1
|
Bakhshivand M, Masoumi J, Ghorbaninezhad F, Aghebati-Maleki L, Shanebandi D, Sandoghchian Shotorbani S, Jadidi-Niaragh F, Baghbanzadeh A, Hemmat N, Baghbani E, Ghaffari A, Baradaran B. Boosting immunotherapy efficacy: Empowering the Potency of Dendritic cells loaded with breast cancer lysates through CTLA-4 suppression. Heliyon 2024; 10:e37699. [PMID: 39309891 PMCID: PMC11416247 DOI: 10.1016/j.heliyon.2024.e37699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Anticancer immunotherapies with a dendritic Cell (DC) basis are becoming more popular. However, it has been suggested that the tumor's immunosuppressive mechanisms, such as inhibitory immunological checkpoint molecules, reduce the effectiveness of anticancer immunogenicity mediated by DC. Thus, overcoming immune checkpoints and inducing effective antigen-specific T-cell responses uniquely produced with malignant cells represent the key challenges. Among the inhibitory immune checkpoints, DCs' ability to mature and present antigens is decreased by CTLA-4 expression. Consequently, we hypothesized that by expressing CTLA-4 cells on DCs, the T cells' activation against tumor antigens would be suppressed when confronted with these antigens presented by DCs. In this research, by loading cell lysate of breast cancer (BC) on DCs and the other hand by inhibiting the induction of CTLA-4 using small interfering RNA (siRNA), we assessed the functional activities and phenotypes of DCs, and also the responses associated with T-cells following co-culture DC/T cell. Our research has shown that the suppression of CTLA-4 enhanced the stimulating capabilities of DCs. Additionally, CTLA-4-suppressed BC cell lysate-loaded DCs produced more IL-4 and IFN-ϒ and increased T cell induction in contrast to DCs without CTLA-4 suppression. Together, our data point to CTLA-4-suppressed DCs loaded with BC cell lysate as a potentially effective treatment method. However, further research is required before employing this method in therapeutic contexts.
Collapse
Affiliation(s)
- Mohammad Bakhshivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Dariush Shanebandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaffari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Singh T, Bhattacharya M, Mavi AK, Gulati A, Rakesh, Sharma NK, Gaur S, Kumar U. Immunogenicity of cancer cells: An overview. Cell Signal 2024; 113:110952. [PMID: 38084844 DOI: 10.1016/j.cellsig.2023.110952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023]
Abstract
The immune system assumes a pivotal role in the organism's capacity to discern and obliterate malignant cells. The immunogenicity of a cancer cell pertains to its proficiency in inciting an immunological response. The prowess of immunogenicity stands as a pivotal determinant in the triumph of formulating immunotherapeutic methodologies. Immunotherapeutic strategies include immune checkpoint inhibitors, chimeric antigen receptor (CAR) T-cell therapy, and on vaccines. Immunogenic cell death (ICD) epitomizes a form of cellular demise that incites an immune response against dying cells. ICD is characterized by the liberation of distinct specific molecules that activate the immune system, thereby leading to the identification and elimination of dying cells by immunocytes. One of the salient characteristics inherent to the ICD phenomenon resides in the vigorous liberation of adenosine triphosphate (ATP) by cellular entities dedicated to embarking upon the process of programmed cell death, yet refraining from complete apoptotic demise. ICD is initiated by a sequence of molecular events that occur during cell death. These occurrences encompass the unveiling or discharge of molecules such as calreticulin, high-mobility group box 1 (HMGB1), and adenosine triphosphate (ATP) from dying cells. These molecules act as "eat me" signals, which are recognized by immune cells, thereby prompting the engulfment and deterioration of expiring cells by phagocytes including various pathways such as Necroptosis, Apoptosis, and pyroptosis. Here, we review our current understanding of the pathophysiological importance of the immune responses against dying cells and the mechanisms underlying their activation. Overall, the ICD represents an important mechanism by which the immune system recognizes and eliminates dying cells, including cancer cells. Understanding the molecular events that underlie ICD bears the potential to engender innovative cancer therapeutics that harness the power of the immune system to combat cancer.
Collapse
Affiliation(s)
- Tanya Singh
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Delhi 110021, India
| | - Madhuri Bhattacharya
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Delhi 110021, India
| | - Anil Kumar Mavi
- Department of Botany, Sri Aurobindo College, University of Delhi, Delhi 110017, India.
| | - Anita Gulati
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Rakesh
- Janki Devi Memorial College, University of Delhi, Delhi 110060, India
| | - Naresh Kumar Sharma
- Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sonal Gaur
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Umesh Kumar
- School of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH9, Adhyatmik Nagar, Ghaziabad, Uttar Pradesh 201015, India.
| |
Collapse
|
3
|
Yang X, Yang J, Gu X, Tao Y, Ji H, Miao X, Shen S, Zang H. (-)-Guaiol triggers immunogenic cell death and inhibits tumor growth in non-small cell lung cancer. Mol Cell Biochem 2023; 478:1611-1620. [PMID: 36441354 PMCID: PMC10209243 DOI: 10.1007/s11010-022-04613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022]
Abstract
(-)-Guaiol is a sesquiterpenoid found in many traditional Chinese medicines with potent antitumor activity. However, its therapeutic effect and mechanism in non-small cell lung cancer (NSCLC) have not been fully elucidated. In this study, (-)-Guaiol was found to induce immunogenic cell death (ICD) in NSCLC in vitro. Using (-)-Guaiol in vivo, we found that (-)-Guaiol could suppress tumor growth, increase dendritic cell activation, and enhance T-cell infiltration. Vaccination experiments suggest that cellular immunoprophylaxis after (-)-Guaiol intervention can suppress tumor growth. Previous studies have found that (-)-Guaiol induces apoptosis and autophagy in NSCLC. Apoptosis and autophagy are closely related to ICD. To explore whether autophagy and apoptosis are involved in (-)-Guaiol-induced ICD, we used inhibitors of apoptosis and autophagy. The results showed that the release of damage-associated molecular patterns (DAMPs) was partly reversed after inhibition of apoptosis and autophagy. In conclusion, these results suggested that the (-)-Guaiol triggers immunogenic cell death and inhibits tumor growth in NSCLC.
Collapse
Affiliation(s)
- Xiaohui Yang
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Junling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu Province China
| | - Xiaoxia Gu
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Yuhua Tao
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Hongjuan Ji
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Xian Miao
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Shuijie Shen
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| | - Haiyang Zang
- Department of Spleen and Stomach, Nantong Hospital of Traditional Chinese Medicine, Nantong, 226000 China
| |
Collapse
|
4
|
Zheng D, Liu J, Xie L, Wang Y, Ding Y, Peng R, Cui M, Wang L, Zhang Y, Zhang C, Yang Z. Enzyme-instructed and mitochondria-targeting peptide self-assembly to efficiently induce immunogenic cell death. Acta Pharm Sin B 2021; 12:2740-2750. [PMID: 35755291 PMCID: PMC9214332 DOI: 10.1016/j.apsb.2021.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Immunogenic cell death (ICD) plays a major role in cancer immunotherapy by stimulating specific T cell responses and restoring the antitumor immune system. However, effective type II ICD inducers without biotoxicity are still very limited. Herein, a tentative drug- or photosensitizer-free strategy was developed by employing enzymatic self-assembly of the peptide F-pY-T to induce mitochondrial oxidative stress in cancer cells. Upon dephosphorylation catalyzed by alkaline phosphatase overexpressed on cancer cells, the peptide F-pY-T self-assembled to form nanoparticles, which were subsequently internalized. These affected the morphology of mitochondria and induced serious reactive oxygen species production, causing the ICD characterized by the release of danger-associated molecular patterns (DAMPs). DAMPs enhanced specific immune responses by promoting the maturation of DCs and the intratumoral infiltration of tumor-specific T cells to eradicate tumor cells. The dramatic immunotherapeutic capacity could be enhanced further by combination therapy of F-pY-T and anti-PD-L1 agents without visible biotoxicity in the main organs. Thus, our results revealed an alternative strategy to induce efficient ICD by physically promoting mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Debin Zheng
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Jingfei Liu
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Limin Xie
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Yuhan Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Yinghao Ding
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Rong Peng
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
| | - Min Cui
- Department of Human Anatomy, Nanjing Medical University, Nanjing 211166, China
| | - Ling Wang
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Yongjie Zhang
- Department of Human Anatomy, Nanjing Medical University, Nanjing 211166, China
- Corresponding authors. Tel./fax: +86 25 86869485 (Yongjie Zhang); +86 22 23502875 (Chunqiu Zhang and Zhimou Yang).
| | - Chunqiu Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
- Corresponding authors. Tel./fax: +86 25 86869485 (Yongjie Zhang); +86 22 23502875 (Chunqiu Zhang and Zhimou Yang).
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Collaborative Innovation Center of Chemical Science and Engineering, National Institute of Functional Materials, Nankai University, Tianjin 300071, China
- Corresponding authors. Tel./fax: +86 25 86869485 (Yongjie Zhang); +86 22 23502875 (Chunqiu Zhang and Zhimou Yang).
| |
Collapse
|
5
|
Llopiz D, Ruiz M, Silva L, Repáraz D, Aparicio B, Egea J, Lasarte JJ, Redin E, Calvo A, Angel M, Berzofsky JA, Stroncek D, Sarobe P. Inhibition of adjuvant-induced TAM receptors potentiates cancer vaccine immunogenicity and therapeutic efficacy. Cancer Lett 2020; 499:279-289. [PMID: 33232788 DOI: 10.1016/j.canlet.2020.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 01/19/2023]
Abstract
Analyzing immunomodulatory elements operating during antitumor vaccination in prostate cancer patients and murine models we identified IL-10-producing DC as a subset with poorer immunogenicity and clinical efficacy. Inhibitory TAM receptors MER and AXL were upregulated on murine IL-10+ DC. Thus, we analyzed conditions inducing these molecules and the potential benefit of their blockade during vaccination. MER and AXL upregulation was more efficiently induced by a vaccine containing Imiquimod than by a poly(I:C)-containing vaccine. Interestingly, MER expression was found on monocyte-derived DC, and was dependent on IL-10. TAM blockade improved Imiquimod-induced DC activation in vitro and in vivo, resulting in increased vaccine-induced T-cell responses, which were further reinforced by concomitant IL-10 inhibition. In different tumor models, a triple therapy (including vaccination, TAM inhibition and IL-10 blockade) provided the strongest therapeutic effect, associated with enhanced T-cell immunity and enhanced CD8+ T cell tumor infiltration. Finally, MER levels in DC used for vaccination in cancer patients correlated with IL-10 expression, showing an inverse association with vaccine-induced clinical response. These results suggest that TAM receptors upregulated during vaccination may constitute an additional target in combinatorial therapeutic vaccination strategies.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Animals
- CD8-Positive T-Lymphocytes/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Imiquimod/administration & dosage
- Immunogenicity, Vaccine/drug effects
- Immunotherapy/methods
- Interleukin-10/metabolism
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/therapy
- Mice
- Mice, Transgenic
- Poly I-C/administration & dosage
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/therapy
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/genetics
- Pyrimidines
- Quinolines
- Receptor Protein-Tyrosine Kinases/antagonists & inhibitors
- Receptor Protein-Tyrosine Kinases/genetics
- Up-Regulation/drug effects
- Up-Regulation/immunology
- c-Mer Tyrosine Kinase/antagonists & inhibitors
- c-Mer Tyrosine Kinase/genetics
- Axl Receptor Tyrosine Kinase
Collapse
Affiliation(s)
- Diana Llopiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Marta Ruiz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Leyre Silva
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - David Repáraz
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Belén Aparicio
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Josune Egea
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Juan J Lasarte
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Esther Redin
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Alfonso Calvo
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERONC, ISCIII, Madrid, Spain; Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Matthew Angel
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Center for Cancer Research Collaborative Bioinformatics Resource, Leidos Biomedical Research, Inc., FNLCR, Frederick, MD, USA
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David Stroncek
- Center for Cellular Engineering, Department of Transfusion Medicine, NIH Clinical Center, Bethesda, MD, USA
| | - Pablo Sarobe
- Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| |
Collapse
|
6
|
Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci 2020; 254:117580. [DOI: 10.1016/j.lfs.2020.117580] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 12/29/2022]
|
7
|
Zhang M, Shi Y, Zhang Y, Wang Y, Alotaibi F, Qiu L, Wang H, Peng S, Liu Y, Li Q, Gao D, Wang Z, Yuan K, Dou FF, Koropatnick J, Xiong J, Min W. miRNA-5119 regulates immune checkpoints in dendritic cells to enhance breast cancer immunotherapy. Cancer Immunol Immunother 2020; 69:951-967. [PMID: 32076794 DOI: 10.1007/s00262-020-02507-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022]
Abstract
Dendritic cell (DC) based immunotherapy is a promising approach to clinical cancer treatment. miRNAs are a class of small non-coding RNA molecules that bind to RNAs to mediate multiple events which are important in diverse biological processes. miRNA mimics and antagomirs may be potent agents to enhance DC-based immunotherapy against cancers. miRNA array analysis was used to identify a representative miR-5119 potentially regulating PD-L1 in DCs. We evaluated levels of ligands of immune cell inhibitory receptors (IRs) and miR-5119 in DCs from immunocompetent mouse breast tumor-bearing mice, and examined the molecular targets of miR-5119. We report that miRNA-5119 was downregulated in spleen DCs from mouse breast cancer-bearing mice. In silico analysis and qPCR data showed that miRNA-5119 targeted mRNAs encoding multiple negative immune regulatory molecules, including ligands of IRs such as PD-L1 and IDO2. DCs engineered to express a miR-5119 mimic downregulated PD-L1 and prevented T cell exhaustion in mice with breast cancer homografts. Moreover, miR-5119 mimic-engineered DCs effectively restored function to exhausted CD8+ T cells in vitro and in vivo, resulting in robust anti-tumor cell immune response, upregulated cytokine production, reduced T cell apoptosis, and exhaustion. Treatment of 4T1 breast tumor-bearing mice with miR-5119 mimic-engineered DC vaccine reduced T cell exhaustion and suppressed mouse breast tumor homograft growth. This study provides evidence supporting a novel therapeutic approach using miRNA-5119 mimic-engineered DC vaccines to regulate inhibitory receptors and enhance anti-tumor immune response in a mouse model of breast cancer. miRNA/DC-based immunotherapy has potential for advancement to the clinic as a new strategy for DC-based anti-breast cancer immunotherapy.
Collapse
Affiliation(s)
- Meng Zhang
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China
| | - Yanmei Shi
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China.,Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yujuan Zhang
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China.
| | - Yifan Wang
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China.,Jiangxi Cancer Hospital, Nanchang, China
| | - Faizah Alotaibi
- Departments of Surgery, Pathology, Oncology, Microbiology and Immunology, University of Western Ontario, London, Canada.,The Lawson Health Research Institute, London, ON, Canada
| | - Li Qiu
- Department of Endocrinology of Metabolism, Peking University People's Hospital, Beijing, China
| | - Hongmei Wang
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China
| | - Shanshan Peng
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China
| | - Yanling Liu
- Jiangxi University of Technology, Nanchang, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dian Gao
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China
| | - Zhigang Wang
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China
| | - Keng Yuan
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China
| | | | - James Koropatnick
- Departments of Surgery, Pathology, Oncology, Microbiology and Immunology, University of Western Ontario, London, Canada.,The Lawson Health Research Institute, London, ON, Canada
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiping Min
- Medical Laboratory Education Center, Colleges of Basic Medicine and Pharmacology, Jiangxi Academy of Medical Sciences, Nanchang University, Nanchang, China. .,Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China. .,Departments of Surgery, Pathology, Oncology, Microbiology and Immunology, University of Western Ontario, London, Canada. .,The Lawson Health Research Institute, London, ON, Canada.
| |
Collapse
|
8
|
Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell death in cancer therapy: Present and emerging inducers. J Cell Mol Med 2019; 23:4854-4865. [PMID: 31210425 PMCID: PMC6653385 DOI: 10.1111/jcmm.14356] [Citation(s) in RCA: 480] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/07/2019] [Accepted: 04/12/2019] [Indexed: 12/19/2022] Open
Abstract
In the tumour microenvironment (TME), immunogenic cell death (ICD) plays a major role in stimulating the dysfunctional antitumour immune system. Chronic exposure of damage-associated molecular patterns (DAMPs) attracts receptors and ligands on dendritic cells (DCs) and activates immature DCs to transition to a mature phenotype, which promotes the processing of phagocytic cargo in DCs and accelerates the engulfment of antigenic components by DCs. Consequently, via antigen presentation, DCs stimulate specific T cell responses that kill more cancer cells. The induction of ICD eventually results in long-lasting protective antitumour immunity. Through the exploration of ICD inducers, recent studies have shown that there are many novel modalities with the ability to induce immunogenic cancer cell death. In this review, we mainly discussed and summarized the emerging methods for inducing immunogenic cancer cell death. Concepts and molecular mechanisms relevant to antitumour effects of ICD are also briefly discussed.
Collapse
Affiliation(s)
- Jingyi Zhou
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Fourth Clinical College, Xinxiang Medical University, Henan, China
| | - Gangyang Wang
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinze Chen
- Fourth Clinical College, Xinxiang Medical University, Henan, China
| | - Hongxia Wang
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yingqi Hua
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengdong Cai
- Department of Orthopaedics, Shanghai Bone Tumor Institute, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Nicolini A, Ferrari P, Rossi G, Carpi A. Tumour growth and immune evasion as targets for a new strategy in advanced cancer. Endocr Relat Cancer 2018; 25:R577–R604. [PMID: 30306784 DOI: 10.1530/erc-18-0142] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has become clearer that advanced cancer, especially advanced breast cancer, is an entirely displayed pathological system that is much more complex than previously considered. However, the direct relationship between tumour growth and immune evasion can represent a general rule governing the pathological cancer system from the initial cancer cells to when the system is entirely displayed. Accordingly, a refined pathobiological model and a novel therapeutic strategy are proposed. The novel therapeutic strategy is based on therapeutically induced conditions (undetectable tumour burden and/or a prolonged tumour ‘resting state’), which enable an efficacious immune response in advanced breast and other types of solid cancers.
Collapse
Affiliation(s)
- Andrea Nicolini
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Paola Ferrari
- Department of Oncology, Transplantations and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Giuseppe Rossi
- Unit of Epidemiology and Biostatistics, Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | - Angelo Carpi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
10
|
Capone I, Marchetti P, Ascierto PA, Malorni W, Gabriele L. Sexual Dimorphism of Immune Responses: A New Perspective in Cancer Immunotherapy. Front Immunol 2018; 9:552. [PMID: 29619026 PMCID: PMC5871673 DOI: 10.3389/fimmu.2018.00552] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/05/2018] [Indexed: 12/17/2022] Open
Abstract
Nowadays, several types of tumors can benefit from the new frontier of immunotherapy, due to the recent increasing knowledge of the role of the immune system in cancer control. Among the new therapeutic strategies, there is the immune checkpoint blockade (ICB), able to restore an efficacious antitumor immunity and significantly prolong the overall survival (OS) of patients with advanced tumors such as melanoma and non-small cell lung cancer (NSCLC). Despite the impressive efficacy of these agents in some patients, treatment failure and resistance are frequently observed. In this regard, the signaling governed by IFN type I (IFN-I) has emerged as pivotal in orchestrating host defense. This pathway displays different activation between sexes, thus potentially contributing to sexual dimorphic differences in the immune responses to immunotherapy. This perspective article aims to critically consider the immune signals, with particular attention to IFN-I, that may differently affect female and male antitumor responses upon immunotherapy.
Collapse
Affiliation(s)
- Imerio Capone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Marchetti
- Department of Oncology, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Paolo Antonio Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori Fondazione G. Pascale (IRCCS), Naples, Italy
| | - Walter Malorni
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
11
|
Obermajer N, Urban J, Wieckowski E, Muthuswamy R, Ravindranathan R, Bartlett DL, Kalinski P. Promoting the accumulation of tumor-specific T cells in tumor tissues by dendritic cell vaccines and chemokine-modulating agents. Nat Protoc 2018; 13:335-357. [PMID: 29345636 DOI: 10.1038/nprot.2017.130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This protocol describes how to induce large numbers of tumor-specific cytotoxic T cells (CTLs) in the spleens and lymph nodes of mice receiving dendritic cell (DC) vaccines and how to modulate tumor microenvironments (TMEs) to ensure effective homing of the vaccination-induced CTLs to tumor tissues. We also describe how to evaluate the numbers of tumor-specific CTLs within tumors. The protocol contains detailed information describing how to generate a specialized DC vaccine with augmented ability to induce tumor-specific CTLs. We also describe methods to modulate the production of chemokines in the TME and show how to quantify tumor-specific CTLs in the lymphoid organs and tumor tissues of mice receiving different treatments. The combined experimental procedure, including tumor implantation, DC vaccine generation, chemokine-modulating (CKM) approaches, and the analyses of tumor-specific systemic and intratumoral immunity is performed over 30-40 d. The presented ELISpot-based ex vivo CTL assay takes 6 h to set up and 5 h to develop. In contrast to other methods of evaluating tumor-specific immunity in tumor tissues, our approach allows detection of intratumoral T-cell responses to nonmanipulated weakly immunogenic cancers. This detection method can be performed using basic laboratory skills, and facilitates the development and preclinical evaluation of new immunotherapies.
Collapse
Affiliation(s)
- Nataša Obermajer
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julie Urban
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eva Wieckowski
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Capone I, Marchetti P, Ascierto PA, Malorni W, Gabriele L. Sexual Dimorphism of Immune Responses: A New Perspective in Cancer Immunotherapy. Front Immunol 2018. [PMID: 29619026 DOI: 10.3389/fimmu.2018.0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Nowadays, several types of tumors can benefit from the new frontier of immunotherapy, due to the recent increasing knowledge of the role of the immune system in cancer control. Among the new therapeutic strategies, there is the immune checkpoint blockade (ICB), able to restore an efficacious antitumor immunity and significantly prolong the overall survival (OS) of patients with advanced tumors such as melanoma and non-small cell lung cancer (NSCLC). Despite the impressive efficacy of these agents in some patients, treatment failure and resistance are frequently observed. In this regard, the signaling governed by IFN type I (IFN-I) has emerged as pivotal in orchestrating host defense. This pathway displays different activation between sexes, thus potentially contributing to sexual dimorphic differences in the immune responses to immunotherapy. This perspective article aims to critically consider the immune signals, with particular attention to IFN-I, that may differently affect female and male antitumor responses upon immunotherapy.
Collapse
Affiliation(s)
- Imerio Capone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Paolo Marchetti
- Department of Oncology, Sapienza University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Paolo Antonio Ascierto
- Unit of Melanoma, Cancer Immunotherapy and Innovative Therapy, Istituto Nazionale Tumori Fondazione G. Pascale (IRCCS), Naples, Italy
| | - Walter Malorni
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Gabriele
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
13
|
Bhargava A, Mishra DK, Jain SK, Srivastava RK, Lohiya NK, Mishra PK. Comparative assessment of lipid based nano-carrier systems for dendritic cell based targeting of tumor re-initiating cells in gynecological cancers. Mol Immunol 2016; 79:98-112. [PMID: 27764711 DOI: 10.1016/j.molimm.2016.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Abstract
We aimed to identify an optimum nano-carrier system to deliver tumor antigen to dendritic cells (DCs) for efficient targeting of tumor reinitiating cells (TRICs) in gynecological malignancies. Different lipid based nano-carrier systems i.e. liposomes, ethosomes and solid lipid nanoparticles (SLNPs) were examined for their ability to activate DCs in allogeneic settings. Out of these three, the most optimized formulation was subjected for cationic and mannosylated surface modification and pulsed with DCs for specific targeting of tumor cells. In both allogeneic and autologous trials, SLNPs showed a strong ability to activate DCs and orchestrate specific immune responses for targeting TRICs in gynecological malignancies. Our findings suggest that the mannosylated form of SLNPs is a suitable molecular vector for DC based therapeutics. DCs pulsed with mannosylated SLNPs may be utilized as adjuvant therapy for specific removal of TRICs to benefit patients from tumor recurrence.
Collapse
Affiliation(s)
- Arpit Bhargava
- School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | | | - Subodh K Jain
- School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Rupesh K Srivastava
- School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India
| | - Nirmal K Lohiya
- Centre for Advanced Studies in Zoology, University of Rajasthan, Jaipur, India
| | - Pradyumna K Mishra
- School of Biological Sciences, Dr. Harisingh Gour Central University, Sagar, India; Department of Molecular Biology, National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
14
|
Jiang Z, Zhang H, Wang Y, Yu B, Wang C, Liu C, Lu J, Chen F, Wang M, Yu X, Lin J, Pan X, Wang P, Zhu H. Altered Hepa1-6 cells by dimethyl sulfoxide (DMSO)-treatment induce anti-tumor immunity in vivo. Oncotarget 2016; 7:9340-52. [PMID: 26824185 PMCID: PMC4891044 DOI: 10.18632/oncotarget.7009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/01/2016] [Indexed: 12/30/2022] Open
Abstract
Cancer immunotherapy is the use of the immune system to treat cancer. Our current research proposed an optional strategy of activating immune system involving in cancer immunotherapy. When being treated with 2% DMSO in culture medium, Hepa1-6 cells showed depressed proliferation with no significant apoptosis or decreased viability. D-hep cells, Hepa1-6 cells treated with DMSO for 7 days, could restore to the higher proliferation rate in DMSO-free medium, but alteration of gene expression profile was irreversible. Interestingly, tumors from D-hep cells, not Hepa1-6 cells, regressed in wild-type C57BL/6 mice whereas D-hep cells exhibited similar tumorigenesis as Hep1–6 cells in immunodeficient mice. As expected, additional Hepa1-6 cells failed to form tumors in the D-hep-C57 mice in which D-hep cells were eliminated. Further research confirmed that D-hep-C57 mice established anti-tumor immunity against Hepa1-6 cells. Our research proposed viable tumor cells with altered biological features by DMSO-treatment could induce anti-tumor immunity in vivo.
Collapse
Affiliation(s)
- Zhengyu Jiang
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China.,Department of Anesthesiology, Second Military Medical University, Shanghai, P.R. China
| | - Hongxia Zhang
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Ye Wang
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Bin Yu
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Chen Wang
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Changcheng Liu
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Juan Lu
- Training Department, Second Military Medical University, Shanghai, P.R. China
| | - Fei Chen
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Minjun Wang
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Xinlu Yu
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| | - Jiahao Lin
- School of Clinic Medicine, Second Military Medical University, Shanghai, P.R. China
| | - Xinghua Pan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Pin Wang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, P.R. China
| | - Haiying Zhu
- Department of Cell Biology, Second Military Medical University, Shanghai, P.R. China.,Center for Stem Cell and Medicine, The Graduate School, Second Military Medical University, Shanghai, P.R. China
| |
Collapse
|
15
|
Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, Fromm PD, Hart DN, Van Tendeloo VF, Berneman ZN. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacol Rev 2015; 67:731-53. [PMID: 26240218 DOI: 10.1124/pr.114.009456] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Although the earliest—rudimentary—attempts at exploiting the immune system for cancer therapy can be traced back to the late 18th Century, it was not until the past decade that cancer immunotherapeutics have truly entered mainstream clinical practice. Given their potential to stimulate both adaptive and innate antitumor immune responses, dendritic cells (DCs) have come under intense scrutiny in recent years as pharmacological tools for cancer immunotherapy. Conceptually, the clinical effectiveness of this form of active immunotherapy relies on the completion of three critical steps: 1) the DCs used as immunotherapeutic vehicles must properly activate the antitumor immune effector cells of the host, 2) these immune effector cells must be receptive to stimulation by the DCs and be competent to mediate their antitumor effects, which 3) requires overcoming the various immune-inhibitory mechanisms used by the tumor cells. In this review, following a brief overview of the pivotal milestones in the history of cancer immunotherapy, we will introduce the reader to the basic immunobiological and pharmacological principles of active cancer immunotherapy using DCs. We will then discuss how current research is trying to define the optimal parameters for each of the above steps to realize the full clinical potential of DC therapeutics. Given its high suitability for immune interventions, acute myeloid leukemia was chosen here to showcase the latest research trends driving the field of DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Sébastien Anguille
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Evelien L Smits
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Christian Bryant
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Heleen H Van Acker
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Herman Goossens
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Eva Lion
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Phillip D Fromm
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | | | - Viggo F Van Tendeloo
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| | - Zwi N Berneman
- Faculty of Medicine and Health Sciences, Vaccine & Infectious Disease Institute, Laboratory of Experimental Hematology, Tumor Immunology Group (S.A., H.H.V.A., H.G., E.L., V.F.V.T., Z.N.B.), and Faculty of Medicine and Health Sciences, Center for Oncological Research (E.L.S.), University of Antwerp, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium (S.A., E.L.S., Z.N.B.); and ANZAC Research Institute, Dendritic Cell Biology and Therapeutics Group, University of Sydney, Sydney, New South Wales, Australia (C.B., P.D.F.)
| |
Collapse
|