1
|
Zhou M, Tian M, Li Z, Wang C, Guo Z. Overview of splicing variation in ovarian cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189288. [PMID: 39993511 DOI: 10.1016/j.bbcan.2025.189288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Ovarian cancer remains one of the deadliest gynecological malignancies, with a persistently high mortality rate despite promising advancements in immunotherapy. Aberrant splicing events play a crucial role in cancer heterogeneity and treatment resistance. Many splicing variants, especially those involving key molecular markers such as BRCA1/2, are closely linked to disease progression and treatment outcomes. These variants and related splicing factors hold significant clinical value as diagnostic and prognostic biomarkers and therapeutic targets. This review provides a comprehensive overview of splicing variants in ovarian cancer, emphasizing their role in metastasis and resistance, and offers insights to advance biomarker development and treatment strategies.
Collapse
Affiliation(s)
- Min Zhou
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengdie Tian
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuoer Li
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunli Wang
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiqiang Guo
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Bauer M, Schöbel CM, Wickenhauser C, Seliger B, Jasinski-Bergner S. Deciphering the role of alternative splicing in neoplastic diseases for immune-oncological therapies. Front Immunol 2024; 15:1386993. [PMID: 38736877 PMCID: PMC11082354 DOI: 10.3389/fimmu.2024.1386993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Alternative splicing (AS) is an important molecular biological mechanism regulated by complex mechanisms involving a plethora of cis and trans-acting elements. Furthermore, AS is tissue specific and altered in various pathologies, including infectious, inflammatory, and neoplastic diseases. Recently developed immuno-oncological therapies include monoclonal antibodies (mAbs) and chimeric antigen receptor (CAR) T cells targeting, among others, immune checkpoint (ICP) molecules. Despite therapeutic successes have been demonstrated, only a limited number of patients showed long-term benefit from these therapies with tumor entity-related differential response rates were observed. Interestingly, splice variants of common immunotherapeutic targets generated by AS are able to completely escape and/or reduce the efficacy of mAb- and/or CAR-based tumor immunotherapies. Therefore, the analyses of splicing patterns of targeted molecules in tumor specimens prior to therapy might help correct stratification, thereby increasing therapy success by antibody panel selection and antibody dosages. In addition, the expression of certain splicing factors has been linked with the patients' outcome, thereby highlighting their putative prognostic potential. Outstanding questions are addressed to translate the findings into clinical application. This review article provides an overview of the role of AS in (tumor) diseases, its molecular mechanisms, clinical relevance, and therapy response.
Collapse
Affiliation(s)
- Marcus Bauer
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chiara-Maria Schöbel
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, Brandenburg an der Havel, Germany
| | - Claudia Wickenhauser
- Institute of Pathology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Barbara Seliger
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, Brandenburg an der Havel, Germany
- Department of Good Manufacturing Practice (GMP) Development & Advanced Therapy Medicinal Products (ATMP) Design, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- Institute for Medical Immunology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Simon Jasinski-Bergner
- Institute for Translational Immunology, Brandenburg Medical School (MHB), Theodor Fontane, Brandenburg an der Havel, Germany
| |
Collapse
|
3
|
Kumari S, Kumar S, Muthuswamy S. RNA N6-methyladenosine modification in regulating cancer stem cells and tumor immune microenvironment and its implication for cancer therapy. J Cancer Res Clin Oncol 2023; 149:1621-1633. [PMID: 35796777 DOI: 10.1007/s00432-022-04158-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
Therapy resistance is a well-known phenomenon in cancer treatment. It can be intrinsic or acquired, accountable for frequent tumor relapse and death worldwide. The interplay between cancer cells and their neighboring environment can activate complex signaling mechanisms influencing epigenetic changes and maintain cancer cell survival leading to the malignant phenotype. Cancer stem cells (CSCs) are tumor-initiating cells (TICs) and constitute the primary source of drug resistance and tumor recurrence. Studies have shown that cancer cells exhibit dysregulated RNA N6-methyladenosine (m6A) "writers," "erasers," and "readers" levels after acquiring drug resistance. The present review provides novel insight into the role of m6A modifiers involved in CSC generation, cancer cell proliferation, and therapy resistance. m6A RNA modifications in the cross-talk between CSC and the tumor immune microenvironment (TIME) have also been highlighted. Further, we have discussed the therapeutic potential of targeting m6A machinery for cancer diagnosis and the development of new therapies for cancer treatment.
Collapse
Affiliation(s)
- Subhadra Kumari
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Santosh Kumar
- Department of Life Science, National Institute of Technology, Rourkela, India
| | | |
Collapse
|
4
|
Peng Q, Zhou Y, Oyang L, Wu N, Tang Y, Su M, Luo X, Wang Y, Sheng X, Ma J, Liao Q. Impacts and mechanisms of alternative mRNA splicing in cancer metabolism, immune response, and therapeutics. Mol Ther 2022; 30:1018-1035. [PMID: 34793975 PMCID: PMC8899522 DOI: 10.1016/j.ymthe.2021.11.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/29/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023] Open
Abstract
Alternative pre-mRNA splicing (AS) provides the potential to produce diversity at RNA and protein levels. Disruptions in the regulation of pre-mRNA splicing can lead to diseases. With the development of transcriptome and genome sequencing technology, increasing diseases have been identified to be associated with abnormal splicing of mRNAs. In tumors, abnormal alternative splicing frequently plays critical roles in cancer pathogenesis and may be considered as new biomarkers and therapeutic targets for cancer intervention. Metabolic abnormalities and immune disorders are important hallmarks of cancer. AS produces multiple different isoforms and diversifies protein expression, which is utilized by the immune and metabolic reprogramming systems to expand gene functions. The abnormal splicing events contributed to tumor progression, partially due to effects on immune response and metabolic reprogramming. Herein, we reviewed the vital role of alternative splicing in regulating cancer metabolism and immune response. We discussed how alternative splicing regulates metabolic reprogramming of cancer cells and antitumor immune response, and the possible strategies to targeting alternative splicing pathways or splicing-regulated metabolic pathway in the context of anticancer immunotherapy. Further, we highlighted the challenges and discuss the perspectives for RNA-based strategies for the treatment of cancer with abnormally alternative splicing isoforms.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China,Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Ying Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Xiaowu Sheng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Jian Ma
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China; Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China.
| |
Collapse
|
5
|
Zhang Z, Zhang C, Luo Y, Zhang G, Wu P, Sun N, He J. RNA N 6 -methyladenosine modification in the lethal teamwork of cancer stem cells and the tumor immune microenvironment: Current landscape and therapeutic potential. Clin Transl Med 2021; 11:e525. [PMID: 34586737 PMCID: PMC8473646 DOI: 10.1002/ctm2.525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 12/18/2022] Open
Abstract
N6 -methyladenosine (m6 A), the newest and most prevalent layer of internal epigenetic modification in eukaryotic mRNA, has been demonstrated to play a critical role in cancer biology. Increasing evidence has highlighted that the interaction between cancer stem cells (CSCs) and the tumor immune microenvironment (TIME) is the root cause of tumorigenesis, metastasis, therapy resistance, and recurrence. In recent studies, the m6 A modification has been tightly linked to this CSC-TIME interplay, participating in the regulation of CSCs and TIME remolding. Interestingly, the m6 A modification has also been identified as a novel decisive factor in the efficacy of immunotherapies-particularly anti-PD-1/PD-L1 monotherapies-by changing the plasticity of the TIME. Given the functional importance of the m6 A modification in the crosstalk between CSCs and the TIME, targeting m6 A regulators will open new avenues to overcome therapeutic resistance, especially for immune checkpoint-based immunotherapy. In the present review, we summarize the current landscape of m6 A modifications in CSCs and the TIME, and also prospect the underling role of m6 A modifications at the crossroads of CSCs and the TIME for the first time. Additionally, to provide the possibility of modulating m6 A modifications as an emerging therapeutic strategy, we also explore the burgeoning inhibitors and technologies targeting m6 A regulators. Lastly, considering recent advances in m6 A-seq technologies and cancer drug development, we propose the future directions of m6 A modification in clinical applications, which may not only help to improve individualized monitoring and therapy but also provide enhanced and durable responses in patients with insensitive tumors.
Collapse
Affiliation(s)
- Zhihui Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuejun Luo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
6
|
Chen Q, Mang G, Wu J, Sun P, Li T, Zhang H, Wang N, Tong Z, Wang W, Zheng Y, Tian J, E M, Zhang M, Yu B. Circular RNA circSnx5 Controls Immunogenicity of Dendritic Cells through the miR-544/SOCS1 Axis and PU.1 Activity Regulation. Mol Ther 2020; 28:2503-2518. [PMID: 32681834 DOI: 10.1016/j.ymthe.2020.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/13/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) can orchestrate either immunogenic or tolerogenic responses to relay information on the functional state. Emerging studies indicate that circular RNAs (circRNAs) are involved in immunity; however, it remains unclear whether they govern DC development and function at the transcriptional level. In this study, we identified a central role for a novel circRNA, circSnx5, in modulating DC-driven immunity and tolerance. Ectopic circSnx5 suppresses DC activation and promotes the development of tolerogenic functions of DCs, while circSnx5 knockdown promotes their activation and inflammatory phenotype. Mechanistically, circSnx5 can act as a miR-544 sponge to attenuate miRNA-mediated target depression on suppressor of cytokine signaling 1 (SOCS1) and inhibit nuclear translocation of PU.1, regulating DC activation and function. Furthermore, the main splicing factors (SFs) were identified in DCs, of which heterogeneous nuclear ribonucleoprotein (hnRNP) C was essential for circSnx5 generation. Moreover, our data demonstrated that vaccination with circSnx5-conditioned DCs prolonged cardiac allograft survival in mice and alleviated experimental autoimmune myocarditis. Taken together, our results revealed circSnx5 as a key modulator to fine-tune DC function, suggesting that circSnx5 may serve as a potential therapeutic avenue for immune-related diseases.
Collapse
Affiliation(s)
- Qi Chen
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 50001, Heilongjiang Province, China
| | - Ge Mang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 50001, Heilongjiang Province, China
| | - Jian Wu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 50001, Heilongjiang Province, China
| | - Ping Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 50001, Heilongjiang Province, China
| | - Tingting Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 50001, Heilongjiang Province, China
| | - Hanlu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 50001, Heilongjiang Province, China
| | - Naixin Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 50001, Heilongjiang Province, China
| | - Zhonghua Tong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 50001, Heilongjiang Province, China
| | - Weiwei Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 50001, Heilongjiang Province, China
| | - Yang Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 50001, Heilongjiang Province, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 50001, Heilongjiang Province, China
| | - Mingyan E
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin 50001, Heilongjiang Province, China.
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 50001, Heilongjiang Province, China.
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 Xuefu Road, Nangang District, Harbin 50001, Heilongjiang Province, China
| |
Collapse
|
7
|
Li Y, Li X, Doughty A, West C, Wang L, Zhou F, Nordquist RE, Chen WR. Phototherapy using immunologically modified carbon nanotubes to potentiate checkpoint blockade for metastatic breast cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:44-53. [PMID: 30844573 DOI: 10.1016/j.nano.2019.02.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/16/2019] [Accepted: 02/14/2019] [Indexed: 12/21/2022]
Abstract
Metastasis is the major cause of cancer-death. Checkpoint inhibition shows great promise as an immunotherapeutic treatment for cancer patients. However, most currently available checkpoint inhibitors have low response rates. To augment the antitumor efficacy of checkpoint inhibitors, such as CTLA-4 antibodies, a single-walled carbon nanotube (SWNT) modified by a novel immunoadjuvant, glycated chitosan (GC), was used for the treatment of metastatic mammary tumors in mice. We treated the primary tumors by intratumoral administration of SWNT-GC, followed with irradiation with a 1064-nm laser to achieve local ablation through photothermal therapy (PTT). The treatment induced a systemic antitumor immunity which inhibited lung metastasis and prolonged the animal survival time of treated. Combining SWNT-GC-laser treatment with anti-CTLA-4 produced synergistic immunomodulatory effects and further extended the survival time of the treated mice. The results showed that the special combination, PTT + SWNT-GC + anti-CTLA, could effectively suppress primary tumors and inhibit metastases, providing a new treatment strategy for metastatic cancers.
Collapse
Affiliation(s)
- Yong Li
- Interventional Therapy Department, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China; Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, USA
| | - Xiaosong Li
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, USA; Department of Oncology, the First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China.
| | - Austin Doughty
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, USA
| | - Connor West
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, USA
| | - Lu Wang
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, USA
| | - Feifan Zhou
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, USA.
| | | | - Wei R Chen
- Biophotonics Research Laboratory, Center for Interdisciplinary Biomedical Education and Research, College of Mathematics and Science, University of Central Oklahoma, Edmond, OK, USA.
| |
Collapse
|
8
|
Kajitani N, Glahder J, Wu C, Yu H, Nilsson K, Schwartz S. hnRNP L controls HPV16 RNA polyadenylation and splicing in an Akt kinase-dependent manner. Nucleic Acids Res 2017; 45:9654-9678. [PMID: 28934469 PMCID: PMC5766200 DOI: 10.1093/nar/gkx606] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/04/2017] [Indexed: 11/14/2022] Open
Abstract
Inhibition of the Akt kinase activates HPV16 late gene expression by reducing HPV16 early polyadenylation and by activating HPV16 late L1 mRNA splicing. We identified ‘hot spots’ for RNA binding proteins at the early polyA signal and at splice sites on HPV16 late mRNAs. We observed that hnRNP L was associated with sequences at all HPV16 late splice sites and at the early polyA signal. Akt kinase inhibition resulted in hnRNP L dephosphorylation and reduced association of hnRNP L with HPV16 mRNAs. This was accompanied by an increased binding of U2AF65 and Sam68 to HPV16 mRNAs. Furthermore, siRNA knock-down of hnRNP L or Akt induced HPV16 gene expression. Treatment of HPV16 immortalized keratinocytes with Akt kinase inhibitor reduced hnRNP L binding to HPV16 mRNAs and induced HPV16 L1 mRNA production. Finally, deletion of the hnRNP L binding sites in HPV16 subgenomic expression plasmids resulted in activation of HPV16 late gene expression. In conclusion, the Akt kinase inhibits HPV16 late gene expression at the level of RNA processing by controlling the RNA-binding protein hnRNP L. We speculate that Akt kinase activity upholds an intracellular milieu that favours HPV16 early gene expression and suppresses HPV16 late gene expression.
Collapse
Affiliation(s)
- Naoko Kajitani
- Department of Laboratory Medicine, Lund University, BMC-B13, 223 62 Lund, Sweden
| | - Jacob Glahder
- Department of Laboratory Medicine, Lund University, BMC-B13, 223 62 Lund, Sweden
| | - Chengjun Wu
- Department of Laboratory Medicine, Lund University, BMC-B13, 223 62 Lund, Sweden
| | - Haoran Yu
- Department of Laboratory Medicine, Lund University, BMC-B13, 223 62 Lund, Sweden
| | - Kersti Nilsson
- Department of Laboratory Medicine, Lund University, BMC-B13, 223 62 Lund, Sweden
| | - Stefan Schwartz
- Department of Laboratory Medicine, Lund University, BMC-B13, 223 62 Lund, Sweden
| |
Collapse
|
9
|
Andrographolide alleviates imiquimod-induced psoriasis in mice via inducing autophagic proteolysis of MyD88. Biochem Pharmacol 2016; 115:94-103. [DOI: 10.1016/j.bcp.2016.06.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022]
|
10
|
Amirghofran Z, Ahmadi H, Karimi MH, Kalantar F, Gholijani N, Malek-Hosseini Z. In vitro inhibitory effects of thymol and carvacrol on dendritic cell activation and function. PHARMACEUTICAL BIOLOGY 2016; 54:1125-1132. [PMID: 26067828 DOI: 10.3109/13880209.2015.1055579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Thyme has been used in traditional medicine for medicinal purposes since ancient times. OBJECTIVE The objective of this study was to investigate the effects of thymol and carvacrol as two major constituents of thyme on dendritic cells (DCs) maturation and T cell activation. MATERIALS AND METHODS Splenic DCs were treated with non-cytotoxic concentrations of the components and then analyzed for MHC II, CD86, and CD40 expression by flow cytometry. The effects of compounds on mitogenic, as well as allogenic T cell responses in mixed lymphocyte culture (MLR) and the release of cytokines were investigated. RESULTS At 0.1 µg/ml, reduced mean fluorescent intensity (MFI) of CD86 for thymol (80.3 ± 0.2% of untreated control) and CD40 for carvacrol (79.5 ± 0.14%) was observed (p < 0.001). Decreased mitogenic T cell proliferation by thymol [proliferation index (PI) from 0.93 ± 0.11 at 1 µg/ml to 0.42 ± 0.16 at 100 µg/ml (p < 0.01)] and carvacrol [PI from 1.08 ± 0.3 at 1 µg/ml to 0.28 ± 0.1 at 100 µg/ml (p < 0.001)] was seen. Ten micrograms/ml thymol (PI, 0.85 ± 0.04) and carvacrol (PI, 0.89 ± 0.03) inhibited allogenic T cell response (p < 0.05). Decreased IFN-γ level in MLR supernatant from 1441 ± 27.7 pg/ml in untreated cells to 944 ± 32.1 at 10 µg/ml of thymol and of carvacrol (886 ± 31.7 pg/ml) (p < 0.01) was found. IL-4 levels were decreased in the presence of both compounds (p < 0.01). CONCLUSION These data showed the suppressive effects of thymol and carvacrol on DCs maturation and function, as well as T cell responses.
Collapse
Affiliation(s)
- Zahra Amirghofran
- a Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
- b Autoimmune Diseases Research Center and Medicinal Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Hossein Ahmadi
- a Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
- c Department of Immunology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran , and
| | | | - Fathollah Kalantar
- a Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Nasser Gholijani
- a Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
| | - Zahra Malek-Hosseini
- a Department of Immunology , Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|