1
|
Halter S, Rosenzwajg M, Klatzmann D, Sitbon A, Monsel A. Regulatory T Cells in Acute Respiratory Distress Syndrome: Current Status and Potential for Future Immunotherapies. Anesthesiology 2024; 141:755-764. [PMID: 39037703 DOI: 10.1097/aln.0000000000005047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
This Clinical Focus Review aims to comprehensively assess current knowledge regarding the biology of Tregs and their role in COVID-19–associated and nonassociated ARDS, focusing on their involvement during the acute and resolution phases of the disease. The authors discuss the potential of Treg-based cell therapies and drugs targeting Tregs as therapeutic strategies in ARDS.
Collapse
Affiliation(s)
- Sébastien Halter
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris Sorbonne University, Paris, France; Sorbonne University-INSERM UMRS_959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; and Biotherapy (CIC-BTi), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Michelle Rosenzwajg
- Sorbonne University-INSERM UMRS_959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; Biotherapy (CIC-BTi), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - David Klatzmann
- Sorbonne University-INSERM UMRS_959, Immunology-Immunopathology-Immunotherapy (I3), Paris, France; Biotherapy (CIC-BTi), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandre Sitbon
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris Sorbonne University, Paris, France; Sorbonne University, INSERM, Centre de Recherche de Saint-Antoine, UMRS-938, Paris, France
| | - Antoine Monsel
- Multidisciplinary Intensive Care Unit, Department of Anesthesiology and Critical Care, La Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris Sorbonne University, Paris, France; Sorbonne University-INSERM UMRS_959, Immunology-Immunopathology-Immunotherapy (I3), 75013 Paris, France; Biotherapy (CIC-BTi), Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
2
|
Jiao L, Jin H, Song Z, Wang Z, Yu L, Yu R, Wang D, Gao Q, Peng S, Sun H, Zhang T, Wang XF, Liu Z. The effect of lentinan on dexamethasone-induced immunosuppression in mice. Int J Biol Macromol 2024; 264:130621. [PMID: 38447834 DOI: 10.1016/j.ijbiomac.2024.130621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The immune system acts as a vital defense barrier against pathogenic invasions, and its stable operation is crucial for maintaining body health. Nevertheless, various natural or artificial factors can compromise the body's immune function, leading to immunosuppression, which may interfere with the efficacy of vaccination and increase the susceptibility of the body to disease-causing pathogens. In an effort to ensure successful vaccinations and improve overall physical well-being, the search for appropriate immune regulators to enhance immunity is of paramount importance. Lentinan (LNT) has a significant role in immune regulation and vaccine adjuvants. In the present study, we constructed an immunosuppressive model using dexamethasone (DEX) and demonstrated that LNT could significantly improved antibody levels in immunosuppressive mice and stimulated T-lymphocyte proliferation and differentiation in intestinal Peyer's patches. LNT also increased the production of secretory immunoglobulin A (sIgA) in the duodenal fluid, the number of goblet cells, and the proportion of mucin area. Moreover, LNT modulated the intestinal microbiota and increased the production of short-chain fatty acids. Additionally, LNT promoted the proliferation, differentiation, and pro-inflammatory cytokines production of DEX-treated splenic T lymphocytes in vitro. Thus, the present study highlights the potential of LNT in reversing immunosuppression and avoiding the failure of vaccination.
Collapse
Affiliation(s)
- Lina Jiao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haiyan Jin
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zuchen Song
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zheng Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lin Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ruihong Yu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Deyun Wang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qian Gao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Song Peng
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Haifeng Sun
- Key Laboratory of Bacteriology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, PR China
| | - Xue Fei Wang
- Key Laboratory of Chinese Veterinary Medicine, Henan Universty of Animal Husbandry and Economy, Zhengzhou 450046, PR China
| | - Zhenguang Liu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Sandor LF, Ragacs R, Gyori DS. Local Effects of Steroid Hormones within the Bone Microenvironment. Int J Mol Sci 2023; 24:17482. [PMID: 38139309 PMCID: PMC10744126 DOI: 10.3390/ijms242417482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Steroid hormone production via the adrenal cortex, gonads, and placenta (so-called glandular steroidogenesis) is responsible for the endocrine control of the body's homeostasis and is organized by a feedback regulatory mechanism based on the hypothalamus-pituitary-steroidogenic gland axis. On the other hand, recently discovered extraglandular steroidogenesis occurring locally in different tissues is instead linked to paracrine or autocrine signaling, and it is independent of the control by the hypothalamus and pituitary glands. Bone cells, such as bone-forming osteoblasts, osteoblast-derived osteocytes, and bone-resorbing osteoclasts, respond to steroid hormones produced by both glandular and extraglandular steroidogenesis. Recently, new techniques to identify steroid hormones, as well as synthetic steroids and steroidogenesis inhibitors, have been introduced, which greatly empowered steroid hormone research. Based on recent literature and new advances in the field, here we review the local role of steroid hormones in regulating bone homeostasis and skeletal lesion formation. The novel idea of extraglandular steroidogenesis occurring within the skeletal system raises the possibility of the development of new therapies for the treatment of bone diseases.
Collapse
Affiliation(s)
| | | | - David S. Gyori
- Department of Physiology, School of Medicine, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
4
|
Ahmad Merza Mohammad T. Combining nano-curcumin with catechin improves COVID-19-infected patient's inflammatory conditions. Hum Immunol 2023; 84:471-483. [PMID: 37331910 PMCID: PMC10239908 DOI: 10.1016/j.humimm.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/30/2023] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
AIMS A hyperinflammatory condition is brought on by the development of Coronavirus disease 2019 (COVID-19), which is characterized by an elevation of T helper (Th) 17 cells, high levels of pro-inflammatory cytokines, and a depletion of regulatory T (Treg) cells. METHODS In this research, we examined the effect of nano-curcumin and catechin on the TCD4+, TCD8+, Th17, and Treg cells and their associated factors in COVID-19 patients. For this purpose, 160 (50 patients excluded during the study) COVID-19 patients were divided into four groups: placebo, nano-curcumin, catechin, and nano-curcumin + catechin. The frequency of TCD4+, TCD8+, Th17, and Treg cells, the gene expression of transcription factors (STAT3, RORt, and FoxP3) relevant to Th17 and Treg, as well as the serum levels of cytokines (IL-6, IL17, IL1-b, IL-10, and TGF-), were all evaluated intra- and inter-group, before and after treatment, in all groups. RESULTS Our study showed that TCD4 + and TCD8 + cells were significantly higher in the nano-curcumin + catechin group compared to the control group, whereas Th17 was lower than the initial value. Furthermore, compared to the placebo-received group, cytokines and transcription factors associated with Th17 were significantly lower in the nano-curcumin + catechin group. Additionally, combined therapy increased Treg cells and transcription factors compared to the placebo group. CONCLUSION Overall, our results show that combining nano-curcumin with catechin has a more notable impact on the enhancement of TCD4+, TCD8+, and Treg cells, as well as a decrease in Th17 cells and their mediators, suggesting a promising combination therapy in reducing the inflammatory conditions of COVID-19 infected patients.
Collapse
|
5
|
Shnayder NA, Ashkhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Petrova MM, Narodova EA, Al-Zamil M, Chumakova GA, Garganeeva NP, Nasyrova RF. Molecular Basic of Pharmacotherapy of Cytokine Imbalance as a Component of Intervertebral Disc Degeneration Treatment. Int J Mol Sci 2023; 24:ijms24097692. [PMID: 37175399 PMCID: PMC10178334 DOI: 10.3390/ijms24097692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. With age, IDD progresses, leading to spondylosis, spondylarthrosis, herniated disc, spinal canal stenosis. One of the leading mechanisms in the development of IDD and chronic back pain is an imbalance between pro-inflammatory and anti-inflammatory cytokines. However, classical therapeutic strategies for correcting cytokine imbalance in IDD do not give the expected response in more than half of the cases. The purpose of this review is to update knowledge about new and promising therapeutic strategies based on the correction of the molecular mechanisms of cytokine imbalance in patients with IDD. This review demonstrates that knowledge of the molecular mechanisms of the imbalance between pro-inflammatory and anti-inflammatory cytokines may be a new key to finding more effective drugs for the treatment of IDD in the setting of acute and chronic inflammation.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azamat V Ashkhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Zaitun A Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Maxim A Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Galina A Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
6
|
Orlova E, Loginova O, Shirshev S. Leptin regulates thymic plasmacytoid dendritic cell ability to influence the thymocyte distribution in vitro. Int Immunopharmacol 2023; 117:109912. [PMID: 36857934 DOI: 10.1016/j.intimp.2023.109912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023]
Abstract
Leptin, the adipocyte-derived hormone, involved in regulating food intake and body weight, plays an important role in immunity and reproduction. Leptin signals via the specific membrane receptors expressed in most types of immune cells including dendritic cells (DCs) and thymocytes. Leptin enhances thymopoiesis and modulates T-cell-mediated immunity. Thymic plasmacytoid DCs (pDCs) are predominated in the thymus. They play an important role in thymocyte differentiation. We have analyzed whether leptin mediates its effects on human thymocytes by influencing on pDCs. We used leptin at concentration corresponding to its level during II-III trimesters of physiological pregnancy. We cultivated leptin-primed pDCs with autologous thymocytes and estimated the main thymocyte subsets expressing αβ chains of the T-cell receptor (αβTCR), natural regulatory T-cells (tTreg), natural T-helpers producing interleukin-17 (nTh17) and invariant natural killer T-cells (iNKT) in vitro. We have shown that leptin augmented CD86, CD276 expressions and depressed IL-10 productions by pDCs. Leptin-primed pDCs decreased the percentage of CD4+CD8+αβTCR+ thymocytes, increased CD4hiCD8-/loαβTCR+ cells. pDCs cultivated with leptin decreased the number of iNKT precursors, and did not change the number of tTreg and nTh17 precursors. Thus, leptin's important role in regulation of thymic pDC abilities to influence on the thymocyte distribution was indicated in vitro.
Collapse
Affiliation(s)
- Ekaterina Orlova
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| | - Olga Loginova
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| | - Sergei Shirshev
- Laboratory of Immunoregulation, Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina str., 614015 Perm, Russia.
| |
Collapse
|
7
|
Perna-Barrull D, Gomez-Muñoz L, Rodriguez-Fernandez S, Gieras A, Ampudia-Carrasco RM, Almenara-Fuentes L, Risueño RM, Querol S, Tolosa E, Vives-Pi M. Impact of Betamethasone Pretreatment on Engrafment of Cord Blood-Derived Hematopoietic Stem Cells. Arch Immunol Ther Exp (Warsz) 2023; 71:1. [PMID: 36528821 PMCID: PMC9760591 DOI: 10.1007/s00005-022-00666-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022]
Abstract
Hematopoietic stem cell (HSC) transplantation is crucial to cure hematologic malignancies. Umbilical cord blood (UCB) is a source of stem cells, but 90% of UCB units are discarded due to low cellularity. Improving the engraftment capacities of CD34+ stem cells would allow the use of UCB that were so far rejected. Betamethasone induces long-term transcriptomic and epigenomic changes in immune cells through glucocorticoid receptor. We hypothesize that discarded UCB could be used owing to improvements induced by betamethasone. Isolated CD34+ HSC from UCB were exposed to the synthetic glucocorticoids betamethasone and fluticasone for 20 h, and cell phenotype was determined before transplantation. NSG mice were sub-lethally irradiated (1 Gy or 2 Gy) 6 h before intravenously transferring 2-5 × 105 CD34+ HSC. The peripheral blood engraftment levels and the leukocyte subsets were followed up for 20 weeks using flow cytometry. At end point, the engraftment and leukocyte subsets were determined in the spleen and bone marrow. We demonstrated that betamethasone has surprising effects in recovering immune system homeostasis. Betamethasone and fluticasone increase CXCR4 and decrease HLA class II and CD54 expression in CD34+ HSCs. Both glucocorticoids-exposed cells showed a similar engraftment in 2 Gy-irradiated NSG mice. Interestingly, betamethasone-exposed cells showed enhanced engraftment in 1 Gy-irradiated NSG mice, with a trend to increase regulatory T cell percentage when compared to control. Betamethasone induces alterations in CD34+ HSCs and improve the engraftment, leading to a faster immune system recovery, which will contribute to engrafted cells survival.
Collapse
Affiliation(s)
- David Perna-Barrull
- grid.7080.f0000 0001 2296 0625Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Laia Gomez-Muñoz
- grid.7080.f0000 0001 2296 0625Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- grid.7080.f0000 0001 2296 0625Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Anna Gieras
- grid.13648.380000 0001 2180 3484Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rosa M. Ampudia-Carrasco
- grid.7080.f0000 0001 2296 0625Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | | | - Ruth M. Risueño
- grid.429289.cJosep Carreras Leukaemia Research Institute, Campus IGTP-ICO, Badalona, Spain
| | - Sergi Querol
- grid.438280.5Cell Therapy Services and Cord Blood Bank, Catalan Blood and Tissue Bank, Barcelona, Spain
| | - Eva Tolosa
- grid.13648.380000 0001 2180 3484Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Vives-Pi
- grid.7080.f0000 0001 2296 0625Immunology Department, Germans Trias I Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| |
Collapse
|
8
|
Sun JL, Lyu TB, Chen ZL, Lian CF, Liu SY, Shao TH, Zhang S, Zhao LL, Liu JJ, Peng LY, Zhang L, Yang YJ, Zhang FC, Chen H. Methylprednisolone pulse therapy promotes the differentiation of regulatory T cells by inducing the apoptosis of CD4 + T cells in patients with systemic lupus erythematosus. Clin Immunol 2022; 241:109079. [PMID: 35842211 DOI: 10.1016/j.clim.2022.109079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the differentiation of regulatory T cells (Tregs) induced by methylprednisolone (MP) pulse therapy in patients with Systemic Lupus Erythematosus (SLE). METHODS We enrolled 30 patients with SLE and analyzed peripheral blood mononuclear cells (PBMCs) before and after MP pulse therapy. Peripheral Tregs, apoptosis of PBMCs subsets, and TGFβ production by monocytes was quantified by flow cytometry. Proliferation and IFN-γ production of CD4+ T cells were measured. Furthermore, TGFβ1 production by human monocyte-derived macrophages (HMDM) stimulated with MP-treated CD4+ T cells were quantified by ELISA. RESULTS Peripheral Tregs was significantly increased after MP pulse therapy (6.76 ± 1.46% vs. 3.82 ± 1.02%, p < 0.01), with an expansion of Nrp1- induced Tregs (4.54 ± 0.46% vs. 1.75 ± 0.38%, p < 0.01). Proliferation and IFN-γ production of CD4+ T cells were significantly decreased after MP pulse therapy. MP pulse therapy induced CD4+ T cell apoptosis (early apoptosis, 26.34 ± 3.54% vs. 14.81 ± 2.89%, p < 0.01) and TGFβ expression on monocytes (6.02% vs. 2.45%, p < 0.01). Furthermore, MP induced CD4+ T cell apoptosis in vitro, which stimulated HMDM to produce TGFβ. Moreover, elevated TGFβ level in supernatant from HMDM stimulated with MP-treated CD4+ T cells promoted Tregs differentiation. CONCLUSIONS MP pulse therapy induces CD4+ T cell apoptosis, which promotes monocytes to produce TGFβ and further facilitates Tregs differentiation. Newly-differentiated Tregs suppress proliferation and IFN-γ production of CD4+ T cells and contribute to immunoregulatory milieu after MP pulse therapy.
Collapse
Affiliation(s)
- Jin-Lei Sun
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China; Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tai-Biao Lyu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China
| | - Zhi-Lei Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China
| | - Chao-Feng Lian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China; Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su-Ying Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China
| | - Ti-Hong Shao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China
| | - Shuo Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China
| | - Li-Ling Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China
| | - Jin-Jing Liu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China; National Clinical Center for Dermatologic and Autoimmune Disorders, China
| | - Lin-Yi Peng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China; National Clinical Center for Dermatologic and Autoimmune Disorders, China
| | - Li Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China; National Clinical Center for Dermatologic and Autoimmune Disorders, China
| | - Yun-Jiao Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China; National Clinical Center for Dermatologic and Autoimmune Disorders, China
| | - Feng-Chun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China; National Clinical Center for Dermatologic and Autoimmune Disorders, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, China; National Clinical Center for Dermatologic and Autoimmune Disorders, China.
| |
Collapse
|
9
|
Yao Y, Miao X, Wang L, Jiang Z, Li L, Jiang P, Wang Y, Jin A, Li N, Wang C, Tan K, Meng Y, Bian J, Zhang Y, Deng X, Cao J. Methane Alleviates Lung Injury through the IL-10 Pathway by Increasing T Regulatory Cells in a Mouse Asthma Model. J Immunol Res 2022; 2022:6008376. [PMID: 35812246 PMCID: PMC9262571 DOI: 10.1155/2022/6008376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/31/2022] [Accepted: 06/11/2022] [Indexed: 01/31/2023] Open
Abstract
Allergic asthma is associated with allergen-induced airway hyperresponsiveness and inflammatory cell infiltration. While moderate-to-severe asthma with refractory symptoms is difficult to treat, methane is protective against organ damage. In this study, an asthmatic mouse model was established. Airway resistance under acetylcholine stimulation in asthmatic mice and histology of lung tissue injury were determined. EOS infiltration was determined by flow cytometry. Enzyme-linked immunosorbent assays (ELISAs) were performed for the determination of relevant cytokine levels in asthmatic mice with or without methane treatment. The potential mechanisms of methane under anti-IL-10 antibody intraperitoneal intervention were assessed by ELISA and flow cytometry. Pulmonary T regulatory cells (Tregs) were analyzed by flow cytometry, and anti-CD25 antibody was used to block them. Immunoblot analysis was performed to evaluate if methane played a role in the asthmatic lungs via the NF-κB and MAPKs pathways. The results showed that methane significantly improved airway compliance, relieved asthma-induced lung injury, and reduced EOS accumulation and inflammatory mediators in the lungs of ovalbumin-treated asthmatic mice. Anti-IL-10 treatment diminished the ameliorating effect of methane on asthma. In addition, methane enhanced pulmonary Tregs in asthma, which could be blocked by the anti-CD25 antibody. Further analysis revealed that methane decreased p-p65/p65 and p-p38/p38 expression. In conclusion, methane is a readily available and inexpensive molecule potentially suitable for human use, which can alleviate asthma-induced lung injury and EOS infiltration through the IL-10 pathway by increasing Tregs and decreasing NF-κB and p38 MAPK in a mouse model.
Collapse
Affiliation(s)
- Ying Yao
- Department of Anesthesiology, Navy Medical Center, Naval Military Medical University, Shanghai 200052, China
| | - Xiaoyong Miao
- Department of Anesthesiology, Navy Medical Center, Naval Military Medical University, Shanghai 200052, China
| | - Liping Wang
- Department of Anesthesiology, Fuzhou General Hospital of PLA, Fuzhou, China
| | - Zhengyu Jiang
- Department of Anesthesiology, Navy Medical Center, Naval Military Medical University, Shanghai 200052, China
| | - Lingxia Li
- Department of Gastroenterology, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Ping Jiang
- Department of Biochemistry and Psychopharmacology, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yifei Wang
- Department of Anesthesiology, Navy Medical Center, Naval Military Medical University, Shanghai 200052, China
| | - Aixia Jin
- Department of Anesthesiology, Navy Medical Center, Naval Military Medical University, Shanghai 200052, China
| | - Na Li
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Changli Wang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Kezhe Tan
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan Meng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jinjun Bian
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan Zhang
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoming Deng
- Department of Anesthesiology and Intensive Care, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianping Cao
- Department of Anesthesiology, Navy Medical Center, Naval Military Medical University, Shanghai 200052, China
| |
Collapse
|
10
|
Capelle CM, Chen A, Zeng N, Baron A, Grzyb K, Arns T, Skupin A, Ollert M, Hefeng FQ. Stress hormone signaling inhibits Th1 polarization in a CD4 T-cell-intrinsic manner via mTORC1 and the circadian gene PER1. Immunology 2022; 165:428-444. [PMID: 35143696 PMCID: PMC9426625 DOI: 10.1111/imm.13448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Stress hormones are believed to skew the CD4 T‐cell differentiation towards a Th2 response via a T‐cell‐extrinsic mechanism. Using isolated primary human naïve and memory CD4 T cells, here we show that both adrenergic‐ and glucocorticoid‐mediated stress signalling pathways play a CD4 naïve T‐cell‐intrinsic role in regulating the Th1/Th2 differentiation balance. Both stress hormones reduced the Th1 programme and cytokine production by inhibiting mTORC1 signalling via two parallel mechanisms. Stress hormone signalling inhibited mTORC1 in naïve CD4 T cells (1) by affecting the PI3K/AKT pathway and (2) by regulating the expression of the circadian rhythm gene, period circadian regulator 1 (PER1). Both stress hormones induced the expression of PER1, which inhibited mTORC1 signalling, thus reducing Th1 differentiation. This previously unrecognized cell‐autonomous mechanism connects stress hormone signalling with CD4 T‐cell differentiation via mTORC1 and a specific circadian clock gene, namely PER1.
Collapse
Affiliation(s)
- Christophe M Capelle
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, 2, avenue de Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Anna Chen
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Ni Zeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Communication, University of Luxembourg, 2, avenue de Université, L-4365, Esch-sur-Alzette, Luxembourg
| | - Alexandre Baron
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Thais Arns
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, L-4367, Belvaux, Luxembourg
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis (ORCA), University of Southern Denmark, Odense, 5000 C, Denmark
| | - Feng Q Hefeng
- Department of Infection and Immunity, Luxembourg Institute of Health (LIH), 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg.,Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, D-45122, Essen, Germany
| |
Collapse
|
11
|
Siomkajło M, Mizera Ł, Szymczak D, Kolačkov K, Grzegrzółka J, Bolanowski M, Daroszewski J. Effect of systemic steroid therapy in Graves' orbitopathy on regulatory T cells and Th17/Treg ratio. J Endocrinol Invest 2021; 44:2475-2484. [PMID: 33866536 DOI: 10.1007/s40618-021-01565-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Glucocorticoids are a mainstay treatment for Graves' orbitopathy, yet their exact mechanisms of action remain unclear. We aimed to determine whether the therapeutic effects of systemic steroid therapy in Graves' orbitopathy are mediated by changes in regulatory T lymphocytes (Tregs) and T helper 17 lymphocytes (Th17). METHODS We assessed Treg and Th17 levels in the peripheral blood of 32 patients with active, moderate-to-severe Graves' orbitopathy who received 12 weekly pulses of methylprednisolone, and determined their association with disease severity, disease activity, and treatment outcomes. The acute orbitopathy phase was confirmed based on clinical evaluation and magnetic resonance imaging, and assessed using the clinical activity score (CAS). The severity of the disease was classified according to ETA/EUGOGO guidelines, and quantified based on the total eye score. Treatment response was determined based on specific criteria (e.g., changes in CAS score, diplopia grade, visual acuity, etc.). Treg and Th17 cells were identified using flow cytometry. RESULTS Methylprednisolone treatment improved the activity of the disease and altered the Th17/Treg balance (i.e., the percentage of Tregs decreased while the number of Th17 cells remained unchanged). There was no association between the Treg/Th17 ratio and the activity and severity of the disease or the treatment response. CONCLUSIONS Therapeutic effects of steroid therapy in Graves' orbitopathy are not mediated by Treg and Th17 alterations in the peripheral blood. The decrease in peripheral Treg percentage is likely a consequence of the non-specific effects of steroids and does not impact clinical outcome.
Collapse
Affiliation(s)
- M Siomkajło
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland.
| | - Ł Mizera
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| | - D Szymczak
- Department of Haematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| | - K Kolačkov
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| | - J Grzegrzółka
- Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| | - M Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| | - J Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, 50-367, Wroclaw, Poland
| |
Collapse
|
12
|
Yang Z, Mitländer H, Vuorinen T, Finotto S. Mechanism of Rhinovirus Immunity and Asthma. Front Immunol 2021; 12:731846. [PMID: 34691038 PMCID: PMC8526928 DOI: 10.3389/fimmu.2021.731846] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
The majority of asthma exacerbations in children are caused by Rhinovirus (RV), a positive sense single stranded RNA virus of the Picornavirus family. The host has developed virus defense mechanisms that are mediated by the upregulation of interferon-activated signaling. However, the virus evades the immune system by inducing immunosuppressive cytokines and surface molecules like programmed cell death protein 1 (PD-1) and its ligand (PD-L1) on immunocompetent cells. Initially, RV infects epithelial cells, which constitute a physiologic mucosal barrier. Upon virus entrance, the host cell immediately recognizes viral components like dsRNA, ssRNA, viral glycoproteins or CpG-DNA by host pattern recognition receptors (PRRs). Activation of toll like receptors (TLR) 3, 7 and 8 within the endosome and through MDA-5 and RIG-I in the cytosol leads to the production of interferon (IFN) type I and other antiviral agents. Every cell type expresses IFNAR1/IFNAR2 receptors thus allowing a generalized antiviral activity of IFN type I resulting in the inhibition of viral replication in infected cells and preventing viral spread to non-infected cells. Among immune evasion mechanisms of the virus, there is downregulation of IFN type I and its receptor as well as induction of the immunosuppressive cytokine TGF-β. TGF-β promotes viral replication and is associated with induction of the immunosuppression signature markers LAP3, IDO and PD-L1. This article reviews the recent advances on the regulation of interferon type I expression in association with RV infection in asthmatics and the immunosuppression induced by the virus.
Collapse
Affiliation(s)
- Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Mitländer
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tytti Vuorinen
- Medical Microbiology, Turku University Hospital, Institut of Biomedicine, University of Turku, Turku, Finland
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
13
|
Shimba A, Ejima A, Ikuta K. Pleiotropic Effects of Glucocorticoids on the Immune System in Circadian Rhythm and Stress. Front Immunol 2021; 12:706951. [PMID: 34691020 PMCID: PMC8531522 DOI: 10.3389/fimmu.2021.706951] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Glucocorticoids (GCs) are a class of steroid hormones secreted from the adrenal cortex. Their production is controlled by circadian rhythm and stress, the latter of which includes physical restraint, hunger, and inflammation. Importantly, GCs have various effects on immunity, metabolism, and cognition, including pleiotropic effects on the immune system. In general, GCs have strong anti-inflammatory and immunosuppressive effects. Indeed, they suppress inflammatory cytokine expression and cell-mediated immunity, leading to increased risks of some infections. However, recent studies have shown that endogenous GCs induced by the diurnal cycle and dietary restriction enhance immune responses against some infections by promoting the survival, redistribution, and response of T and B cells via cytokine and chemokine receptors. Furthermore, although GCs are reported to reduce expression of Th2 cytokines, GCs enhance type 2 immunity and IL-17-associated immunity in some stress conditions. Taken together, GCs have both immunoenhancing and immunosuppressive effects on the immune system.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Aki Ejima
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Abstract
Die Allergenimmuntherapie (AIT) ist – neben der oft nicht suffizient durchzuführenden Allergenmeidung – die einzige kausale Therapie Ig(Immunglobulin)E-vermittelter Allergien gegen Aeroallergene und Hymenopterengifte. Sie kann je nach Allergen als subkutane Injektion (subkutane Immuntherapie [SCIT]) oder über eine sublinguale Applikation (sublinguale Immuntherapie [SLIT]) erfolgen, kürzlich wurde zudem auch ein Verfahren zur oralen Immuntherapie zur Behandlung der Nahrungsmittelallergie zugelassen. Neben der korrekten Indikationsstellung (positive Anamnese und Diagnostik einer IgE-vermittelten Allergie, Allergenkarenz nicht ausreichend möglich) sind mögliche Kontraindikationen und Risikofaktoren zu beachten. Zudem kann es unter einer AIT zu – potenziell auch lebensgefährlichen – Nebenwirkungen kommen. Im Folgenden sollen häufig gestellte Fragen und Fakten zur Entscheidungsfindung für die Durchführung und zum Risikomanagement der AIT beleuchtet und unter Berücksichtigung der aktuellen Datenlage diskutiert werden.
Collapse
|
15
|
Luo MH, Qian YQ, Huang DL, Luo JC, Su Y, Wang H, Yu SJ, Liu K, Tu GW, Luo Z. Tailoring glucocorticoids in patients with severe COVID-19: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1261. [PMID: 34532398 PMCID: PMC8421952 DOI: 10.21037/atm-21-1783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/10/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To discuss the pathogenesis of severe coronavirus disease 2019 (COVID-19) infection and the pharmacological effects of glucocorticoids (GCs) toward this infection. To review randomized controlled trials (RCTs) using GCs to treat patients with severe COVID-19, and investigate whether GC timing, dosage, or duration affect clinical outcomes. Finally. to discuss the use of biological markers, respiratory parameters, and radiological evidence to select patients for improved GC therapeutic precision. BACKGROUND COVID-19 has become an unprecedented global challenge. As GCs have been used as key immunomodulators to treat inflammation-related diseases, they may play key roles in limiting disease progression by modulating immune responses, cytokine production, and endothelial function in patients with severe COVID-19, who often experience excessive cytokine production and endothelial and renin-angiotensin system (RAS) dysfunction. Current clinical trials have partially proven this efficacy, but GC timing, dosage, and duration vary greatly, with no unifying consensus, thereby creating confusion. METHODS Publications through March 2021 were retrieved from the Web of Science and PubMed. Results from cited references in published articles were also included. CONCLUSIONS GCs play key roles in treating severe COVID-19 infections. Pharmacologically, GCs could modulate immune cells, reduce cytokine and chemokine, and improve endothelial functions in patients with severe COVID-19. Benefits of GCs have been observed in multiple clinical trials, but the timing, dosage and duration vary across studies. Tapering as an option is not widely accepted. However, early initiation of treatment, a tailored dosage with appropriate tapering may be of particular importance, but evidence is inconclusive and more investigations are needed. Biological markers, respiratory parameters, and radiological evidence could also help select patients for specific tailored treatments.
Collapse
Affiliation(s)
- Ming-Hao Luo
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Qi Qian
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dan-Lei Huang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing-Chao Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Su
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shen-Ji Yu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kai Liu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| |
Collapse
|
16
|
Prenek L, Litvai T, Balázs N, Kugyelka R, Boldizsár F, Najbauer J, Németh P, Berki T. Regulatory T cells are less sensitive to glucocorticoid hormone induced apoptosis than CD4 + T cells. Apoptosis 2021; 25:715-729. [PMID: 32737651 PMCID: PMC7527366 DOI: 10.1007/s10495-020-01629-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Earlier we have reported that thymic regulatory T cells (Treg) are resistant to in vivo glucocorticoid hormone (GC)-induced apoptosis, while the most GC-sensitive DP thymocytes died through the activation of mitochondrial apoptotic pathway. Here we analyzed the apoptosis-inducing effect of high dose (10-6 M) in vitro dexamethasone (DX) treatment in mouse thymic- and splenic Tregs and CD4+ T cells. Activation of both extrinsic and intrinsic apoptotic pathways started after 2 h of DX treatment in CD4 SP thymocytes and was 3 × higher than in CD4+ splenocytes, while in Treg cells, weak activation of the extrinsic apoptotic pathway started only after 3 h. We also investigated the expression of 21 apoptosis-related molecules using a protein array and found higher level of both pro-and anti-apoptotic molecules in Tregs compared to CD4+ T cells. 4 h in vitro DX treatment induced upregulation of most apoptosis-related molecules both in Tregs and CD4+ T cells, except for the decrease of Bcl-2 expression in CD4+ T cells. We found high basal cytosolic Ca2+ levels in untreated Treg cells, which further increased after DX treatment, while the specific TCR-induced Ca2+ signal was lower in Tregs than in CD4+ T cells. Our results suggest that in the background of the relative apoptosis resistance of Treg cells to GCs might be their high basal cytosolic Ca2+ level and upregulated Bcl-2 expression. In contrast, downregulation of Bcl-2 expression in CD4+ T cells can explain their higher, DX-induced apoptosis sensitivity.
Collapse
Affiliation(s)
- Lilla Prenek
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Tímea Litvai
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Noémi Balázs
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Réka Kugyelka
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - József Najbauer
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Timea Berki
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.
| |
Collapse
|
17
|
Chakraborty S, Pramanik J, Mahata B. Revisiting steroidogenesis and its role in immune regulation with the advanced tools and technologies. Genes Immun 2021; 22:125-140. [PMID: 34127827 PMCID: PMC8277576 DOI: 10.1038/s41435-021-00139-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/03/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022]
Abstract
Historically tools and technologies facilitated scientific discoveries. Steroid hormone research is not an exception. Unfortunately, the dramatic advancement of the field faded this research area and flagged it as a solved topic. However, it should have been the opposite. The area should glitter with its strong foundation and attract next-generation scientists. Over the past century, a myriad of new facts on biochemistry, molecular biology, cell biology, physiology and pathology of the steroid hormones was discovered. Several innovations were made and translated into life-saving treatment strategies such as synthetic steroids, and inhibitors of steroidogenesis and steroid signaling. Steroid molecules exhibit their diverse effects on cell metabolism, salt and water balance, development and function of the reproductive system, pregnancy, and immune-cell function. Despite vigorous research, the molecular basis of the immunomodulatory effect of steroids is still mysterious. The recent excitement on local extra-glandular steroidogenesis in regulating inflammation and immunity is revitalizing the topic with a new perspective. Therefore, here we review the role of steroidogenesis in regulating inflammation and immunity, discuss the unresolved questions, and how this area can bring another golden age of steroid hormone research with the development of new tools and technologies and advancement of the scientific methods.
Collapse
Affiliation(s)
| | - Jhuma Pramanik
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Bidesh Mahata
- Department of Pathology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
18
|
Clinical Significance of Tumor Infiltrating Lymphocytes in Association with Hormone Receptor Expression Patterns in Epithelial Ovarian Cancer. Int J Mol Sci 2021; 22:ijms22115714. [PMID: 34071938 PMCID: PMC8198528 DOI: 10.3390/ijms22115714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Hormone receptor expression patterns often correlate with infiltration of specific lymphocytes in tumors. Specifically, the presence of specific tumor-infiltrating lymphocytes (TILs) with particular hormone receptor expression is reportedly associated with breast cancer, however, this has not been revealed in epithelial ovarian cancer (EOC). Therefore, we investigated the association between hormone receptor expression and TILs in EOC. Here we found that ERα, AR, and GR expression increased in EOC, while PR was significantly reduced and ERβ expression showed a reduced trend compared to normal epithelium. Cluster analysis indicated poor disease-free survival (DFS) in AR+/GR+/PR+ subgroup (triple dominant group); while the Cox proportional-hazards model highlighted the triple dominant group as an independent prognostic factor for DFS. In addition, significant upregulation of FoxP3+ TILs, PD-1, and PD-L1 was observed in the triple dominant group compared to other groups. NanoString analyses further suggested that tumor necrosis factor (TNF) and/or NF-κB signaling pathways were activated with significant upregulation of RELA, MAP3K5, TNFAIP3, BCL2L1, RIPK1, TRAF2, PARP1, and AKT1 in the triple dominant EOC group. The triple dominant subgroup correlates with poor prognosis in EOC. Moreover, the TNF and/or NF-κB signaling pathways may be responsible for hormone-mediated inhibition of the immune microenvironment.
Collapse
|
19
|
Wood M, Whirledge S. Mechanism of glucocorticoid action in immunology—Basic concepts. REPRODUCTIVE IMMUNOLOGY 2021:147-170. [DOI: 10.1016/b978-0-12-818508-7.00020-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
20
|
Chen M, Zeng J, Liu X, Sun G, Gao Y, Liao J, Yu J, Luo X, Qi H. Changes in physiology and immune system during pregnancy and coronavirus infection: A review. Eur J Obstet Gynecol Reprod Biol 2020; 255:124-128. [PMID: 33125977 PMCID: PMC7566677 DOI: 10.1016/j.ejogrb.2020.10.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the 3rd epidemic coronavirus after severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Since December 2019, the outbreak of the Coronavirus Disease 2019 (COVID-19) caused by SARS-CoV-2 has aroused great attention around the world. Pregnant women and their fetuses have been concerned as a high-risk population. We explained why pregnant women are susceptible to coronavirus in terms of their adaptive changes in physiology and immune system during pregnancy, and described the associations between maternal clinical symptoms, perinatal outcomes and coronavirus infections.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China; Maternal and Child Health Hospital of Hubei Province, No. 745 Wuluo Road, Hongshan District, Wuhan City, Hubei Province, 430070, China
| | - Jing Zeng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiyao Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Guoqiang Sun
- Maternal and Child Health Hospital of Hubei Province, No. 745 Wuluo Road, Hongshan District, Wuhan City, Hubei Province, 430070, China
| | - Ying Gao
- Maternal and Child Health Hospital of Hubei Province, No. 745 Wuluo Road, Hongshan District, Wuhan City, Hubei Province, 430070, China
| | - Jiujiang Liao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiaxiao Yu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xin Luo
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
21
|
Shimba A, Ikuta K. Control of immunity by glucocorticoids in health and disease. Semin Immunopathol 2020; 42:669-680. [PMID: 33219395 DOI: 10.1007/s00281-020-00827-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/13/2020] [Indexed: 12/15/2022]
Abstract
Animals receive environmental stimuli from neural signals in order to produce hormones that control immune responses. Glucocorticoids (GCs) are a group of steroid hormones produced in the adrenal cortex and well-known mediators for the nervous and immune systems. GC secretion is induced by circadian rhythm and stress, and plasma GC levels are high at the active phase of animals and under stress condition. Clinically, GCs are used for allergies, autoimmunity, and chronic inflammation, because they have strong anti-inflammatory effects and induce the apoptosis of lymphocytes. Glucocorticoid receptor (GR) acts as a transcription factor and represses the expression of inflammatory cytokines, chemokines, and prostaglandins by binding to its motif, glucocorticoid-response element, or to other transcription factors. In mice, GR suppresses the antigen-stimulated inflammation mediated by macrophages, dendritic cells, and epithelial cells, and impairs cytotoxic immune responses by downregulating interferon-γ production and inhibiting the development of type-1 helper T cells, CD8+ T cells, and natural killer cells. These immune inhibitory effects prevent lethality by excessive inflammation, but at the same time increase the susceptibility to infection and cancer. GCs can also activate the immune system. The circadian cycle of GC secretion controls the diurnal oscillations of the distribution and response of T cells, thus supporting T cell maintenance and effective immune protection against infection. Moreover, several reports have shown that GR has the potential to enhance the activities of Th2, Th17, and immunoglobulin-producing B cells. Stress has two different effects on immune responses: immune suppression to cause mortality by infection and cancer, and excessive immune activation to induce chronic inflammation and autoimmune disease. Consistently, stress-induced GCs strongly suppress cell-mediated immunity and cause viral infection and tumor development. They may also enhance the development of pathogenic helper T cells and cause tissue damage through neural and intestinal inflammation. Past studies have reported the positive and negative effects of GCs on the immune system. These opposing properties of GCs may regulate the immune balance between the responsiveness to antigens and excessive inflammation in steady-state and stress conditions.
Collapse
Affiliation(s)
- Akihiro Shimba
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.,Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Koichi Ikuta
- Laboratory of Immune Regulation, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
22
|
Rassy D, Bárcena B, Pérez-Osorio IN, Espinosa A, Peón AN, Terrazas LI, Meneses G, Besedovsky HO, Fragoso G, Sciutto E. Intranasal Methylprednisolone Effectively Reduces Neuroinflammation in Mice With Experimental Autoimmune Encephalitis. J Neuropathol Exp Neurol 2020; 79:226-237. [PMID: 31886871 DOI: 10.1093/jnen/nlz128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/15/2019] [Accepted: 11/23/2019] [Indexed: 12/29/2022] Open
Abstract
Relapsing-remitting multiple sclerosis, the most common form, is characterized by acute neuroinflammatory episodes. In addition to continuous disease-modifying therapy, these relapses require treatment to prevent lesion accumulation and progression of disability. Intravenous methylprednisolone (1-2 g for 3-5 days) is the standard treatment for relapses. However, this treatment is invasive, requires hospitalization, leads to substantial systemic exposure of glucocorticoids, and can only reach modest concentrations in the central nervous system (CNS). Intranasal delivery may represent an alternative to deliver relapse treatment directly to the CNS with higher concentrations and reducing side effects. Histopathological analysis revealed that intranasal administration of methylprednisolone to mice with experimental autoimmune encephalomyelitis (EAE) suppressed the neuroinflammatory peak, and reduced immune cell infiltration and demyelination in the CNS similarly to intravenous administration. Treatment also downregulated Iba1 and GFAP expression. A similar significant reduction of IL-1β, IL-6, IL-17, IFN-γ, and TNF-α levels in the spinal cord was attained in both intranasal and intravenously treated mice. No damage in the nasal cavity was found after intranasal administration. This study demonstrates that intranasal delivery of methylprednisolone is as efficient as the intravenous route to treat neuroinflammation in EAE.
Collapse
Affiliation(s)
- Dunia Rassy
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Brandon Bárcena
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Iván Nicolás Pérez-Osorio
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Alejandro Espinosa
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | | | - Luis I Terrazas
- Unidad de Biomedicina.,Laboratorio Nacional en Salud, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - Gabriela Meneses
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Hugo O Besedovsky
- Research Group Immunophysiology, Division of Neurophysiology, Institute of Physiology and Pathophysiology, Philipps Universität, Marburg, Germany
| | - Gladis Fragoso
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| | - Edda Sciutto
- From the Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City
| |
Collapse
|
23
|
Kim D, Nguyen QT, Lee J, Lee SH, Janocha A, Kim S, Le HT, Dvorina N, Weiss K, Cameron MJ, Asosingh K, Erzurum SC, Baldwin WM, Lee JS, Min B. Anti-inflammatory Roles of Glucocorticoids Are Mediated by Foxp3 + Regulatory T Cells via a miR-342-Dependent Mechanism. Immunity 2020; 53:581-596.e5. [PMID: 32707034 DOI: 10.1016/j.immuni.2020.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 05/15/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023]
Abstract
Glucocorticoids (GC) are the mainstay treatment option for inflammatory conditions. Despite the broad usage of GC, the mechanisms by which GC exerts its effects remain elusive. Here, utilizing murine autoimmune and allergic inflammation models, we report that Foxp3+ regulatory T (Treg) cells are irreplaceable GC target cells in vivo. Dexamethasone (Dex) administered in the absence of Treg cells completely lost its ability to control inflammation, and the lack of glucocorticoid receptor in Treg cells alone resulted in the loss of therapeutic ability of Dex. Mechanistically, Dex induced miR-342-3p specifically in Treg cells and miR-342-3p directly targeted the mTORC2 component, Rictor. Altering miRNA-342-3p or Rictor expression in Treg cells dysregulated metabolic programming in Treg cells, controlling their regulatory functions in vivo. Our results uncover a previously unknown contribution of Treg cells during glucocorticoid-mediated treatment of inflammation and the underlying mechanisms operated via the Dex-miR-342-Rictor axis.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Quang Tam Nguyen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Juyeun Lee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sung Hwan Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Allison Janocha
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Sohee Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Nina Dvorina
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Kelly Weiss
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kewal Asosingh
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Serpil C Erzurum
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - William M Baldwin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230
| | - Booki Min
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195.
| |
Collapse
|
24
|
Rossi A, Simeoli C, Salerno M, Ferrigno R, Della Casa R, Colao A, Strisciuglio P, Parenti G, Pivonello R, Melis D. Imbalanced cortisol concentrations in glycogen storage disease type I: evidence for a possible link between endocrine regulation and metabolic derangement. Orphanet J Rare Dis 2020; 15:99. [PMID: 32306986 PMCID: PMC7169016 DOI: 10.1186/s13023-020-01377-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Glycogen storage disease type I (GSDI) is an inborn error of carbohydrate metabolism caused by mutations of either the G6PC gene (GSDIa) or the SLC37A4 gene (GSDIb). Glucose 6-phosphate (G6P) availability has been shown to modulate 11β-hydroxysteroid dehydrogenase type 1 (11βHSD1), an ER-bound enzyme catalyzing the local conversion of inactive cortisone into active cortisol. Adrenal cortex assessment has never been performed in GSDI. The aim of the current study was to evaluate the adrenal cortex hormones levels in GSDI patients. Methods Seventeen GSDI (10 GSDIa and 7 GSDIb) patients and thirty-four age and sex-matched controls were enrolled. Baseline adrenal cortex hormones and biochemical markers of metabolic control serum levels were analyzed. Low dose ACTH stimulation test was also performed. Results Baseline cortisol serum levels were higher in GSDIa patients (p = 0.042) and lower in GSDIb patients (p = 0.041) than controls. GSDIa patients also showed higher peak cortisol response (p = 0.000) and Cortisol AUC (p = 0.029). In GSDIa patients, serum cholesterol (p = 0.000), triglycerides (p = 0.000), lactate (p = 0.000) and uric acid (p = 0.008) levels were higher and bicarbonate (p = 0.000) levels were lower than controls. In GSDIb patients, serum cholesterol levels (p = 0.016) were lower and lactate (p = 0.000) and uric acid (p = 0.000) levels were higher than controls. Baseline cortisol serum levels directly correlated with cholesterol (ρ = 0.65, p = 0.005) and triglycerides (ρ = 0.60, p = 0.012) serum levels in GSDI patients. Conclusions The present study showed impaired cortisol levels in GSDI patients, with opposite trend between GSDIa and GSDIb. The otherwise preserved adrenal cortex function suggests that this finding might be secondary to local deregulation rather than hypothalamo-pituitary-adrenal axis dysfunction in GSDI patients. We hypothesize that 11βHSD1 might represent the link between endocrine regulation and metabolic derangement in GSDI, constituting new potential therapeutic target in GSDI patients.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Chiara Simeoli
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples "Federico II", Naples, Italy
| | - Mariacarolina Salerno
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Rosario Ferrigno
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples "Federico II", Naples, Italy
| | - Roberto Della Casa
- Maternal-Infant Department, Pediatrics Unit, "San Pio" Hospital, Benevento, Italy
| | - Annamaria Colao
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples "Federico II", Naples, Italy
| | - Pietro Strisciuglio
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Giancarlo Parenti
- Department of Translational Medicine, Section of Pediatrics, University of Naples "Federico II", Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Rosario Pivonello
- Dipartmento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, University of Naples "Federico II", Naples, Italy
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Section of Pediatrics, University of Salerno, Via Salvador Allende, 43 84081, Baronissi (Salerno), Italy.
| |
Collapse
|
25
|
Ginsenoside F2 attenuates chronic-binge ethanol-induced liver injury by increasing regulatory T cells and decreasing Th17 cells. J Ginseng Res 2020; 44:815-822. [PMID: 33192125 PMCID: PMC7655498 DOI: 10.1016/j.jgr.2020.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Recently, beneficial roles of ginsenoside F2 (GF2), a minor constituent of Panax ginseng, have been demonstrated in diverse inflammatory diseases. However, its roles in alcoholic liver inflammation and injury have not been clearly understood. Here, we investigated the underlying mechanism by which GF2 ameliorated alcoholic liver injury. Methods To induce alcoholic liver injury, C57BL/6J wild type (WT) or interleukin (IL)-10 knockout (KO) mice were orally administered with ethanol (3 g/kg) or ethanol-containing GF2 (50 mg/kg) for 2 wk. Liver injury and infiltration of macrophages and neutrophils were evaluated by serum biochemistry and immunohistochemistry, respectively. The changes of hepatic immune cells were assessed by flow cytometry and polymerase chain reaction analysis. In vitro differentiation of naïve T cells was performed. Results GF2 treatment significantly attenuated alcoholic liver injury, in which infiltrations of inflammatory macrophages and neutrophils were decreased. Moreover, the frequencies of Foxp3+ regulatory T cells (Tregs) increased but IL-17–producing T (Th17) cells decreased in GF2-treated mice compared to controls. Furthermore, the mRNA expression of IL-10 and Foxp3 was significantly increased, whereas IL-17 mRNA expression was suppressed in GF2-treated mice. However, these beneficial roles of GF2 were not observed in GF2-treated IL-10 KO mice, suggesting a critical role of IL-10. Similarly, GF2 treatment suppressed differentiation of naïve T cells into Th17 cells by inhibiting RORγt expression and stimulating Foxp3 expression. Conclusion The present study suggests that GF2 treatment attenuates alcoholic liver injury by increasing IL-10 expression and Tregs and decreasing IL-17 expression and Th17 cells.
Collapse
|
26
|
Early induction of C/EBPβ expression as a potential marker of steroid responsive colitis. Sci Rep 2019; 9:13087. [PMID: 31511552 PMCID: PMC6739378 DOI: 10.1038/s41598-019-48251-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/26/2019] [Indexed: 01/27/2023] Open
Abstract
The precise mechanism of hydrocortisone immune regulation in the management of colitis is poorly understood. Whilst not without limitations, its ability to suppress pathology and rapidly improve patient clinical outcome is key. We were interested in identifying early markers of therapeutic responsiveness in order to identify patients’ refractory to therapy. Chronic Th1-driven colitis was induced in AKR/J mice using a parasite infection, Trichuris muris. 35 days post infection, mice were treated with low dose hydrocortisone (2 mg/kg/) i.p. on alternate days. Response to therapy was assessed at a systemic and tissue level day 45 post infection. Histopathology, gene and protein analysis was conducted to determine cytokine and transcriptional profiles. The colonic transcriptional profile in steroid treated mice showed significant upregulation of a small subset of T cell associated genes, in particular C/EBPβ, CD4, IL7R and STAT5a. Despite no change in either transcription or protein production in downstream cytokines IFN γ, TNFα IL-17 and IL-10, hydrocortisone treatment significantly reduced colonic pathology and restored colonic length to naïve levels. As expected, steroid treatment of chronic gut inflammation generated significant immunosuppressive effects characterized by histological improvement. Low dose hydrocortisone induced significant upregulation of a subset of genes associated with T cell maintenance and regulation, including C/EBPβ. These data suggest that enhanced expression of C/EBPβ may be one of a subset of early markers demonstrating an immune regulatory response to hydrocortisone therapy, potentially by stabilization of Treg function. These observations contribute to our understanding of the immune landscape after steroid therapy, providing a potential markers of therapeutic responders and those refractory to hydrocortisone treatment.
Collapse
|
27
|
Kiernozek E, Bieńkowska A, Markowska M, Kozlowska E, Drela N. Dexamethasone affects day/night development and function of thymus-derived T regulatory cells. Immunobiology 2019; 224:614-624. [PMID: 31427114 DOI: 10.1016/j.imbio.2019.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/30/2019] [Indexed: 11/19/2022]
Abstract
Thymus-derived T regulatory (tTregs) cells play a crucial role in the maintenance of tolerance and immune homeostasis. Mechanisms and factors regulating tTreg development and function are widely investigated, but to a large degree still remain unclear. Our previous findings demonstrated that, in physiological conditions, the development and suppressive function of tTregs demonstrated day/night rhythmicity, which correlated with the concentration of plasma corticosterone and the expression of glucocorticoid receptors. In this study we ask whether synthetic glucocorticoids commonly used to inhibit excessive activity of the immune system, can modulate the development and suppressive function of tTregs in vivo depending on the time of administration. Young C57BL/6 male and female mice were injected intraperitoneally with a single dose of dexamethasone at two time points of the day: 7.00-8.00 a.m. and 7.00-8.00 p.m. The experimental can be used to indicate on the potentially expected positive or adverse side effects and can constitute also a good model for the assessment of the effects of long-term therapy. The results of our studies demonstrated the increase of the percentage of tTregs at both time points in male mice, but only in the evening in females. The suppressive activity of tTregs increased independently on the day time of in female mice, but in the morning only in males. We concluded that in the condition of dexamethasone supplementation, the elevated suppressive potential of tTregs is balanced by the induction apoptosis in order to prevent excessive suppression.
Collapse
Affiliation(s)
- Ewelina Kiernozek
- Faculty of Biology, University of Warsaw, Department of Immunology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Anna Bieńkowska
- Faculty of Biology, University of Warsaw, Department of Immunology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Magdalena Markowska
- Faculty of Biology, University of Warsaw, Department of Animal Physiology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Ewa Kozlowska
- Faculty of Biology, University of Warsaw, Department of Immunology, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Nadzieja Drela
- Faculty of Biology, University of Warsaw, Department of Immunology, Miecznikowa 1, 02-096 Warsaw, Poland.
| |
Collapse
|
28
|
Ahmed A, Schmidt C, Brunner T. Extra-Adrenal Glucocorticoid Synthesis in the Intestinal Mucosa: Between Immune Homeostasis and Immune Escape. Front Immunol 2019; 10:1438. [PMID: 31316505 PMCID: PMC6611402 DOI: 10.3389/fimmu.2019.01438] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are steroid hormones predominantly produced in the adrenal glands in response to physiological cues and stress. Adrenal GCs mediate potent anti-inflammatory and immunosuppressive functions. Accumulating evidence in the past two decades has demonstrated other extra-adrenal organs and tissues capable of synthesizing GCs. This review discusses the role and regulation of GC synthesis in the intestinal epithelium in the regulation of normal immune homeostasis, inflammatory diseases of the intestinal mucosa, and the development of intestinal tumors.
Collapse
Affiliation(s)
- Asma Ahmed
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Pharmacology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Christian Schmidt
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Thomas Brunner
- Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
29
|
Yu Y, Ma X, Zhang Y, Zhang Y, Ying J, Zhang W, Zhong Q, Zhou A, Zeng Y. Changes in Expression of Multiple Checkpoint Molecules and Infiltration of Tumor Immune Cells after Neoadjuvant Chemotherapy in Gastric Cancer. J Cancer 2019; 10:2754-2763. [PMID: 31258783 PMCID: PMC6584940 DOI: 10.7150/jca.31755] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 04/28/2019] [Indexed: 12/25/2022] Open
Abstract
It remains unclear that how tumor immune micro-environment will change following neoadjuvant chemotherapy (NACT) in locally advanced gastric cancer (LAGC). In this study, we aimed to characterize the changes in tumor-infiltrating immune cells and checkpoint molecules following NACT and investigate the prognostic value of these changes in LAGC. Paired tumor samples (pre-NACT and post-NACT) of 60 patients were retrospectively identified and analyzed by multiplex immunohistochemistry with a panel including CD4, CD8, FOXP3, PD-1, PD-L1, and TIM3. Following NACT, the overall median expression levels of CD4, CD8, PD1, PD-L1 and TIM3 were significantly increased (P = 0.008 for PD-L1 and P < 0.001 for all the other markers), while the median FOXP3 expression level remained stable (P = 0.120). Individually, the majority of patients presented increased expression of the markers, while 8.5%, 11.9%, 16.9%, 25.4%, 22.0% and 42.2% of patients had decreased expression of CD4, CD8, PD-1, PD-L1, TIM3 and FOXP3, respectively. Changes in expression between baseline and post-NACT of TIM3, PD-1, and PD-L1 showed strongly positive pairwise correlations with each other (P < 0.001). Multivariate analysis demonstrated that high upregulation levels of CD8 (HR = 0.73, P = 0.028), PD-1 (HR = 0.76, P = 0.027), and PD-L1 (HR = 0.67, P = 0.038) following NACT were beneficial prognostic factors of OS. NACT increase the expression of multiple checkpoint molecules and infiltration of CD4+, CD8+ immune cells in LAGC with the levels of changes in checkpoint molecules positively related with each other. This may raise the possibility of applying immunotherapy with chemotherapy or even dual checkpoint inhibitors in LAGC.
Collapse
Affiliation(s)
- Yue Yu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | - Yun Zhang
- BeiGene (Beijing) Co., Ltd, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiaofeng Zhong
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Aiping Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixin Zeng
- State Key Laboratory of Molecular Oncology, National Cancer Center /National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong Province, China
| |
Collapse
|
30
|
Rocamora-Reverte L, Tuzlak S, von Raffay L, Tisch M, Fiegl H, Drach M, Reichardt HM, Villunger A, Tischner D, Wiegers GJ. Glucocorticoid Receptor-Deficient Foxp3 + Regulatory T Cells Fail to Control Experimental Inflammatory Bowel Disease. Front Immunol 2019; 10:472. [PMID: 30936873 PMCID: PMC6431616 DOI: 10.3389/fimmu.2019.00472] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/21/2019] [Indexed: 01/12/2023] Open
Abstract
Activation of the immune system increases systemic adrenal-derived glucocorticoid (GC) levels which downregulate the immune response as part of a negative feedback loop. While CD4+ T cells are essential target cells affected by GC, it is not known whether these hormones exert their major effects on CD4+ helper T cells, CD4+Foxp3+ regulatory T cells (Treg cells), or both. Here, we generated mice with a specific deletion of the glucocorticoid receptor (GR) in Foxp3+ Treg cells. Remarkably, while basal Treg cell characteristics and in vitro suppression capacity were unchanged, Treg cells lacking the GR did not prevent the induction of inflammatory bowel disease in an in vivo mouse model. Under inflammatory conditions, GR-deficient Treg cells acquired Th1-like characteristics and expressed IFN-gamma, but not IL-17, and failed to inhibit pro-inflammatory CD4+ T cell expansion in situ. These findings reveal that the GR is critical for Foxp3+ Treg cell function and suggest that endogenous GC prevent Treg cell plasticity toward a Th1-like Treg cell phenotype in experimental colitis. When equally active in humans, a rationale is provided to develop GC-mimicking therapeutic strategies which specifically target Foxp3+ Treg cells for the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Lourdes Rocamora-Reverte
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Selma Tuzlak
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Laura von Raffay
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Marcel Tisch
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Heidi Fiegl
- Department of Obstetrics and Gynecology, Innsbruck University Hospital, Innsbruck, Austria
| | - Mathias Drach
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Holger M Reichardt
- Institute for Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Denise Tischner
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - G Jan Wiegers
- Division of Developmental Immunology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
31
|
Cari L, De Rosa F, Nocentini G, Riccardi C. Context-Dependent Effect of Glucocorticoids on the Proliferation, Differentiation, and Apoptosis of Regulatory T Cells: A Review of the Empirical Evidence and Clinical Applications. Int J Mol Sci 2019; 20:E1142. [PMID: 30845709 PMCID: PMC6429178 DOI: 10.3390/ijms20051142] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids (GCs) are widely used to treat several diseases because of their powerful anti-inflammatory and immunomodulatory effects on immune cells and non-lymphoid tissues. The effects of GCs on T cells are the most relevant in this regard. In this review, we analyze how GCs modulate the survival, maturation, and differentiation of regulatory T (Treg) cell subsets into both murine models and humans. In this way, GCs change the Treg cell number with an impact on the mid-term and long-term efficacy of GC treatment. In vitro studies suggest that the GC-dependent expansion of Treg cells is relevant when they are activated. In agreement with this observation, the GC treatment of patients with established autoimmune, allergic, or (auto)inflammatory diseases causes an expansion of Treg cells. An exception to this appears to be the local GC treatment of psoriatic lesions. Moreover, the effects on Treg number in patients with multiple sclerosis are uncertain. The effects of GCs on Treg cell number in healthy/diseased subjects treated with or exposed to allergens/antigens appear to be context-dependent. Considering the relevance of this effect in the maturation of the immune system (tolerogenic response to antigens), the success of vaccination (including desensitization), and the tolerance to xenografts, the findings must be considered when planning GC treatment.
Collapse
Affiliation(s)
- Luigi Cari
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| | - Francesca De Rosa
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| | - Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia I-06129, Italy.
| |
Collapse
|
32
|
Pap R, Ugor E, Litvai T, Prenek L, Najbauer J, Németh P, Berki T. Glucocorticoid hormone differentially modulates the in vitro expansion and cytokine profile of thymic and splenic Treg cells. Immunobiology 2018; 224:285-295. [PMID: 30612787 DOI: 10.1016/j.imbio.2018.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Functional disturbances in regulatory T cells (Treg) have been described in autoimmune diseases, and their potential therapeutic use is intensively studied. Our goal was to investigate the influence of glucocorticoid hormone on the in vitro differentiation of Treg cells from thymic and splenic CD4+ T cells under different conditions to establish methods for generating stable and functionally suppressive iTregs for future use in adoptive transfer experiments. METHODS Thymic and splenic CD4+ T lymphocytes were isolated from 3 to 4 week-old control and in vivo dexamethasone (DX) pretreated BALB/c mice using magnetic bead negative selection, followed by CD25 positive selection. The cells were cultured with anti-CD3/CD28 beads and IL-2 in the presence or absence of TGFβ and/or DX for 3-6 days. Multiparametric flow cytometry was performed using CD4, CD25, CD8, TGFβ (LAP) cell surface and Foxp3, IL-4, IL-10, IL-17 and IFNγ intracellular staining. Quantitative RT-PCR was performed to measure IL-10, TGFβ cytokine and Foxp3 mRNA levels. RESULTS Differentiation of thymus-derived CD4+ cells in vitro into iTreg cells was most effective (24-25%) when anti-CD3/CD28 beads, IL-2, and TGFβ were present. Splenic CD4+ T cell expansion under same conditions resulted in a higher (44-45%) iTreg cell ratio that further increased (up to 50% Treg) in the presence of DX. Elevated immunosuppressive cytokine (IL-10 and TGFβ) production by iTregs could be measured both at protein and mRNA levels without elevation of Th1/Th2 or Th17 cytokine production. We got the highest iTreg ratio (74%) and TGFβ production when CD4+CD25+ splenic T cells were stimulated in the presence of TGFβ. In vivo 4 days DX pretreatment resulted in enhanced in vitro expansion and Foxp3 expression of thymus-derived iTregs and decreased differentiation of spleen-derived iTreg cells. In these Tregs the relative expression of IL-10 mRNA significantly decreased under all in vitro stimulation conditions, while TGFβ mRNA level did not change. CONCLUSION DX promotes the expansion of thymic and splenic Treg cells, and enhances Foxp3+ expression and the production of immunosuppressive cytokines IL-10 and TGFβ in vitro. In vivo pretreatment of mice with DX inhibited the immunosuppressive cytokine production of in vitro differentiated Treg cells. We hypothesize that patients receiving GC therapy may need special attention prior to in vitro expansion and transplantation of Treg cells.
Collapse
Affiliation(s)
- Ramóna Pap
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, H-7624, Hungary
| | - Emese Ugor
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, H-7624, Hungary
| | - Tímea Litvai
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, H-7624, Hungary
| | - Lilla Prenek
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, H-7624, Hungary
| | - József Najbauer
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, H-7624, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, H-7624, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs Medical School, Pécs, H-7624, Hungary.
| |
Collapse
|
33
|
Role of Endogenous Glucocorticoids in Cancer in the Elderly. Int J Mol Sci 2018; 19:ijms19123774. [PMID: 30486460 PMCID: PMC6321146 DOI: 10.3390/ijms19123774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 01/14/2023] Open
Abstract
Although not a disease itself, aging represents a risk factor for many aging-related illnesses, including cancer. Numerous causes underlie the increased incidence of malignancies in the elderly, for example, genomic instability and epigenetic alterations that occur at cellular level, which also involve the immune cells. The progressive decline of the immune system functions that occurs in aging defines immunosenescence, and includes both innate and adaptive immunity; the latter undergoes major alterations. Aging and chronic stress share the abnormal hypothalamic–pituitary–adrenal axis activation, where altered peripheral glucocorticoids (GC) levels and chronic stress have been associated with accelerated cellular aging, premature immunosenescence, and aging-related diseases. Consequently, changes in GC levels and sensitivity contribute to the signs of immunosenescence, namely fewer naïve T cells, poor immune response to new antigens, decreased cell-mediated immunity, and thymic involution. GC signaling alterations also involve epigenetic alterations in DNA methylation, with transcription modifications that may contribute to immunosenescence. Immune cell aging leads to decreased levels of immunosurveillance, thereby providing tumor cells one more route for immune system escape. Here, the contribution of GC secretion and signaling dysregulation to the increased incidence of tumorigenesis in the elderly is reviewed.
Collapse
|
34
|
Defining the role of glucocorticoids in inflammation. Clin Sci (Lond) 2018; 132:1529-1543. [DOI: 10.1042/cs20171505] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/14/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
An established body of knowledge and clinical practice has argued in favor of the use of glucocorticoids in various chronic inflammatory and autoimmune diseases. However, the very well-known adverse effects associated with their treatment hampers continuation of therapy with glucocorticoids. Analyses of the molecular mechanisms underlying the actions of glucocorticoids have led to the discovery of several mediators that add complexity and diversity to the puzzling world of these hormones and anti-inflammatory drugs. Such mediators hold great promise as alternative pharmacologic tools to be used as anti-inflammatory drugs with the same properties as glucocorticoids, but avoiding their metabolic side effects. This review summarizes findings about the molecular targets and mediators of glucocorticoid function.
Collapse
|
35
|
Shah NM, Imami N, Johnson MR. Progesterone Modulation of Pregnancy-Related Immune Responses. Front Immunol 2018; 9:1293. [PMID: 29973928 PMCID: PMC6020784 DOI: 10.3389/fimmu.2018.01293] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/23/2018] [Indexed: 12/20/2022] Open
Abstract
Progesterone (P4) is an important steroid hormone for the establishment and maintenance of pregnancy and its functional withdrawal in reproductive tissue is linked with the onset of parturition. However, the effects of P4 on adaptive immune responses are poorly understood. In this study, we took a novel approach by comparing the effects of P4 supplementation longitudinally, with treatment using a P4 antagonist mifepristone (RU486) in mid-trimester pregnancies. Thus, we were able to demonstrate the immune-modulatory functions of P4. We show that, in pregnancy, the immune system is increasingly activated (CD38, CCR6) with greater antigen-specific cytotoxic T cell responses (granzyme B). Simultaneously, pregnancy promotes a tolerant immune environment (IL-10 and regulatory-T cells) that gradually reverses prior to the onset of labor. P4 suppresses and RU486 enhances antigen-specific CD4 and CD8 T cell inflammatory cytokine (IFN-γ) and cytotoxic molecule release (granzyme B). P4 and RU486 effectively modulate immune cell-mediated interactions, by regulating differentiated memory T cell subset sensitivity to antigen stimulation. Our results indicate that P4 and RU486, as immune modulators, share a reciprocal relationship. These data unveil key contributions of P4 to the modulation of the maternal immune system and suggests targets for future modulation of maternal immune function during pregnancy.
Collapse
Affiliation(s)
- Nishel M. Shah
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Nesrina Imami
- Department of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| | - Mark R. Johnson
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London, United Kingdom
| |
Collapse
|
36
|
Bereshchenko O, Bruscoli S, Riccardi C. Glucocorticoids, Sex Hormones, and Immunity. Front Immunol 2018; 9:1332. [PMID: 29946321 PMCID: PMC6006719 DOI: 10.3389/fimmu.2018.01332] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid hormones regulate essential body functions in mammals, control cell metabolism, growth, differentiation, and apoptosis. Importantly, they are potent suppressors of inflammation, and multiple immune-modulatory mechanisms involving leukocyte apoptosis, differentiation, and cytokine production have been described. Due to their potent anti-inflammatory and immune-suppressive activity, synthetic glucocorticoids (GCs) are the most prescribed drugs used for treatment of autoimmune and inflammatory diseases. It is long been noted that males and females exhibit differences in the prevalence in several autoimmune diseases (AD). This can be due to the role of sexual hormones in regulation of the immune responses, acting through their endogenous nuclear receptors to mediate gene expression and generate unique gender-specific cellular environments. Given the fact that GCs are the primary physiological anti-inflammatory hormones, and that sex hormones may also exert immune-modulatory functions, the link between GCs and sex hormones may exist. Understanding the nature of this possible crosstalk is important to unravel the reason of sexual disparity in AD and to carefully prescribe these drugs for the treatment of inflammatory diseases. In this review, we discuss similarities and differences between the effects of sex hormones and GCs on the immune system, to highlight possible axes of functional interaction.
Collapse
Affiliation(s)
- Oxana Bereshchenko
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy.,Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
37
|
Seki T, Miyamoto A, Ohshima S, Ohno Y, Yasuda A, Tokuda Y, Ando K, Kametani Y. Expression of glucocorticoid receptor shows negative correlation with human B-cell engraftment in PBMC-transplanted NOGhIL-4-Tg mice. Biosci Trends 2018; 12:247-256. [PMID: 29806632 DOI: 10.5582/bst.2018.01083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The humanized mouse system is a promising tool for analyzing human immune responses in vivo. Recently, we developed a new humanized mouse system using the severely immunodeficient NOD/Shi-scid-IL2rγnull (NOG)-hIL-4-Tg mouse, which enabled us to evaluate the human humoral immune response after peripheral blood mononuclear cell (PBMC) transplantation. However, the mechanism by which hIL-4 enhances antigen-specific IgG production in these mice is not clear. In this study, we analyzed the relationship between human lymphocyte subsets and the expression level of the glucocorticoid receptor (GR) to clarify the humoral immune condition in human PBMC-transplanted NOG-hIL-4 mice. The results showed that the human GR mRNA level was significantly lower in NOG-hIL-4-Tg splenocytes than in conventional NOG splenocytes after immunization. Whereas no obvious difference of the proportion of T helper-cell subsets was observed between the NOG and NOG-hIL-4-Tg mouse strains, the B-cell proportion and antigen-specific IgG concentration in plasma showed strong negative correlations with the GR mRNA level. These results suggest that the GR expression level was changed in PBMCs in the humanized NOG-hIL-4-Tg mice, which may support B-cell survival and function in the mouse system.
Collapse
Affiliation(s)
- Toshiro Seki
- Department of Internal Medicine, Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine
| | - Asuka Miyamoto
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine.,Department of Breast and Endocrine Surgery, Tokai University School of Medicine
| | - Shino Ohshima
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine
| | - Yusuke Ohno
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine
| | - Atsushi Yasuda
- Department of Internal Medicine, Division of Nephrology, Endocrinology and Metabolism, Tokai University School of Medicine
| | - Yutaka Tokuda
- Department of Breast and Endocrine Surgery, Tokai University School of Medicine
| | - Kiyoshi Ando
- Department of Hematology and Oncology, Tokai University School of Medicine
| | - Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine.,Institute of Advanced Biosciences, Tokai University
| |
Collapse
|