, India
| | - Ayesha N Ahmad
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Boonshoft School of Medicine, Wright State University, Fairborn, Ohio
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois; The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Austin N Kirschner
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
4
|
Fu W, Liang Q, Ma Y, Lei S, Li R, Zheng X, Chen L, Chen J, Cai X, Dai X, Duan H, He W, Ren J. Fn14-targeting, NIR-II responsive nanomaterials for enhanced radiotherapy against glioblastomas. NANOSCALE ADVANCES 2025; 7:2634-2647. [PMID: 40109505 PMCID: PMC11915457 DOI: 10.1039/d4na00788c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/01/2025] [Indexed: 03/22/2025]
Abstract
Radiotherapy is a common treatment option for patients with glioblastoma multiforme. However, tumor heterogeneity causes varying responses to radiation among different tumor subpopulations. Cancer cells that endure radiotherapy exhibit radioresistance, resulting in the ineffectiveness of radiation therapy and eventual tumor relapse. In this study, we discovered that the fibroblast growth factor-inducible 14 (Fn14)-positive tumor cells were enriched in tumor residual foci after radiation, ultimately leading to treatment failure. Fn14-expressing glioma cells survived ionizing radiation through preferential activation of DNA damage checkpoint response. We have thus engineered an Fn14-targeting and NIR-II responsive plasmonic gold nanosystem named Fn14-AuNPs, which can precisely internalize into Fn14-overexpressed glioma cells and have an excellent BBB-crossing capability. As gold nanoparticles, by inhibition of DNA repair processes and induction of G2/M cells cycle arrest, Fn14-AuNPs nanoparticles improved the radiosensitivity of tumor cells. Meanwhile, Fn14-AuNPs induced localized heat under NIR-II photoirradiation, thus impeding RT-induced DNA damage checkpoint response. This versatile nanosensitizer, combined with NIR-II laser photoirradiation, can eradicate radioresistant subpopulations of glioblastoma and improve the therapeutic effect of radiotherapy. This finding presents an effective radiosensitization strategy by targeting radioresistant subpopulations, which can efficiently overcome the constraints imposed in clinical radiotherapy and offer a hopeful avenue to enhance the treatment effectivity of radiotherapy in glioblastoma.
Collapse
Affiliation(s)
- Wei Fu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022 China
- Hubei Key Laboratory of Precision Radiation Oncology Wuhan 430022 China
| | - Qing Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022 China
- Hubei Key Laboratory of Precision Radiation Oncology Wuhan 430022 China
| | - Yuxi Ma
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022 China
- Hubei Key Laboratory of Precision Radiation Oncology Wuhan 430022 China
| | - Shiqiong Lei
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022 China
| | - Ruiqi Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022 China
- Hubei Key Laboratory of Precision Radiation Oncology Wuhan 430022 China
| | - Xin Zheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022 China
- Hubei Key Laboratory of Precision Radiation Oncology Wuhan 430022 China
| | - Lian Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022 China
- Hubei Key Laboratory of Precision Radiation Oncology Wuhan 430022 China
| | - Jiayuan Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022 China
- Hubei Key Laboratory of Precision Radiation Oncology Wuhan 430022 China
| | - Xing Cai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022 China
- Hubei Key Laboratory of Precision Radiation Oncology Wuhan 430022 China
| | - Xiaofang Dai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022 China
- Hubei Key Laboratory of Precision Radiation Oncology Wuhan 430022 China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921 Singapore
| | - Wenshan He
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022 China
| | - Jinghua Ren
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022 China
- Hubei Key Laboratory of Precision Radiation Oncology Wuhan 430022 China
- Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518057 China
| |
Collapse
|
5
|
Zhang NY, Liu WY, Fang KH, Chang XT. Increased Sirtuin 6 Activity in Tumor Cells Can Prompt CD4-Positive T-Cell Differentiation Into Regulatory T Cells and Impede Immune Surveillance in the Microenvironment. World J Oncol 2025; 16:182-199. [PMID: 40162112 PMCID: PMC11954609 DOI: 10.14740/wjon2547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
Background Sirtuin 6 (Sirt6) is expressed at increased levels in many tumors and may be involved in immunoregulation. The present study investigated how Sirt6 in tumor cells affects immune surveillance. Methods The human tumor cell lines A2780, HeLa, Huh7, MBA-MD-231, SMMC-7721 and SW480 were incubated with UBCS039, a target-selective activator of Sirt6, to stimulate Sirt6 activity. These cells, following washing to remove residual UBCS039, were cultured with human naive CD4+ T cells in the Transwell to observe the T cell differentiation. Regulatory T cells (Tregs) among CD4+ T cells and the levels of various cytokines and adenosine (ADO), an immunosuppressive metabolite, in the culture medium, were measured via flow cytometry. The treated tumor cells were examined via transcriptomic analysis. The transcriptomic results, as well as programmed cell death protein-1 (PD-1), programmed cell death-ligand 1 (PD-L1) and Sirt6 expression in tumor cells and CD4+ T cells were verified via real-time polymerase chain reaction (PCR). Results Following culture with UBSC039-pretreated tumor cells, the proportion of Tregs among CD4+ T cells was significantly increased. PD-L1 and Sirt6 expressions in UBS039-pretreated tumor cells and PD-1 expression in cocultured CD4+ T cells were also increased. Moreover, the ADO level increased, and the interleukin (IL)-10, interferon (IFN)-α2, IFN-γ and monocyte chemoattractant protein-1 (MCP-1) levels decreased in the coculture medium. Transcriptomic analysis revealed significant downregulation of the antitumor genes BASP1, CPS1, GNG11, MFAP5, NNMT and SMOC1, upregulation of the tumor-promoting genes FOXA2, GSTP1, RASEF and ZNF844, and activation of adherens junctions, tumor necrosis factor (TNF)-signaling and the circadian rhythm pathway in UBCS039-pretreated SMMC-7721 cells. The above results were verified in all six cell lines. Conclusions The present study suggested that increased Sirt6 expression and activity in tumor cells can suppress immune surveillance by increasing Treg, ADO, PD-1 and PD-L1 levels, decreasing IFN-γ production, and altering tumor-promoting and antitumor gene expression in the microenvironment.
Collapse
Affiliation(s)
- Nan Yang Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Wen Yuan Liu
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Ke Hua Fang
- Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
- These authors contributed equally to this study
| | - Xiao Tian Chang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
- These authors contributed equally to this study
| |
Collapse
|
6
|
Zhang C, Zhang X, Dai S, Yang W. Exploring prognosis and therapeutic strategies for HBV-HCC patients based on disulfidptosis-related genes. Front Genet 2025; 15:1522484. [PMID: 39882072 PMCID: PMC11774838 DOI: 10.3389/fgene.2024.1522484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) accounts for over 80% of primary liver cancers and is the third leading cause of cancer-related deaths worldwide. Hepatitis B virus (HBV) infection is the primary etiological factor. Disulfidptosis is a newly discovered form of regulated cell death. This study aims to develop a novel HBV-HCC prognostic signature related to disulfidptosis and explore potential therapeutic approaches through risk stratification based on disulfidptosis. Methods Transcriptomic data from HBV-HCC patients were analyzed to identify BHDRGs. A prognostic model was established and validated using machine learning, with internal datasets and external datasets for verification. We then performed immune cell infiltration analysis, tumor microenvironment (TME) analysis, and immunotherapy-related analysis based on the prognostic signature. Besides, RT-qPCR and immunohistochemistry were conducted. Results A prognostic model was constructed using five genes (DLAT, STC2, POF1B, S100A9, and CPS1). A corresponding prognostic nomogram was developed based on riskScores, age, stage. Stratification by median risk score revealed a significant correlation between the prognostic signature and TME, tumor immune cell infiltration, immunotherapy efficacy, and drug sensitivity. The results of the experiments indicate that DLAT expression is higher in tumor tissues compared to adjacent tissues. DLAT expression is higher in HBV-HCC tumor tissues compared to normal tissues. Conclusion This study stratifies HBV-HCC patients into distinct subgroups based on BHDRGs, establishing a prognostic model with significant implications for prognosis assessment, TME remodeling, and personalized therapy in HBV-HCC patients.
Collapse
Affiliation(s)
| | | | - Shengjie Dai
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenjun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
7
|
Liu Z, Yuan J, Zeng Q, Wu Z, Han J. UBAP2 contributes to radioresistance by enhancing homologous recombination through SLC27A5 ubiquitination in hepatocellular carcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167481. [PMID: 39186963 DOI: 10.1016/j.bbadis.2024.167481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Radiotherapy stands as an effective method in the clinical treatment of hepatocellular carcinoma (HCC) patients. However, both primary and acquired radioresistance limit its clinical application in HCC. Therefore, investigating the mechanism of radioresistance may provide other options for treating HCC. Based on single-cell RNA sequencing (scRNA-seq) and HCC transcriptome datasets, 227 feature genes with prognostic value were selected to establish the tSNE score. The tSNE score emerged as an independent prognostic factor for HCC and correlated with cell proliferation and radioresistance-related biological functions. UBAP2 was identified as the most relevant gene with the tSNE score, consistently elevated in human HCC samples, and positively associated with patient prognosis. Functionally, UBAP2 knockdown impeded HCC development and reduced radiation resistance in vitro and in vivo. The ectopic expression of SLC27A5 reversed the effects of UBAP2. Mechanically, we uncovered that UBAP2, through the ubiquitin-proteasome system, decreased the homologous recombination-related gene RAD51, not the non-homologous end-joining (NHEJ)-related gene CTIP, by degrading the antioncogene SLC27A5, thereby generating radioresistance in HCC. The findings recapitulated that UBAP2 promoted HCC progression and radioresistance via SLC27A5 stability mediated by the ubiquitin-proteasome pathway. It was also suggested that targeting the UBAP2/SLC27A5 axis could be a valuable radiosensitization strategy in HCC.
Collapse
Affiliation(s)
- Zijian Liu
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Jingsheng Yuan
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiwen Zeng
- Liver Transplant Center, Transplant Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Laboratory of Liver Transplantation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiaqi Han
- Laboratory of Liquid Biopsy and Single Cell Research, Department of Radiation Oncology and Department of Head and Neck Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
8
|
Chen S, Tang Q, Hu M, Song S, Wu X, Zhou Y, Yang Z, Liao S, Zhou L, Wang Q, Liu H, Yang M, Chen Z, Zhao W, He S, Zhou Z. Loss of Carbamoyl Phosphate Synthetase 1 Potentiates Hepatocellular Carcinoma Metastasis by Reducing Aspartate Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402703. [PMID: 39387452 PMCID: PMC11615744 DOI: 10.1002/advs.202402703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/01/2024] [Indexed: 10/15/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide. Numerous studies have shown that metabolic reprogramming is crucial for the development of HCC. Carbamoyl phosphate synthase 1 (CPS1), a rate-limiting enzyme in urea cycle, is an abundant protein in normal hepatocytes, however, lacking systemic research in HCC. It is found that CPS1 is low-expressed in HCC tissues and circulating tumor cells, negatively correlated with HCC stage and prognosis. Further study reveals that CPS1 is a double-edged sword. On the one hand, it inhibits the activity of phosphatidylcholine-specific phospholipase C to block the biosynthesis of diacylglycerol (DAG), leading to the downregulation of the DAG/protein kinase C pathway to inhibit invasion and metastasis of cancer cells. On the other hand, CPS1 promotes cell proliferation by increasing intracellular S-adenosylmethionin to enhance the m6A modification of solute carrier family 1 member 3 mRNA, a key transporter for aspartate intake. Finally, CPS1 overexpressing adeno-associated virus can dampen HCC progression. Collectively, this results uncovered that CPS1 is a switch between HCC proliferation and metastasis by increasing intracellular aspartate level.
Collapse
Affiliation(s)
- Siyuan Chen
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Qin Tang
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Manqiu Hu
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Sijie Song
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Xiaohong Wu
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - You Zhou
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Zihan Yang
- Department of Biomedical Sciencesand Tung Biomedical Sciences CenterCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077P. R. China
| | - Siqi Liao
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Li Zhou
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Qingliang Wang
- Department of PathologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Hongtao Liu
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Mengsu Yang
- Department of Biomedical Sciencesand Tung Biomedical Sciences CenterCity University of Hong Kong83 Tat Chee AvenueKowloonHong Kong SAR999077P. R. China
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesInstitute for BiotechnologyCollege of Pharmacy and Health SciencesSt. John's UniversityQueensNY11439USA
| | - Wei Zhao
- School of Clinical MedicineThe First Affiliated HospitalChengdu Medical CollegeSichuan610500P. R. China
- Department of Clinical BiochemistrySchool of Laboratory MedicineChengdu Medical CollegeSichuan610500P. R. China
| | - Song He
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Zhihang Zhou
- Department of GastroenterologyThe Second Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| |
Collapse
|
9
|
Gan L, Wang W, Jiang J, Tian K, Liu W, Cao Z. Dual role of Nrf2 signaling in hepatocellular carcinoma: promoting development, immune evasion, and therapeutic challenges. Front Immunol 2024; 15:1429836. [PMID: 39286246 PMCID: PMC11402828 DOI: 10.3389/fimmu.2024.1429836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and ranks as the third leading cause of cancer-related mortality globally. The liver performs a wide range of tasks and is the primary organ responsible for metabolizing harmful substances and foreign compounds. Oxidative stress has a crucial role in growth and improvement of hepatocellular carcinoma (HCC). Nuclear factor erythroid 2 (1)-related factor 2 (Nrf2) is an element that regulates transcription located in the cytoplasm. It controls the balance of redox reactions by stimulating the expression of many genes that depend on antioxidant response elements. Nrf2 has contrasting functions in the normal, healthy liver and HCC. In the normal liver, Nrf2 provides advantageous benefits, while in HCC it promotes harmful effects that support the growth and survival of HCC. Continuous activation of Nrf2 has been detected in HCC and promotes its advancement and aggressiveness. In addition, Activation of Nrf2 may lead to immune evasion, weakening the immune cells' ability to attack tumors and thereby promoting tumor development. Furthermore, chemoresistance in HCC, which is considered a form of stress response to chemotherapy medications, significantly impedes the effectiveness of HCC treatment. Stress management is typically accomplished by activating specific signal pathways and chemical variables. One important element in the creation of chemoresistance in HCC is nuclear factor-E2-related factor 2 (Nrf2). Nrf2 is a transcription factor that regulates the activation and production of a group of genes that encode proteins responsible for protecting cells from damage. This occurs through the Nrf2/ARE pathway, which is a crucial mechanism for combating oxidative stress within cells.
Collapse
Affiliation(s)
- Lin Gan
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Wang
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Jinxiu Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Ke Tian
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| | - Zhumin Cao
- Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
10
|
Hajaj E, Pozzi S, Erez A. From the Inside Out: Exposing the Roles of Urea Cycle Enzymes in Tumors and Their Micro and Macro Environments. Cold Spring Harb Perspect Med 2024; 14:a041538. [PMID: 37696657 PMCID: PMC10982720 DOI: 10.1101/cshperspect.a041538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Catabolic pathways change in anabolic diseases such as cancer to maintain metabolic homeostasis. The liver urea cycle (UC) is the main catabolic pathway for disposing excess nitrogen. Outside the liver, the UC enzymes are differentially expressed based on each tissue's needs for UC intermediates. In tumors, there are changes in the expression of UC enzymes selected for promoting tumorigenesis by increasing the availability of essential UC substrates and products. Consequently, there are compensatory changes in the expression of UC enzymes in the cells that compose the tumor microenvironment. Moreover, extrahepatic tumors induce changes in the expression of the liver UC, which contribute to the systemic manifestations of cancer, such as weight loss. Here, we review the multilayer changes in the expression of UC enzymes throughout carcinogenesis. Understanding the changes in UC expression in the tumor and its micro and macro environment can help identify biomarkers for early cancer diagnosis and vulnerabilities that can be targeted for therapy.
Collapse
Affiliation(s)
- Emma Hajaj
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sabina Pozzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Fang C, Peng Z, Sang Y, Ren Z, Ding H, Yuan H, Hu K. Copper in Cancer: from transition metal to potential target. Hum Cell 2024; 37:85-100. [PMID: 37751026 DOI: 10.1007/s13577-023-00985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
In recent years, with the continuous in-depth exploration of the molecular mechanisms of tumorigenesis, numerous potential new targets for cancer treatment have been identified, some of which have been further developed in clinical practice and have produced positive outcomes. Notably, researchers' initial motivation for studying copper metabolism in cancer stems from the fact that copper is a necessary trace element for organisms and is closely connected to body growth and metabolism. Moreover, over the past few decades, considerable progress has been made in understanding the molecular processes and correlations between copper and cancer. Certain achievements have been made in the development and use of relevant clinical medications. The concept of "cuproptosis," a novel concept that differs from previous forms of cell death, was first proposed by a group of scientists last year, offering fresh perspectives on the targeting capabilities of copper in the treatment of cancer. In this review, we introduced the fundamental physiological functions of copper, the key components of copper metabolism, and a summary of the current research contributions on the connection between copper and cancer. In addition, the development of new copper-based nanomaterials and their associated mechanisms of action are discussed. Finally, we described how the susceptibility of cancer cells to this metallic nutrition could be leveraged to further improve the existing cancer treatment paradigm in the new setting.
Collapse
Affiliation(s)
- Can Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Zhiwei Peng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Yaru Sang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zihao Ren
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Huiming Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Haibo Yuan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Kongwang Hu
- Department of General Surgery, Fuyang Hospital of Anhui Medical University, Fuyang, China.
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, NO. 218 Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
12
|
Zhang M, Shao Y, Gu W. The Mechanism of Ubiquitination or Deubiquitination Modifications in Regulating Solid Tumor Radiosensitivity. Biomedicines 2023; 11:3240. [PMID: 38137461 PMCID: PMC10741492 DOI: 10.3390/biomedicines11123240] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Radiotherapy, a treatment method employing radiation to eradicate tumor cells and subsequently reduce or eliminate tumor masses, is widely applied in the management of numerous patients with tumors. However, its therapeutic effectiveness is somewhat constrained by various drug-resistant factors. Recent studies have highlighted the ubiquitination/deubiquitination system, a reversible molecular modification pathway, for its dual role in influencing tumor behaviors. It can either promote or inhibit tumor progression, impacting tumor proliferation, migration, invasion, and associated therapeutic resistance. Consequently, delving into the potential mechanisms through which ubiquitination and deubiquitination systems modulate the response to radiotherapy in malignant tumors holds paramount significance in augmenting its efficacy. In this paper, we comprehensively examine the strides made in research and the pertinent mechanisms of ubiquitination and deubiquitination systems in governing radiotherapy resistance in tumors. This underscores the potential for developing diverse radiosensitizers targeting distinct mechanisms, with the aim of enhancing the effectiveness of radiotherapy.
Collapse
Affiliation(s)
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
| |
Collapse
|
13
|
Liu F, Liao Z, Zhang Z. MYC in liver cancer: mechanisms and targeted therapy opportunities. Oncogene 2023; 42:3303-3318. [PMID: 37833558 DOI: 10.1038/s41388-023-02861-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
MYC, a major oncogenic transcription factor, regulates target genes involved in various pathways such as cell proliferation, metabolism and immune evasion, playing a critical role in the tumor initiation and development in multiple types of cancer. In liver cancer, MYC and its signaling pathways undergo significant changes, exerting a profound impact on liver cancer progression, including tumor proliferation, metastasis, dedifferentiation, metabolism, immune microenvironment, and resistance to comprehensive therapies. This makes MYC an appealing target, despite it being previously considered an undruggable protein. In this review, we discuss the role and mechanisms of MYC in liver physiology, chronic liver diseases, hepatocarcinogenesis, and liver cancer progression, providing a theoretical basis for targeting MYC as an ideal therapeutic target for liver cancer. We also summarize and prospect the strategies for targeting MYC, including direct and indirect approaches to abolish the oncogenic function of MYC in liver cancer.
Collapse
Affiliation(s)
- Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, 430030, China.
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
14
|
Hashemi M, Sabouni E, Rahmanian P, Entezari M, Mojtabavi M, Raei B, Zandieh MA, Behroozaghdam M, Mirzaei S, Hushmandi K, Nabavi N, Salimimoghadam S, Ren J, Rashidi M, Raesi R, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Deciphering STAT3 signaling potential in hepatocellular carcinoma: tumorigenesis, treatment resistance, and pharmacological significance. Cell Mol Biol Lett 2023; 28:33. [PMID: 37085753 PMCID: PMC10122325 DOI: 10.1186/s11658-023-00438-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200032, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|