1
|
Ryan TD, Bates JE, Kinahan KE, Leger KJ, Mulrooney DA, Narayan HK, Ness K, Okwuosa TM, Rainusso NC, Steinberger J, Armenian SH. Cardiovascular Toxicity in Patients Treated for Childhood Cancer: A Scientific Statement From the American Heart Association. Circulation 2025; 151:e926-e943. [PMID: 40104841 DOI: 10.1161/cir.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The field of cardio-oncology has expanded over the past 2 decades to address the ever-increasing issues related to cardiovascular disease in patients with cancer and survivors. There is increasing recognition that nearly all cancer treatments pose some short- or long-term risk for development of cardiovascular disease and that pediatric patients with cancer may be especially vulnerable to cardiovascular disease because of young age at treatment and expected long life span afterward. Anthracycline chemotherapy and chest-directed radiotherapy are the most well-studied cardiotoxic therapies, and dose reduction, use of cardioprotection for anthracyclines, and modern radiotherapy approaches have contributed to improved cardiovascular outcomes for survivors. Newer treatments such as small-molecule inhibitors, antibody-based cytotoxic therapy, and immunotherapy have expanded options for previously difficult-to-treat cancers but have also revealed new cardiotoxic profiles. Application of effective surveillance strategies in patients with cancer and survivors has been a focus of practitioners and researchers, whereas the prevention and treatment of extant cardiovascular disease is still developing. Incorporation of new strategies in an equitable manner and appropriate transition from pediatric to adult care will greatly influence long-term health-related outcomes in the growing population of childhood cancer survivors at risk for cardiovascular disease.
Collapse
|
2
|
Vennarini S, Colombo F, Filippi AR, Orlandi E. Proton therapy for pediatric malignancies: Indications and challenges focusing on the oncological landscape. TUMORI JOURNAL 2024; 110:416-421. [PMID: 39407409 DOI: 10.1177/03008916241287016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Advances in therapeutic techniques and multimodal approaches have significantly improved the success rates of treatment for pediatric malignancies, with cure rates now close to 80%. This has led to an increase in long-term survival, with 0.10-0.15% of the general population being survivors of childhood cancer. In Italy, cancer registry data suggest that 75% of treated children become long-term survivors. However, these survivors face significant risks of late adverse events, including chronic diseases and severe conditions, highlighting the need for specialized follow-up care.Radiotherapy, a cornerstone of pediatric cancer treatment, contributes to late toxicities due to the susceptibility of growing tissues. Proton therapy offers advantages in reducing treatment-related toxicity, reducing the risk of secondary cancers, and allowing dose escalation for radioresistant tumors. Comparative studies suggest that proton therapy is superior in sparing healthy tissues and reducing long-term toxicities.Despite these benefits, challenges such as the high cost, limited proton therapy centers, and the need for clinical trials hinder the widespread adoption of proton therapy. Efforts to centralize care in high-ranking centers and ensure equitable access to proton therapy are crucial. In Italy, pediatric solid tumors are now eligible for proton therapy under national health policies, ensuring free access for all children.Dedicated proton therapy centers must provide comprehensive care involving multidisciplinary teams and supportive environments for pediatric patients and their families. Addressing current limitations and enhancing care environments are essential for improving outcomes for pediatric oncology patients.
Collapse
Affiliation(s)
- Sabina Vennarini
- Pediatric Radiotherapy Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Francesca Colombo
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
| | - Andrea R Filippi
- Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ester Orlandi
- Radiation Oncology Unit, Clinical Department, CNAO National Center for Oncological Hadrontherapy, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Houtman BM, Walraven I, Kapusta L, Teske AJ, van Dulmen-den Broeder E, Tissing WJE, van den Heuvel-Eibrink MM, Versluys ABB, Bresters D, van der Heiden-van der Loo M, Ronckers C, Kok WEM, van der Pal HJH, Pluijm SMF, Janssens GO, Blijlevens NMA, Kremer LCM, Loonen JJ, Feijen EAML. Treatments affecting splenic function as a risk factor for valvular heart disease in Childhood Cancer Survivors: A DCCSS-LATER study. Pediatr Blood Cancer 2024; 71:e31251. [PMID: 39135313 DOI: 10.1002/pbc.31251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE Splenectomy might be a risk factor for valvular heart disease (VHD) in adult Hodgkin lymphoma survivors. As this risk is still unclear for childhood cancer survivors (CCS), the aim of this study is to evaluate the association between treatments affecting splenic function (splenectomy and radiotherapy involving the spleen) and VHD in CCS. METHODS CCS were enrolled from the DCCSS-LATER cohort, consisting of 6,165 five-year CCS diagnosed between 1963 and 2002. Symptomatic VHD, defined as symptoms combined with a diagnostic test indicating VHD, was assessed from questionnaires and validated using medical records. Differences in the cumulative incidence of VHD between CCS who received treatments affecting splenic function and CCS who did not were assessed using the Gray test. Risk factors were analyzed in a multivariable Cox proportional hazards model. RESULTS The study population consisted of 5,286 CCS, with a median follow-up of 22 years (5-50 years), of whom 59 (1.1%) had a splenectomy and 489 (9.2%) radiotherapy involving the spleen. VHD was present in 21 CCS (0.4%). The cumulative incidence of VHD at the age of 40 years was significantly higher in CCS who received treatments affecting splenic function (2.7%, 95% confidence interval (CI) 0.4%-4.9%) compared with CCS without (0.4%, 95% CI 0.1%-0.7%) (Gray's test, p = 0.003). Splenectomy was significantly associated with VHD in a multivariable analysis (hazard ratio 8.6, 95% CI 3.1-24.1). CONCLUSIONS AND IMPLICATIONS Splenectomy was associated with VHD. Future research is needed to determine if CCS who had a splenectomy as part of cancer treatment might benefit from screening for VHD.
Collapse
Affiliation(s)
- Bente M Houtman
- Radboudumc Center of Expertise for Cancer Survivorship, Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Iris Walraven
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Livia Kapusta
- Department of Pediatric Cardiology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Pediatric Cardiology Unit, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arco J Teske
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Wim J E Tissing
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Pediatric Oncology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, The Netherlands
- Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
| | | | - Dorine Bresters
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Cécile Ronckers
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Division of Childhood Cancer Epidemiology, Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Wouter E M Kok
- Department of Cardiology Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Saskia M F Pluijm
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Geert O Janssens
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leontien C M Kremer
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Wilhelmina Children's Hospital, University Medical Center, Utrecht, The Netherlands
- Department of Pediatric Oncology, Emma Children's Hospital, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacqueline J Loonen
- Radboudumc Center of Expertise for Cancer Survivorship, Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
4
|
Milano MT, Marks LB, Olch AJ, Yorke ED, Jackson A, Bentzen SM, Constine LS. Comparison of Risks of Late Effects From Radiation Therapy in Children Versus Adults: Insights From the QUANTEC, HyTEC, and PENTEC Efforts. Int J Radiat Oncol Biol Phys 2024; 119:387-400. [PMID: 38069917 DOI: 10.1016/j.ijrobp.2023.08.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 05/19/2024]
Abstract
Pediatric Normal Tissue Effects in the Clinic (PENTEC) seeks to refine quantitative radiation dose-volume relationships for normal-tissue complication probabilities (NTCPs) in survivors of pediatric cancer. This article summarizes the evolution of PENTEC and compares it with similar adult-focused efforts (eg, Quantitative Analysis of Normal Tissue Effects in the Clinic [QUANTEC] and Hypofractionated Treatment Effects in the Clinic [HyTEC]) with respect to content, oversight, support, scope, and methodology of literature review. It then summarizes key organ-specific findings from PENTEC in an attempt to compare NTCP estimates in children versus adults. In brief, select normal-tissue risks within developing organs and tissues (eg, maldevelopment of musculoskeletal tissue, teeth, breasts, and reproductive organs) are primarily relevant only in children. For some organs and tissues, children appear to have similar (eg, brain for necrosis, optic apparatus, parotid gland, liver), greater (eg, brain for neurocognition, cerebrovascular, breast for lactation), less (ovary), or perhaps slightly less (eg, lung) risks of toxicity versus adults. Similarly, even within the broad pediatric age range (including adolescence), for some endpoints, younger children have greater (eg, hearing and brain for neurocognition) or lesser (eg, ovary, thyroid) risks of radiation-associated toxicities. NTCP comparisons in adults versus children are often confounded by marked differences in treatment paradigms that expose normal tissues to radiation (ie, cancer types, prescribed radiation therapy dose and fields, and chemotherapy agents used). To add to the complexity, it is unclear if age is best analyzed as a continuous variable versus with age groupings (eg, infants, young children, adolescents, young adults, middle-aged adults, older adults). Further work is needed to better understand the complex manner in which age and developmental status affect risk.
Collapse
Affiliation(s)
- Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York.
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Arthur J Olch
- Radiation Oncology Program, Children's Hospital Los Angeles/Keck School of Medicine of the University of Southern California, Los Angeles, California
| | - Ellen D Yorke
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Søren M Bentzen
- Greenebaum Comprehensive Cancer Center and Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
5
|
Constine LS, Marks LB, Milano MT, Ronckers CM, Jackson A, Hudson MM, Marcus KJ, Hodgson DC, Hua CH, Howell RM, Marples B, Yorke E, Olch A, Bentzen SM. A User's Guide and Summary of Pediatric Normal Tissue Effects in the Clinic (PENTEC): Radiation Dose-Volume Response for Adverse Effects After Childhood Cancer Therapy and Future Directions. Int J Radiat Oncol Biol Phys 2024; 119:321-337. [PMID: 37999712 DOI: 10.1016/j.ijrobp.2023.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 11/25/2023]
Abstract
Pediatric Normal Tissue Effects in the Clinic (PENTEC) is an international multidisciplinary effort that aims to summarize normal-tissue toxicity risks based on published dose-volume data from studies of children and adolescents treated with radiation therapy (RT) for cancer. With recognition that children are uniquely vulnerable to treatment-related toxic effects, our mission and challenge was to assemble our group of physicians (radiation and pediatric oncologists, subspecialists), physicists with clinical and modeling expertise, epidemiologists, and other scientists to develop evidence-based radiation dosimetric guidelines, as affected by developmental status and other factors (eg, other cancer therapies and host factors). These quantitative toxicity risk estimates could serve to inform RT planning and thereby improve outcomes. Tandem goals included the description of relevant medical physics issues specific to pediatric RT and the proposal of dose-volume outcome reporting standards to inform future studies. We created 19 organ-specific task forces and methodology to unravel the wealth of data from heterogeneous published studies. This report provides a high-level summary of PENTEC's genesis, methods, key findings, and associated concepts that affected our work and an explanation of how our findings may be interpreted and applied in the clinic. We acknowledge our predecessors in these efforts, and we pay homage to the children whose lives informed us and to future generations who we hope will benefit from this additional step in our path forward.
Collapse
Affiliation(s)
- Louis S Constine
- Departments of Radiation Oncology and; Pediatrics, University of Rochester Medical Center, Wilmot Cancer Institute, Rochester, New York.
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | - Cécile M Ronckers
- Division of Childhood Cancer Epidemiology (EpiKiK) and the German Childhood Cancer Registry (DKKR), Johannes Gutenberg University of Mainz, Germany
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melissa M Hudson
- Department of Oncology, Division of Cancer Survivorship, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Karen J Marcus
- Department of Radiation Oncology, Dana Farber/ Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts
| | - David C Hodgson
- Department of Radiation Oncology, University of Toronto, Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Rebecca M Howell
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | | | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Arthur Olch
- Department of Radiation Oncology, University of Southern California and Children's Hospital of Los Angeles, Los Angeles, California
| | - Soren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| |
Collapse
|
6
|
Lucas JT, Abramson ZR, Epstein K, Morin CE, Jaju A, Lee JW, Lee CL, Sitaram R, Voss SD, Hudson MM, Constine LS, Hua CH. Imaging Assessment of Radiation Therapy-Related Normal Tissue Injury in Children: A PENTEC Visionary Statement. Int J Radiat Oncol Biol Phys 2024; 119:669-680. [PMID: 38760116 PMCID: PMC11684541 DOI: 10.1016/j.ijrobp.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 05/19/2024]
Abstract
The Pediatric Normal Tissue Effects in the Clinic (PENTEC) consortium has made significant contributions to understanding and mitigating the adverse effects of childhood cancer therapy. This review addresses the role of diagnostic imaging in detecting, screening, and comprehending radiation therapy-related late effects in children, drawing insights from individual organ-specific PENTEC reports. We further explore how the development of imaging biomarkers for key organ systems, alongside technical advancements and translational imaging approaches, may enhance the systematic application of imaging evaluations in childhood cancer survivors. Moreover, the review critically examines knowledge gaps and identifies technical and practical limitations of existing imaging modalities in the pediatric population. Addressing these challenges may expand access to, minimize the risk of, and optimize the real-world application of, new imaging techniques. The PENTEC team envisions this document as a roadmap for the future development of imaging strategies in childhood cancer survivors, with the overarching goal of improving long-term health outcomes and quality of life for this vulnerable population.
Collapse
Affiliation(s)
| | - Zachary R Abramson
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Katherine Epstein
- Division of Radiology and Medical Imaging, UC Department of Radiology, Cincinnati, Ohio
| | - Cara E Morin
- Division of Radiology and Medical Imaging, UC Department of Radiology, Cincinnati, Ohio
| | - Alok Jaju
- Department of Medical Imaging, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Chang-Lung Lee
- Department of Radiation Oncology and; Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Ranganatha Sitaram
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Stephan D Voss
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Melissa M Hudson
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Louis S Constine
- Department of Radiation Oncology, James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | | |
Collapse
|
7
|
Bates JE, Marples B, Hudson MM, Williams AM, Marcus K, Howell R, Paulino A, Constine LS. Biodevelopmental Considerations in Pediatric Patients With Cancer and Childhood Cancer Survivors: A PENTEC Introductory Review. Int J Radiat Oncol Biol Phys 2024; 119:354-359. [PMID: 37966404 DOI: 10.1016/j.ijrobp.2023.09.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/19/2023] [Accepted: 09/30/2023] [Indexed: 11/16/2023]
Affiliation(s)
- James E Bates
- Department of Radiation Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia.
| | - Brian Marples
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Melissa M Hudson
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - AnnaLynn M Williams
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | - Karen Marcus
- Department of Radiation Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Rebecca Howell
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arnold Paulino
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Louis S Constine
- Department of Radiation Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York; Department of Pediatrics, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
8
|
Hua CH, Bentzen SM, Li Y, Milano MT, Rancati T, Marks LB, Constine LS, Yorke ED, Jackson A. Improving Pediatric Normal Tissue Radiation Dose-Response Modeling in Children With Cancer: A PENTEC Initiative. Int J Radiat Oncol Biol Phys 2024; 119:369-386. [PMID: 38276939 DOI: 10.1016/j.ijrobp.2023.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 01/27/2024]
Abstract
The development of normal tissue radiation dose-response models for children with cancer has been challenged by many factors, including small sample sizes; the long length of follow-up needed to observe some toxicities; the continuing occurrence of events beyond the time of assessment; the often complex relationship between age at treatment, normal tissue developmental dynamics, and age at assessment; and the need to use retrospective dosimetry. Meta-analyses of published pediatric outcome studies face additional obstacles of incomplete reporting of critical dosimetric, clinical, and statistical information. This report describes general methods used to address some of the pediatric modeling issues. It highlights previous single- and multi-institutional pediatric dose-response studies and summarizes how each PENTEC taskforce addressed the challenges and limitations of the reviewed publications in constructing, when possible, organ-specific dose-effect models.
Collapse
Affiliation(s)
- Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee.
| | - Søren M Bentzen
- Department of Epidemiology and Public Health, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yimei Li
- Department of Biostatics, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester, Rochester, New York
| | - Ellen D Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
9
|
Jackson A, Hua CH, Olch A, Yorke ED, Rancati T, Milano MT, Constine LS, Marks LB, Bentzen SM. Reporting Standards for Complication Studies of Radiation Therapy for Pediatric Cancer: Lessons From PENTEC. Int J Radiat Oncol Biol Phys 2024; 119:697-707. [PMID: 38760117 DOI: 10.1016/j.ijrobp.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 05/19/2024]
Abstract
The major aim of Pediatric Normal Tissue Effects in the Clinic (PENTEC) was to synthesize quantitative published dose/-volume/toxicity data in pediatric radiation therapy. Such systematic reviews are often challenging because of the lack of standardization and difficulty of reporting outcomes, clinical factors, and treatment details in journal articles. This has clinical consequences: optimization of treatment plans must balance between the risks of toxicity and local failure; counseling patients and their parents requires knowledge of the excess risks encountered after a specific treatment. Studies addressing outcomes after pediatric radiation therapy are particularly challenging because: (a) survivors may live for decades after treatment, and the latency time to toxicity can be very long; (b) children's maturation can be affected by radiation, depending on the developmental status of the organs involved at time of treatment; and (c) treatment regimens frequently involve chemotherapies, possibly modifying and adding to the toxicity of radiation. Here we discuss: basic reporting strategies to account for the actuarial nature of the complications; the reporting of modeling of abnormal development; and the need for standardized, comprehensively reported data sets and multivariate models (ie, accounting for the simultaneous effects of radiation dose, age, developmental status at time of treatment, and chemotherapy dose). We encourage the use of tools that facilitate comprehensive reporting, for example, electronic supplements for journal articles. Finally, we stress the need for clinicians to be able to trust artificial intelligence models of outcome of radiation therapy, which requires transparency, rigor, reproducibility, and comprehensive reporting. Adopting the reporting methods discussed here and in the individual PENTEC articles will increase the clinical and scientific usefulness of individual reports and associated pooled analyses.
Collapse
Affiliation(s)
- Andrew Jackson
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York.
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Arthur Olch
- Radiation Oncology Department, University of Southern California and Children's Hospital, Los Angeles, California
| | - Ellen D Yorke
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester Medical Center, Wilmot Cancer Institute, Rochester, New York
| | - Louis S Constine
- Department of Radiation Oncology, University of Rochester Medical Center, Wilmot Cancer Institute, Rochester, New York; Pediatrics, University of Rochester Medical Center, Wilmot Cancer Institute, Rochester, New York
| | - Lawrence B Marks
- Department of Radiation Oncology and Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Soren M Bentzen
- Department of Epidemiology and Public Health, University of Maryland, Baltimore, Maryland
| |
Collapse
|
10
|
Journy N, Bolle S, Brualla L, Dumas A, Fresneau B, Haddy N, Haghdoost S, Haustermans K, Jackson A, Karabegovic S, Lassen-Ramshad Y, Thariat J, Wette MR, Botzenhardt S, De Wit I, Demoor-Goldschmidt C, Christiaens M, Høyer M, Isebaert S, Jacobs S, Henriksen LT, Maduro JH, Ronckers C, Steinmeier T, Uyttebroeck A, Van Beek K, Walsh L, Thierry-Chef I, Timmermann B. Assessing late outcomes of advances in radiotherapy for paediatric cancers: Study protocol of the "HARMONIC-RT" European registry (NCT 04746729). Radiother Oncol 2024; 190:109972. [PMID: 37922994 DOI: 10.1016/j.radonc.2023.109972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Neige Journy
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Stéphanie Bolle
- Department of Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Lorenzo Brualla
- West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Agnès Dumas
- Inserm, Aix Marseille University, IRD, ISSPAM, SESSTIM (Economic and Social Sciences of Health and Medical Information Processing), Marseille, France
| | - Brice Fresneau
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France; Department of Paediatric Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Nadia Haddy
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Siamak Haghdoost
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; University of Caen Normandy, Advanced Resource Center for HADrontherapy in Europe (ARCHADE), 14000 Caen, France
| | - Karin Haustermans
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Angela Jackson
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Paris-Saclay University, Villejuif, France; National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sanja Karabegovic
- Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Yasmin Lassen-Ramshad
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - Juliette Thariat
- Centre Régional Francois Baclesse, Avenue Du General Harris 3, Caen Cedex 5 14076, France; Université de Caen Normandie, ENSICAEN, CNRS/IN2P3, LPC Caen UMR6534, F-14000 Caen, France
| | - Martina Roxanne Wette
- Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Suzan Botzenhardt
- Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany
| | - Inge De Wit
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Charlotte Demoor-Goldschmidt
- National Institute for Medical Research (INSERM) U1018 Center for Research in Epidemiology and Population Health, Laboratory of "Radiation Epidemiology, Clinical Epidemiology and Cancer Survivorship", Paris-Saclay University, Gustave Roussy Cancer Campus, Villejuif, France; Centre Régional Francois Baclesse, Avenue Du General Harris 3, Caen Cedex 5 14076, France; Centre Hospitalier Universitaire d'Angers, Rue Larrey 4, Angers 49 000, France
| | - Melissa Christiaens
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Morten Høyer
- Aarhus University (AU), Nordre Ringgade 1, Aarhus C 8000, Denmark
| | - Sofie Isebaert
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Sandra Jacobs
- Department of Paediatric Oncology, UZ Leuven, Leuven 3000, Belgium; Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark
| | - Louise Tram Henriksen
- Department of Pediatric and Adolescent Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus 8200, Denmark
| | - John H Maduro
- Department of Radiation Oncology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Cecile Ronckers
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Theresa Steinmeier
- Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| | - Anne Uyttebroeck
- Department of Paediatric Oncology, UZ Leuven, Leuven 3000, Belgium
| | - Karen Van Beek
- Department of Radiation Oncology, UZ Leuven & Department of Oncology, KU Leuven, Leuven 3000, Belgium
| | - Linda Walsh
- Department of Physics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | - Beate Timmermann
- University Hospital Essen (UK Essen), Hufelandstrasse 55, Essen 45147, Germany; Department of Particle Therapy - University Hospital Essen, West German Cancer Centre (WTZ), Hufelandstrasse 55, Essen 45147, Germany; West German Proton Therapy Centre Essen (WPE), Hufelandstr. 55, Essen 45147, Germany
| |
Collapse
|
11
|
Mertens L, Singh G, Armenian S, Chen MH, Dorfman AL, Garg R, Husain N, Joshi V, Leger KJ, Lipshultz SE, Lopez-Mattei J, Narayan HK, Parthiban A, Pignatelli RH, Toro-Salazar O, Wasserman M, Wheatley J. Multimodality Imaging for Cardiac Surveillance of Cancer Treatment in Children: Recommendations From the American Society of Echocardiography. J Am Soc Echocardiogr 2023; 36:1227-1253. [PMID: 38043984 DOI: 10.1016/j.echo.2023.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Affiliation(s)
- Luc Mertens
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Gautam Singh
- Children's Hospital of Michigan, Detroit, Michigan; Central Michigan University School of Medicine, Saginaw, Michigan
| | - Saro Armenian
- City of Hope Comprehensive Cancer Center, Duarte, California
| | - Ming-Hui Chen
- Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Adam L Dorfman
- University of Michigan, C.S. Mott Children's Hospital, Ann Arbor, Michigan
| | - Ruchira Garg
- Cedars-Sinai Heart Institute, Los Angeles, California
| | | | - Vijaya Joshi
- St. Jude Children's Research Hospital/University of Tennessee College of Medicine, Memphis, Tennessee
| | - Kasey J Leger
- University of Washington, Seattle Children's Hospital, Seattle, Washington
| | - Steven E Lipshultz
- University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Oishei Children's Hospital, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | | | - Hari K Narayan
- University of California San Diego, Rady Children's Hospital San Diego, San Diego, California
| | - Anitha Parthiban
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | | | - Olga Toro-Salazar
- Connecticut Children's Medical Center, University of Connecticut School of Medicine, Hartford, Connecticut
| | | | | |
Collapse
|