1
|
Kim T, Martínez-Bonet M, Wang Q, Hackert N, Sparks JA, Baglaenko Y, Koh B, Darbousset R, Laza-Briviesca R, Chen X, Aguiar VRC, Chiu DJ, Westra HJ, Gutierrez-Arcelus M, Weirauch MT, Raychaudhuri S, Rao DA, Nigrovic PA. Non-coding autoimmune risk variant defines role for ICOS in T peripheral helper cell development. Nat Commun 2024; 15:2150. [PMID: 38459032 PMCID: PMC10923805 DOI: 10.1038/s41467-024-46457-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Fine-mapping and functional studies implicate rs117701653, a non-coding single nucleotide polymorphism in the CD28/CTLA4/ICOS locus, as a risk variant for rheumatoid arthritis and type 1 diabetes. Here, using DNA pulldown, mass spectrometry, genome editing and eQTL analysis, we establish that the disease-associated risk allele is functional, reducing affinity for the inhibitory chromosomal regulator SMCHD1 to enhance expression of inducible T-cell costimulator (ICOS) in memory CD4+ T cells from healthy donors. Higher ICOS expression is paralleled by an increase in circulating T peripheral helper (Tph) cells and, in rheumatoid arthritis patients, of blood and joint fluid Tph cells as well as circulating plasmablasts. Correspondingly, ICOS ligation and carriage of the rs117701653 risk allele accelerate T cell differentiation into CXCR5-PD-1high Tph cells producing IL-21 and CXCL13. Thus, mechanistic dissection of a functional non-coding variant in human autoimmunity discloses a previously undefined pathway through which ICOS regulates Tph development and abundance.
Collapse
Affiliation(s)
- Taehyeung Kim
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marta Martínez-Bonet
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory of Immune-regulation, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Qiang Wang
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nicolaj Hackert
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Rheumatology, Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jeffrey A Sparks
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuriy Baglaenko
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Byunghee Koh
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Roxane Darbousset
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Raquel Laza-Briviesca
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Vitor R C Aguiar
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Darren J Chiu
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harm-Jan Westra
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
- Divisions of Human Genetics, Biomedical Informatics, and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter A Nigrovic
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Jiang K, Fu Y, Kelly JA, Gaffney PM, Holmes LC, Jarvis JN. Comparison of the three-dimensional chromatin structures of adolescent and adult peripheral blood B cells: implications for the study of pediatric autoimmune diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557171. [PMID: 37745336 PMCID: PMC10515843 DOI: 10.1101/2023.09.11.557171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background/Purpose Knowledge of the 3D genome is essential to elucidate genetic mechanisms driving autoimmune diseases. The 3D genome is distinct for each cell type, and it is uncertain whether cell lines faithfully recapitulate the 3D architecture of primary human cells or whether developmental aspects of the pediatric immune system require use of pediatric samples. We undertook a systematic analysis of B cells and B cell lines to compare 3D genomic features encompassing risk loci for juvenile idiopathic arthritis (JIA), systemic lupus (SLE), and type 1 diabetes (T1D). Methods We isolated B cells from healthy individuals, ages 9-17. HiChIP was performed using CTCF antibody, and CTCF peaks were identified. CTCF loops within the pediatric were compared to three datasets: 1) self-called CTCF consensus peaks called within the pediatric samples, 2) ENCODE's publicly available GM12878 CTCF ChIP-seq peaks, and 3) ENCODE's primary B cell CTCF ChIPseq peaks from two adult females. Differential looping was assessed within the pediatric samples and each of the three peak datasets. Results The number of consensus peaks called in the pediatric samples was similar to that identified in ENCODE's GM12878 and primary B cell datasets. We observed <1% of loops that demonstrated significantly differential looping between peaks called within the pediatric samples themselves and when called using ENCODE GM12878 peaks . Significant looping differences were even less when comparing loops of the pediatric called peaks to those of the ENCODE primary B cell peaks. When querying loops found in juvenile idiopathic arthritis, type 1 diabetes, or systemic lupus erythematosus risk haplotypes, we observed significant differences in only 2.2%, 1.0%, and 1.3% loops, respectively, when comparing peaks called within the pediatric samples and ENCODE GM12878 dataset. The differences were even less apparent when comparing loops called with the pediatric vs ENCODE adult primary B cell peak datasets.The 3D chromatin architecture in B cells is similar across pediatric, adult, and EBVtransformed cell lines. This conservation of 3D structure includes regions encompassing autoimmune risk haplotypes. Conclusion Thus, even for pediatric autoimmune diseases, publicly available adult B cell and cell line datasets may be sufficient for assessing effects exerted in the 3D genomic space.
Collapse
Affiliation(s)
- Kaiyu Jiang
- Department of Pediatrics, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Yao Fu
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jennifer A. Kelly
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Patrick M. Gaffney
- Genes and Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Lucy C. Holmes
- Department of Pediatrics, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - James N. Jarvis
- Department of Pediatrics, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
- Genetics, Genomics and Bioinformatics Program, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
3
|
Huang M, Chen W, Wang M, Huang Y, Liu H, Ming Y, Chen Y, Tang Z, Jia B. Advanced Delivery Strategies for Immunotherapy in Type I Diabetes Mellitus. BioDrugs 2023; 37:331-352. [PMID: 37178431 PMCID: PMC10182560 DOI: 10.1007/s40259-023-00594-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2023] [Indexed: 05/15/2023]
Abstract
Type 1 diabetes mellitus (T1DM) has been defined as an autoimmune disease characterised by immune-mediated destruction of the pancreatic β cells, leading to absolute insulin deficiency and hyperglycaemia. Current research has increasingly focused on immunotherapy based on immunosuppression and regulation to rescue T-cell-mediated β-cell destruction. Although T1DM immunotherapeutic drugs are constantly under clinical and preclinical development, several key challenges remain, including low response rates and difficulty in maintaining therapeutic effects. Advanced drug delivery strategies can effectively harness immunotherapies and improve their potency while reducing their adverse effects. In this review, we briefly introduce the mechanisms of T1DM immunotherapy and focus on the current research status of the integration of the delivery techniques in T1DM immunotherapy. Furthermore, we critically analyse the challenges and future directions of T1DM immunotherapy.
Collapse
Affiliation(s)
- Mingshu Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Weixing Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Min Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yisheng Huang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Hongyu Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yue Ming
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Yuanxin Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Zhengming Tang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China
| | - Bo Jia
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Stem-Cell-Derived β-Like Cells with a Functional PTPN2 Knockout Display Increased Immunogenicity. Cells 2022; 11:cells11233845. [PMID: 36497105 PMCID: PMC9737324 DOI: 10.3390/cells11233845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Type 1 diabetes is a polygenic disease that results in an autoimmune response directed against insulin-producing beta cells. PTPN2 is a known high-risk type 1 diabetes associated gene expressed in both immune- and pancreatic beta cells, but how genes affect the development of autoimmune diabetes is largely unknown. We employed CRISPR/Cas9 technology to generate a functional knockout of PTPN2 in human pluripotent stem cells (hPSC) followed by differentiating stem-cell-derived beta-like cells (sBC) and detailed phenotypical analyses. The differentiation efficiency of PTPN2 knockout (PTPN2 KO) sBC is comparable to wild-type (WT) control sBC. Global transcriptomics and protein assays revealed the increased expression of HLA Class I molecules in PTPN2 KO sBC at a steady state and upon exposure to proinflammatory culture conditions, indicating a potential for the increased immune recognition of human beta cells upon differential PTPN2 expression. sBC co-culture with autoreactive preproinsulin-reactive T cell transductants confirmed increased immune stimulations by PTPN2 KO sBC compared to WT sBC. Taken together, our results suggest that the dysregulation of PTPN2 expression in human beta cell may prime autoimmune T cell reactivity and thereby contribute to the development of type 1 diabetes.
Collapse
|
5
|
Harley ITW, Allison K, Scofield RH. Polygenic autoimmune disease risk alleles impacting B cell tolerance act in concert across shared molecular networks in mouse and in humans. Front Immunol 2022; 13:953439. [PMID: 36090990 PMCID: PMC9450536 DOI: 10.3389/fimmu.2022.953439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Most B cells produced in the bone marrow have some level of autoreactivity. Despite efforts of central tolerance to eliminate these cells, many escape to periphery, where in healthy individuals, they are rendered functionally non-responsive to restimulation through their antigen receptor via a process termed anergy. Broad repertoire autoreactivity may reflect the chances of generating autoreactivity by stochastic use of germline immunoglobulin gene segments or active mechanisms may select autoreactive cells during egress to the naïve peripheral B cell pool. Likewise, it is unclear why in some individuals autoreactive B cell clones become activated and drive pathophysiologic changes in autoimmune diseases. Both of these remain central questions in the study of the immune system(s). In most individuals, autoimmune diseases arise from complex interplay of genetic risk factors and environmental influences. Advances in genome sequencing and increased statistical power from large autoimmune disease cohorts has led to identification of more than 200 autoimmune disease risk loci. It has been observed that autoantibodies are detectable in the serum years to decades prior to the diagnosis of autoimmune disease. Thus, current models hold that genetic defects in the pathways that control autoreactive B cell tolerance set genetic liability thresholds across multiple autoimmune diseases. Despite the fact these seminal concepts were developed in animal (especially murine) models of autoimmune disease, some perceive a disconnect between human risk alleles and those identified in murine models of autoimmune disease. Here, we synthesize the current state of the art in our understanding of human risk alleles in two prototypical autoimmune diseases - systemic lupus erythematosus (SLE) and type 1 diabetes (T1D) along with spontaneous murine disease models. We compare these risk networks to those reported in murine models of these diseases, focusing on pathways relevant to anergy and central tolerance. We highlight some differences between murine and human environmental and genetic factors that may impact autoimmune disease development and expression and may, in turn, explain some of this discrepancy. Finally, we show that there is substantial overlap between the molecular networks that define these disease states across species. Our synthesis and analysis of the current state of the field are consistent with the idea that the same molecular networks are perturbed in murine and human autoimmune disease. Based on these analyses, we anticipate that murine autoimmune disease models will continue to yield novel insights into how best to diagnose, prognose, prevent and treat human autoimmune diseases.
Collapse
Affiliation(s)
- Isaac T. W. Harley
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
- Rheumatology Section, Medicine Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States
| | - Kristen Allison
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative (HI3), Department of Immunology, University of Colorado School of Medicine, Aurora, CO, United States
| | - R. Hal Scofield
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Medical/Research Service, US Department of Veterans Affairs Medical Center, Oklahoma City, OK, United States
| |
Collapse
|
6
|
Tootee A, Nikbin B, Nasli Esfahani E, Arjmand B, Aghayan H, Qorbani M, Ghahari A, Larijani B. Clinical Outcomes of Fetal Stem Cell Transplantation in Type 1 Diabetes Are Related to Alternations to Different Lymphocyte Populations. Med J Islam Repub Iran 2022; 36:34. [PMID: 36128298 PMCID: PMC9448473 DOI: 10.47176/mjiri.36.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 04/13/2022] [Indexed: 11/09/2022] Open
Abstract
Background: In patients with diabetes, transplantation of stem cells increases C-peptide levels and induces insulin independence for some period. Today, this positive therapeutic outcome is widely attributed to the well-documented immunomodulatory properties of stem cells. The aim of this study was to report alternations (the trend of increase or decrease) in different lymphocyte populations in a stem cell clinical trial performed in our institute. Methods: Recorded data of a clinical trial conducted on 72 patients with type 1 diabetes who had received fetal stem cell transplantation several years ago and were regularly monitored before and after the procedure in 1, 3, 6, 12, 24 months were analyzed. In these regular follow-up visits, insulin demand, HbA1c, C-peptide, and alternation to B cell and T cell populations were analyzed and recorded. For the purpose of the current study, patients were retrospectively divided into 2 groups, namely, those with the positive response to treatment and patients without such response. Temporary positive therapeutic response was defined by 2 different indicators, namely, plasma C-peptide levels and insulin dose-adjusted A1C (IDAA1c), which was calculated as A1C (percent) + (4 × insulin dose (units per kilogram per 24 h). Data analysis was performed by means of SPSS Version 18. Results: Besides the short-term therapeutic effect, we observed remarkably significant alternations to the populations of B and T lymphocytes in the recipients. When patients were retrospectively assigned to 2 different groups of patients with a positive therapeutic response (based on C-peptide changes) and those without it, it was observed that alternations to different populations of B-cells and T-cells were significantly different in these 2 groups. Conclusion: Our results demonstrated that transplantation of stem cells leads to significant positive therapeutic outcomes in one group of patients who showed totally distinct patterns of alternation to different groups of lymphocytes.
Collapse
Affiliation(s)
- Ali Tootee
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Nikbin
- Research Center of Molecular Immunology, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Qorbani
- Noncommunicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Aziz Ghahari
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, Department of Surgery, Plastic Surgery, University of British Columbia, Vancouver, Canada
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Chen M, Zhang Q, Wei Y, Wan Q, Xu M, Chen X. Anti-CD20 therapy ameliorates β cell function and rebalances Th17/Treg cells in NOD mice. Endocrine 2022; 76:44-52. [PMID: 35067899 DOI: 10.1007/s12020-021-02965-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/12/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Anti-CD20 therapy delays type 1 diabetes mellitus (T1DM) progression in both nonobese diabetic (NOD) mice and new-onset patients. The mechanism is not completely defined. This study aimed to investigate the effects of anti-CD20 therapy on T helper 17 (Th17) cells and regulatory T cells (Tregs) in NOD mice. The role of B cell depletion in T1DM development was also examined. METHODS NOD mice were randomly divided into two groups. The mice in the experimental group were treated with an anti-CD20 antibody, while the control mice were treated with an isotype-matched control antibody. After treatment, islet morphology and inflammation, Th17 and Treg cell frequencies in the pancreas and spleen, serum cytokine and anti-glutamic acid decarboxylase (GAD) antibody levels, interleukin (IL)-17A levels in the pancreas and spleen, insulin expression in islet cells and islet β cell function were measured. RESULTS Decreased blood glucose and increased insulin secretion were found in the exprimental group compared with the CON group. A lower islet inflammation score was also found in the experimental group. Decreased Th17 cell and IL-17A levels and augmented Treg cell levels were found in the spleen and pancreas after anti-CD20 treatment. The serum levels of B cell activating factor (BAFF), IL-17A, IL-17F, IL-23 and anti-GAD autoantibodies were decreased in the experimental group, while higher serum levels of IL-10 and transforming growth factor (TGF)-β were found. CONCLUSION Anti-CD20 therapy might have some beneficial effects that improve β cell function by relieving islet inflammation through regulation of Th17/Treg cells and the proinflammatory/anti-inflammatory balance.
Collapse
Affiliation(s)
- Min Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan, China
| | - Qianhui Zhang
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan, China
| | - Yanhong Wei
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan, China
| | - Qianqian Wan
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan, China
| | - Min Xu
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan, China
| | - Xiaoqi Chen
- Department of Rheumatology and Immunology, Zhongnan Hospital, Wuhan University, 169 Donghu Road, Wuhan, China.
| |
Collapse
|
8
|
Lombard-Vadnais F, Collin R, Daudelin JF, Chabot-Roy G, Labrecque N, Lesage S. The Idd2 Locus Confers Prominent Resistance to Autoimmune Diabetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:898-909. [PMID: 35039332 DOI: 10.4049/jimmunol.2100456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Type 1 diabetes is an autoimmune disease characterized by pancreatic β cell destruction. It is a complex genetic trait driven by >30 genetic loci with parallels between humans and mice. The NOD mouse spontaneously develops autoimmune diabetes and is widely used to identify insulin-dependent diabetes (Idd) genetic loci linked to diabetes susceptibility. Although many Idd loci have been extensively studied, the impact of the Idd2 locus on autoimmune diabetes susceptibility remains to be defined. To address this, we generated a NOD congenic mouse bearing B10 resistance alleles on chromosome 9 in a locus coinciding with part of the Idd2 locus and found that NOD.B10-Idd2 congenic mice are highly resistant to diabetes. Bone marrow chimera and adoptive transfer experiments showed that the B10 protective alleles provide resistance in an immune cell-intrinsic manner. Although no T cell-intrinsic differences between NOD and NOD.B10-Idd2 mice were observed, we found that the Idd2 resistance alleles limit the formation of spontaneous and induced germinal centers. Comparison of B cell and dendritic cell transcriptome profiles from NOD and NOD.B10-Idd2 mice reveal that resistance alleles at the Idd2 locus affect the expression of specific MHC molecules, a result confirmed by flow cytometry. Altogether, these data demonstrate that resistance alleles at the Idd2 locus impair germinal center formation and influence MHC expression, both of which likely contribute to reduced diabetes incidence.
Collapse
Affiliation(s)
- Félix Lombard-Vadnais
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Roxanne Collin
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| | - Jean-François Daudelin
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Geneviève Chabot-Roy
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Nathalie Labrecque
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
- Département de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Sylvie Lesage
- Immunology-Oncology Axis, Research Center, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada;
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec, Canada; and
| |
Collapse
|
9
|
Leete P, Morgan NG. Footprints of Immune Cells in the Pancreas in Type 1 Diabetes; to "B" or Not to "B": Is That Still the Question? Front Endocrinol (Lausanne) 2021; 12:617437. [PMID: 33716971 PMCID: PMC7948999 DOI: 10.3389/fendo.2021.617437] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Significant progress has been made in understanding the phenotypes of circulating immune cell sub-populations in human type 1 diabetes but much less is known about the equivalent populations that infiltrate the islets to cause beta-cell loss. In particular, considerable uncertainties remain about the phenotype and role of B-lymphocytes in the pancreas. This gap in understanding reflects both the difficulty in accessing the gland to study islet inflammation during disease progression and the fact that the number and proportion of islet-associated B-lymphocytes varies significantly according to the disease endotype. In very young children (especially those <7 years at onset) pancreatic islets are infiltrated by both CD8+ T- and CD20+ B-lymphocytes in roughly equal proportions but it is widely held that the CD8+ T-lymphocytes are responsible for driving beta-cell toxicity. By contrast, the role played by B-lymphocytes remains enigmatic. This is compounded by the fact that, in older children and teenagers (those ≥13 years at diagnosis) the proportion of B-lymphocytes found in association with inflamed islets is much reduced by comparison with those who are younger at diagnosis (reflecting two endotypes of disease) whereas CD8+ T-lymphocytes form the predominant population in both groups. In the present paper, we review the current state of understanding and develop a proposal to stimulate further discussion of the roles played by islet-associated B-lymphocytes in human type 1 diabetes. We cite evidence indicating that sites of direct contact can be found between CD8+ and CD20+-lymphocytes in and around inflamed islets and propose that such interactions may be important in determining the efficiency of beta cell killing.
Collapse
Affiliation(s)
- Pia Leete
- Exeter Centre for Excellence in Diabetes (EXCEED), University of Exeter Medical School, Exeter, United Kingdom
| | - Noel G. Morgan
- Exeter Centre for Excellence in Diabetes (EXCEED), University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
10
|
Armitage LH, Wallet MA, Mathews CE. Influence of PTPN22 Allotypes on Innate and Adaptive Immune Function in Health and Disease. Front Immunol 2021; 12:636618. [PMID: 33717184 PMCID: PMC7946861 DOI: 10.3389/fimmu.2021.636618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 01/18/2023] Open
Abstract
Protein tyrosine phosphatase, non-receptor type 22 (PTPN22) regulates a panoply of leukocyte signaling pathways. A single nucleotide polymorphism (SNP) in PTPN22, rs2476601, is associated with increased risk of Type 1 Diabetes (T1D) and other autoimmune diseases. Over the past decade PTPN22 has been studied intensely in T cell receptor (TCR) and B cell receptor (BCR) signaling. However, the effect of the minor allele on PTPN22 function in TCR signaling is controversial with some reports concluding it has enhanced function and blunts TCR signaling and others reporting it has reduced function and increases TCR signaling. More recently, the core function of PTPN22 as well as functional derangements imparted by the autoimmunity-associated variant allele of PTPN22 have been examined in monocytes, macrophages, dendritic cells, and neutrophils. In this review we will discuss the known functions of PTPN22 in human cells, and we will elaborate on how autoimmunity-associated variants influence these functions across the panoply of immune cells that express PTPN22. Further, we consider currently unresolved questions that require clarification on the role of PTPN22 in immune cell function.
Collapse
Affiliation(s)
- Lucas H. Armitage
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Immuno-Oncology at Century Therapeutics, LLC, Philadelphia, PA, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
11
|
Johnson SN, Griffin JD, Hulbert C, DeKosky BJ, Thomas JW, Berkland CJ. Multimeric Insulin Desensitizes Insulin-Specific B Cells. ACS APPLIED BIO MATERIALS 2020; 3:6319-6330. [DOI: 10.1021/acsabm.0c00782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Stephanie N. Johnson
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - J. Daniel Griffin
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
| | - Chrys Hulbert
- Department of Medicine, Division of Rheumatology, and Immunology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Brandon J. DeKosky
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - James W. Thomas
- Department of Medicine, Division of Rheumatology, and Immunology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Cory J. Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
12
|
Manoylov IK, Boneva GV, Doytchinova IA, Mihaylova NM, Tchorbanov AI. Suppression of Disease-Associated B Lymphocytes by GAD65 Epitope-Carrying Protein-Engineered Molecules in a Streptozotocin-Induced Mouse Model of Diabetes. Monoclon Antib Immunodiagn Immunother 2020; 38:201-208. [PMID: 31603741 DOI: 10.1089/mab.2019.0030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Type 1 diabetes mellitus is an autoimmune syndrome defined by the presence of autoreactive T and B cells, which results in destruction of insulin-producing beta cells. Autoantibodies against GAD65 (glutamic acid decarboxylase 65)-a membrane-bound enzyme on pancreatic beta cells, contribute to beta cells' destruction and the loss of pancreatic functions. Mouse FcγRIIb on B lymphocytes possesses an inhibitory effect on the activity of these cells. We hypothesized that it may be possible to suppress GAD65-specific B cells in mice with diabetes using chimeric molecules, containing an anti-FcγRIIb antibody, coupled to peptide B/T epitopes derived from the GAD65 protein. With these engineered chimeras, we expect to selectively co-cross-link the anti-GAD65-specific B cell receptor (BCR) and FcγRIIb, thus delivering a suppressive signal to the targeted B cells. An anti-FcγRIIb monoclonal antibody and two synthetic peptide epitopes derived from the GAD65 molecule were used for chimeras' construction. The suppressive activity of the engineered molecules was tested in vivo in mice with streptozotocin (STZ)-induced type 1 diabetes. These chimeric molecules exclusively bind disease-associated B cells by recognizing their GAD65-specific BCR and selectively deliver a strong inhibitory signal through their surface FcγRIIb receptors. A reduction in the number of anti-GAD65 IgG antibody-secreting plasmocytes and an increased percentage of apoptotic B lymphocytes were observed after treatment with protein-engineered antibodies of mice with STZ-induced type 1 diabetes.
Collapse
Affiliation(s)
- Iliyan Konstantinov Manoylov
- Laboratory of Experimental Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Gabriela Valentinova Boneva
- Laboratory of Experimental Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Nikolina Mihaylova Mihaylova
- Laboratory of Experimental Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Andrey Ivanov Tchorbanov
- Laboratory of Experimental Immunology, Stefan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,National Institute of Immunology, Sofia, Bulgaria
| |
Collapse
|
13
|
Chen K, Xue Q, Liu F, Liu L, Yu C, Bian G, Zhang K, Fang C, Song J, Ju G, Wang J. B lymphocytes expressing high levels of PD-L1 are key regulators of diabetes development in non-obese diabetic mice. Mol Immunol 2019; 114:289-298. [DOI: 10.1016/j.molimm.2019.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/24/2019] [Accepted: 07/27/2019] [Indexed: 01/13/2023]
|
14
|
Manoylov IK, Boneva GV, Doytchinova IA, Mihaylova NM, Tchorbanov AI. Protein-engineered molecules carrying GAD65 epitopes and targeting CD35 selectively down-modulate disease-associated human B lymphocytes. Clin Exp Immunol 2019; 197:329-340. [PMID: 31009057 DOI: 10.1111/cei.13305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2019] [Indexed: 12/29/2022] Open
Abstract
Type 1 diabetes mellitus is an autoimmune metabolic disorder characterized by chronic hyperglycemia, the presence of autoreactive T and B cells and autoantibodies against self-antigens. A membrane-bound enzyme on the pancreatic beta-cells, glutamic acid decarboxylase 65 (GAD65), is one of the main autoantigens in type 1 diabetes. Autoantibodies against GAD65 are potentially involved in beta-cell destruction and decline of pancreatic functions. The human complement receptor type 1 (CD35) on B and T lymphocytes has a suppressive activity on these cells. We hypothesized that it may be possible to eliminate GAD65-specific B cells from type 1 diabetes patients by using chimeric molecules, containing an anti-CD35 antibody, coupled to peptides resembling GAD65 B/T epitopes. These molecules are expected to selectively bind the anti-GAD65 specific B cells by the co-cross-linking of the immunoglobulin receptor and CD35 and to deliver a suppressive signal. Two synthetic peptides derived from GAD65 protein (GAD65 epitopes) and anti-CD35 monoclonal antibody were used for the construction of two chimeras. The immunomodulatory activity of the engineered antibodies was tested in vitro using peripheral blood mononuclear cells (PBMCs) from type 1 diabetes patients. A reduction in the number of anti-GAD65 IgG antibody-secreting plasma cells and increased percentage of apoptotic B lymphocytes was observed after treatment of these PBMCs with the engineered antibodies. The constructed chimeric molecules are able to selectively modulate the activity of GAD65-specific B lymphocytes and the production of anti-GAD65 IgG autoantibodies by co-cross-linking of the inhibitory CD35 and the B cell antigen receptor (BCR). This treatment presents a possible way to alter the autoimmune nature of these cells.
Collapse
Affiliation(s)
- I K Manoylov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - G V Boneva
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - I A Doytchinova
- Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - N M Mihaylova
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - A I Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria.,National Institute of Immunology, Sofia, Bulgaria
| |
Collapse
|
15
|
The diabetes pandemic and associated infections: suggestions for clinical microbiology. ACTA ACUST UNITED AC 2018; 30:1-17. [PMID: 30662163 PMCID: PMC6319590 DOI: 10.1097/mrm.0000000000000155] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/08/2017] [Indexed: 12/15/2022]
Abstract
There are 425 million people with diabetes mellitus in the world. By 2045, this figure will grow to over 600 million. Diabetes mellitus is classified among noncommunicable diseases. Evidence points to a key role of microbes in diabetes mellitus, both as infectious agents associated with the diabetic status and as possible causative factors of diabetes mellitus. This review takes into account the different forms of diabetes mellitus, the genetic determinants that predispose to type 1 and type 2 diabetes mellitus (especially those with possible immunologic impact), the immune dysfunctions that have been documented in diabetes mellitus. Common infections occurring more frequently in diabetic vs. nondiabetic individuals are reviewed. Infectious agents that are suspected of playing an etiologic/triggering role in diabetes mellitus are presented, with emphasis on enteroviruses, the hygiene hypothesis, and the environment. Among biological agents possibly linked to diabetes mellitus, the gut microbiome, hepatitis C virus, and prion-like protein aggregates are discussed. Finally, preventive vaccines recommended in the management of diabetic patients are considered, including the bacillus calmette-Guerin vaccine that is being tested for type 1 diabetes mellitus. Evidence supports the notion that attenuation of immune defenses (both congenital and secondary to metabolic disturbances as well as to microangiopathy and neuropathy) makes diabetic people more prone to certain infections. Attentive microbiologic monitoring of diabetic patients is thus recommendable. As genetic predisposition cannot be changed, research needs to identify the biological agents that may have an etiologic role in diabetes mellitus, and to envisage curative and preventive ways to limit the diabetes pandemic.
Collapse
|
16
|
Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol 2018; 15:676-684. [PMID: 29375128 PMCID: PMC6123482 DOI: 10.1038/cmi.2017.133] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
B cells have a critical role in the initiation and acceleration of autoimmune diseases, especially those mediated by autoantibodies. In the peripheral lymphoid system, mature B cells are activated by self or/and foreign antigens and signals from helper T cells for differentiating into either memory B cells or antibody-producing plasma cells. Accumulating evidence has shown that epigenetic regulations modulate somatic hypermutation and class switch DNA recombination during B-cell activation and differentiation. Any abnormalities in these complex regulatory processes may contribute to aberrant antibody production, resulting in autoimmune pathogenesis such as systemic lupus erythematosus. Newly generated knowledge from advanced modern technologies such as next-generation sequencing, single-cell sequencing and DNA methylation sequencing has enabled us to better understand B-cell biology and its role in autoimmune development. Thus this review aims to summarize current research progress in epigenetic modifications contributing to B-cell activation and differentiation, especially under autoimmune conditions such as lupus, rheumatoid arthritis and type 1 diabetes.
Collapse
|
17
|
Buckner JH, Greenbaum CJ. Stacking the Deck: Studies of Patients with Multiple Autoimmune Diseases Propelled Our Understanding of Type 1 Diabetes as an Autoimmune Disease. THE JOURNAL OF IMMUNOLOGY 2017; 199:3011-3013. [DOI: 10.4049/jimmunol.1701299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
18
|
De Riva A, Wållberg M, Ronchi F, Coulson R, Sage A, Thorne L, Goodfellow I, McCoy KD, Azuma M, Cooke A, Busch R. Regulation of type 1 diabetes development and B-cell activation in nonobese diabetic mice by early life exposure to a diabetogenic environment. PLoS One 2017; 12:e0181964. [PMID: 28771521 PMCID: PMC5542673 DOI: 10.1371/journal.pone.0181964] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 07/10/2017] [Indexed: 12/12/2022] Open
Abstract
Microbes, including viruses, influence type 1 diabetes (T1D) development, but many such influences remain undefined. Previous work on underlying immune mechanisms has focussed on cytokines and T cells. Here, we compared two nonobese diabetic (NOD) mouse colonies, NODlow and NODhigh, differing markedly in their cumulative T1D incidence (22% vs. 90% by 30 weeks in females). NODhigh mice harbored more complex intestinal microbiota, including several pathobionts; both colonies harbored segmented filamentous bacteria (SFB), thought to suppress T1D. Young NODhigh females had increased B-cell activation in their mesenteric lymph nodes. These phenotypes were transmissible. Co-housing of NODlow with NODhigh mice after weaning did not change T1D development, but T1D incidence was increased in female offspring of co-housed NODlow mice, which were exposed to the NODhigh environment both before and after weaning. These offspring also acquired microbiota and B-cell activation approaching those of NODhigh mice. In NODlow females, the low rate of T1D was unaffected by cyclophosphamide but increased by PD-L1 blockade. Thus, environmental exposures that are innocuous later in life may promote T1D progression if acquired early during immune development, possibly by altering B-cell activation and/or PD-L1 function. Moreover, T1D suppression in NOD mice by SFB may depend on the presence of other microbial influences. The complexity of microbial immune regulation revealed in this murine model may also be relevant to the environmental regulation of human T1D.
Collapse
Affiliation(s)
- Alessandra De Riva
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Maja Wållberg
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Francesca Ronchi
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Richard Coulson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Sage
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy Thorne
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ian Goodfellow
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Kathy D. McCoy
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | - Miyuki Azuma
- Department of Molecular Immunology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robert Busch
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Life Sciences, University of Roehampton, London, United Kingdom
| |
Collapse
|
19
|
Kolb H, von Herrath M. Immunotherapy for Type 1 Diabetes: Why Do Current Protocols Not Halt the Underlying Disease Process? Cell Metab 2017; 25:233-241. [PMID: 27839907 DOI: 10.1016/j.cmet.2016.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
T cell-directed immunosuppression only transiently delays the loss of β cell function in recent-onset type 1 diabetes. We argue here that the underlying disease process is carried by innate immune reactivity. Inducing a non-polarized functional state of local innate immunity will support regulatory T cell development and β cell proliferation.
Collapse
Affiliation(s)
- Hubert Kolb
- West-German Centre of Diabetes and Health, Düsseldorf Catholic Hospital Group, Hohensandweg 37, 40591 Düsseldorf, Germany; Faculty of Medicine, University of Düsseldorf, 40225 Düsseldorf, Germany.
| | - Matthias von Herrath
- Type 1 Diabetes Center, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92014, USA; Novo Nordisk Diabetes Research and Development Center, Seattle, WA 98191, USA.
| |
Collapse
|
20
|
Selvaraj UM, Poinsatte K, Torres V, Ortega SB, Stowe AM. Heterogeneity of B Cell Functions in Stroke-Related Risk, Prevention, Injury, and Repair. Neurotherapeutics 2016; 13:729-747. [PMID: 27492770 PMCID: PMC5081124 DOI: 10.1007/s13311-016-0460-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It is well established that post-stroke inflammation contributes to neurovascular injury, blood-brain barrier disruption, and poor functional recovery in both animal and clinical studies. However, recent studies also suggest that several leukocyte subsets, activated during the post-stroke immune response, can exhibit both pro-injury and pro-recovery phenotypes. In accordance with these findings, B lymphocytes, or B cells, play a heterogeneous role in the adaptive immune response to stroke. This review highlights what is currently understood about the various roles of B cells, with an emphasis on stroke risk factors, as well as post-stroke injury and repair. This includes an overview of B cell functions, such as antibody production, cytokine secretion, and contribution to the immune response as antigen presenting cells. Next, evidence for B cell-mediated mechanisms in stroke-related risk factors, including hypertension, diabetes, and atherosclerosis, is outlined, followed by studies that focus on B cells during endogenous protection from stroke. Subsequently, animal studies that investigate the role of B cells in post-stroke injury and repair are summarized, and the final section describes current B cell-related clinical trials for stroke, as well as other central nervous system diseases. This review reveals the complex role of B cells in stroke, with a focus on areas for potential clinical intervention for a disease that affects millions of people globally each year.
Collapse
Affiliation(s)
- Uma Maheswari Selvaraj
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Katherine Poinsatte
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Vanessa Torres
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Sterling B Ortega
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA
| | - Ann M Stowe
- Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, 6000 Harry Hines Blvd, MC8813, Dallas, TX, 75390, USA.
| |
Collapse
|
21
|
Bone RN, Gai Y, Magrioti V, Kokotou MG, Ali T, Lei X, Tse HM, Kokotos G, Ramanadham S. Inhibition of Ca2+-independent phospholipase A2β (iPLA2β) ameliorates islet infiltration and incidence of diabetes in NOD mice. Diabetes 2015; 64:541-54. [PMID: 25213337 PMCID: PMC4303959 DOI: 10.2337/db14-0097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 09/02/2014] [Indexed: 12/14/2022]
Abstract
Autoimmune β-cell death leads to type 1 diabetes, and with findings that Ca(2+)-independent phospholipase A2β (iPLA2β) activation contributes to β-cell death, we assessed the effects of iPLA2β inhibition on diabetes development. Administration of FKGK18, a reversible iPLA2β inhibitor, to NOD female mice significantly reduced diabetes incidence in association with 1) reduced insulitis, reflected by reductions in CD4(+) T cells and B cells; 2) improved glucose homeostasis; 3) higher circulating insulin; and 4) β-cell preservation. Furthermore, FKGK18 inhibited production of tumor necrosis factor-α (TNF-α) from CD4(+) T cells and antibodies from B cells, suggesting modulation of immune cell responses by iPLA2β-derived products. Consistent with this, 1) adoptive transfer of diabetes by CD4(+) T cells to immunodeficient and diabetes-resistant NOD.scid mice was mitigated by FKGK18 pretreatment and 2) TNF-α production from CD4(+) T cells was reduced by inhibitors of cyclooxygenase and 12-lipoxygenase, which metabolize arachidonic acid to generate bioactive inflammatory eicosanoids. However, adoptive transfer of diabetes was not prevented when mice were administered FKGK18-pretreated T cells or when FKGK18 administration was initiated with T-cell transfer. The present observations suggest that iPLA2β-derived lipid signals modulate immune cell responses, raising the possibility that early inhibition of iPLA2β may be beneficial in ameliorating autoimmune destruction of β-cells and mitigating type 1 diabetes development.
Collapse
Affiliation(s)
- Robert N Bone
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL
| | - Ying Gai
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Victoria Magrioti
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Maroula G Kokotou
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Tomader Ali
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Xiaoyong Lei
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Hubert M Tse
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - George Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Sasanka Ramanadham
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
22
|
Grönholm J, Lenardo MJ. Novel diagnostic and therapeutic approaches for autoimmune diabetes--a prime time to treat insulitis as a disease. Clin Immunol 2014; 156:109-18. [PMID: 25486604 DOI: 10.1016/j.clim.2014.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/22/2014] [Indexed: 02/09/2023]
Abstract
Type 1 diabetes is a progressive autoimmune disease with no curative treatment, making prevention critical. At the time of diagnosis, a majority of the insulin secreting β-cells have already been destroyed. Insulitis, lymphocytic infiltration to the pancreatic islets, is believed to begin months to years before the clinical symptoms of insulin deficiency appear. Insulitis should be treated as its own disease, for it is a known precursor to autoimmune diabetes. Because it is difficult to detect insulitic cellular infiltrates noninvasively, considerable interest has been focused on the levels of islet autoantibodies in blood as measurable diagnostic markers for islet autoimmunity. The traditional islet autoantibody detection assays have many limitations. New electrochemiluminescence-based autoantibody detection assays have the potential to overcome these challenges and they offer promising, cost-effective screening tools in identifying high-risk individuals for trials of preventive interventions. Here, we outline diagnostic and therapeutic strategies to overcome pancreatic β-cell destroying insulitis.
Collapse
Affiliation(s)
- Juha Grönholm
- Molecular Development of the Immune System Section, Laboratory of Immunology, NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immunology, NIAID Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|